Summary

Different fabrication methods were compared as follows. They could be used to realize all kinds of micro FP sensors with their particular advantages and disadvantages.

MASS PRODUCTION

METHODS

FABRICATION

SPEED

ABILITY

SENSOR TYPE

COST

Fs laser

Sweep ablation

Low

Low

Strain, RI, pressure

High

UV laser

Sweep or mask ablation

High

Comparable

Strain, RI, pressure, accelerator

High

FIB

Sweep milling

Low

Low

RI, vibration

High

Chemical

etching

Batch etching

High

Good

Strain, pressure, vibration

Low

References

  • 1. Rao, Y. J. 2006. Recent progress in fiber-optic extrinsic Fabry-Perot interferometric sensors. Optical Fiber Technology, 12(3), 227-237.
  • 2. Petuchowski, S. J., Giallorenzi, T. G., and Sheem, S. K. 1981. A sensitive fiber-optic Fabry-Perot interferometer. IEEE Journal of Quantum Electronics, 17, 2168-2170.
  • 3. Lee, C. E. and Taylor, H. F. 1988. Interferometric optical fibre sensors using internal mirrors. Electronics Letters, 24(4), 193-194.
  • 4. Wan, X. and Taylor, H. F. 2002. Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors. Optics Letters, 27(16), 1388-1390.
  • 5. Kersey, A. D., Jackson, D. A., and Corke, M. 1983. A simple fibre Fabry-Perot sensor. Optics Communications, 45(2), 71-74.
  • 6. Jiang, L. and Tsai, H. L. 2006. Plasma modeling for ultrashort pulse laser ablation of dielectrics. Journal of Applied Physics, 100(2), 023116.
  • 7. Davis, K. M., Miura, K., Sugimoto, N., and Hirao, K. 1996. Writing waveguides in glass with a femtosecond laser. Optics Letters, 21(21), 1729-1731.
  • 8. Szameit, A., Bloemer, D., Burghoff", J., Pertsch, T., Nolte, S., and Tunnermann, A. 2006. Hexagonal waveguide arrays written with fs- laser pulses. Applied Physics B, 82(4), 507-512.
  • 9. Sun, H., He, F., Zhou, Z., Cheng, Y., Xu, Z., Sugioka, K., and Midorikawa, K. 2007. Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses. Optics Letters, 32(11), 1536-1538.
  • 10. Glezer, E. N., Milosavljevic, M., Huang, L., Finlay, R. J., Her, T. H., Callan, J. P., and Mazur, E. 1996. Three-dimensional optical storage inside transparent materials. Optics Letters, 21(24), 2023-2025.
  • 11. Rao, Y. J., Deng, M., Duan, D. W., Yang, X. C., Zhu, T., and Cheng, G. H. 2007. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser. Optics Express, 15(21), 14123-14128.
  • 12. Kondo, Y., Nouchi, K., Mitsuyu, T., Watanabe, M., Kazansky, P. G., and Hirao, K. 1999. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses. Optics Letters, 24(10), 646-648.
  • 13. Wei, T., Han, Y., Tsai, H. L., and Xiao, H. 2008. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser. Optics Letters, 33(6), 536-538.
  • 14. Wei, T., Han, Y., Li, Y., Tsai, H. L., and Xiao, H. 2008. Temperature- insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Optics Express, 16(8), 5764-5769.
  • 15. Liao, C. R., Hu, T. Y., and Wang, D. N. 2012. Optical fiber Fabry- Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Optics Express, 20(20), 22813-22818.
  • 16. Zhang, Y., Yuan, L., Lan, X., Kaur, A., Huang, J., and Xiao, H. 2013. High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser. Optics Letters, 38(22), 4609-4612.
  • 17. Huang, J., Lan, X., Luo, M., and Xiao, H. 2014. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry. Optics Express, 22(15), 18757-18769.
  • 18. Wang, W., Pang, F., Chen, N., Zhang, X., Lan, L., Ding, D., and Wang, T. 2010, December. Fiber optic intrinsic Fabry-Perot temperature sensor fabricated by femtosecond lasers. In Asia Communications and Photonics Conference and Exhibition (pp. 79900P-79900P), Shanghai, China. International Society for Optics and Photonics.
  • 19. Ran, Z. L., Rao, Y. J., Deng, H. Y., and Liao, X. 2007. Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining. Optics Letters, 32(21), 3071-3073.
  • 20. Rao, Y. J. and Ran, Z. L. 2011. Fibers for sensing-fiber-optic Fabry- Perot sensors take the strain under high temperature. Laser Focus World, 47(11), 71.
  • 21. Rao, Y. J., Ran, Z. L., Liao, X., and Deng, H. Y. 2007. Hybrid LPFG/ MEFPI sensor for simultaneous measurement of high-temperature and strain. Optics Express, 15(22), 14936-14941.
  • 22. Ran, Z. L., Rao, Y. J., Liu, W. J., Liao, X., and Chiang, K. S. 2008. Laser-micromachined Fabry-Perot optical fiber tip sensor for high- resolution temperature-independent measurement of refractive index. Optics Express, 16(3), 2252-2263.
  • 23. Ran, Z., Li, C., Zuo, H., and Chen, Y. 2013. Laser-machined cascaded micro cavities for simultaneous measurement of dual parameters under high temperature. IEEE Sensors Journal, 13(5), 1988-1991.
  • 24. Ran, Z. L., Rao, Y. J., Liao, X., and Deng, H. Y. 2009. Self-enclosed allfiber in-line etalon strain sensor micromachined by 157-nm laser pulses. Journal of Lightwave Technology, 27(15), 3143-3149.
  • 25. Ran, Z., Liu, Z., Rao, Y., Xu, F., Sun, D., Yu, X., Xu, B., and Zhang, J. 2011. Miniature fiber-optic tip high pressure sensors micromachined by 157 nm laser. IEEE Sensors Journal, 11(5), 1103-1106.
  • 26. Ran, Z., Lu, E., Rao, Y., Ni, M., Peng, F., and Zeng, D. 2011. Fiber optic Fabry-Perot interferometer tip accelerometer fabricated by lasermicromachining. In 21st International Conference on Optical Fiber Sensors (OFS-21), Ottawa, ON, Canada, Papers 7753-114.
  • 27. Ran, Z., Lu, E., Rao, Y., Peng, F., and Liu, Z. 2011. 1100°C fiber-optic high-temperature Fabry-Perot sensors fabricated by laser-micromachining. In 21st International Conference on Optical Fibre Sensors (OFS-21) (pp. 775317-775317), Ottawa, ON, Canada. International Society for Optics and Photonics.
  • 28. Yuan, W., Wang, F., Savenko, A., Petersen, D. H., and Bang, O. 2011. Note: Optical fiber milled by focused ion beam and its application for Fabry-Perot refractive index sensor. Review of Scientific Instruments, 82(7), 076103.
  • 29. Wieduwilt, T., Dellith, J., Talkenberg, F., Bartelt, H., and Schmidt, M. A. 2014. Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator. Optics Express, 22(21), 25333-25346.
  • 30. Cibula, E. and Donlagic, D. 2007. In-line short cavity Fabry-Perot strain sensor for quasi distributed measurement utilizing standard OTDR. Optics Express, 15(14), 8719-8730.
  • 31. Cibula, E. and Donlagic, D. 2005. Miniature fiber-optic pressure sensor with a polymer diaphragm. Applied Optics, 44(14), 2736-2744.
  • 32. Cibula, E. Pevec, S., Lenardic, B., Pinet, E., and Donlagic, D. 2009. Miniature all-glass robust pressure sensor. Optics Express, 17(7), 5098-5106.
  • 33. Andre, R. M., Pevec, S., Becker, M., Dellith, J., Rothhardt, M., Marques, M. B., Donlagic, D., Bartelt, H., and Frazao, O. 2014. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications. Optics Express, 22(11), 13102-13108.
  • 34. Pevec, S. and Donlagic, D. 2011. All-fiber, long-active-length Fabry- Perot strain sensor. Optics Express, 19(16), 15641-15651.
  • 35. Pevec, S. and Donlagic, D. 2012. Miniature micro-wire based optical fiber-field access device. Optics Express, 20(25), 27874-27887.
  • 36. Heo, J. S., Lee, J. J., and Lim, J. O. 2003. A micro total reflective extrinsic Fabry-Perot interferometric fiber optic pressure sensor for medical application. InternationalJournal of Modern Physics B, 17(08n09), 1199-1204.
 
Source
< Prev   CONTENTS   Source   Next >