Menu
Home
Log in / Register
 
Home arrow Engineering arrow Broadband metamaterials in electromagnetics : technology and applications
Source

Conclusion

In summary, several concepts for realizing broadband negligible- loss MMs have been presented with application to antenna systems. Several examples were included, which demonstrate that MMs, with properly tailored dispersion and anisotropic properties, can be utilized to extend the impedance bandwidth and/or enhance the gain of antennas. Moreover, by incorporating active components, reconfigurable MM devices can be accomplished, which provide more degrees of freedom for MM-based antenna systems.

References

  • 1. Caloz, C., and Itoh, T. (2005). Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley-IEEE Press, USA).
  • 2. Eleftheriades, G. V., and Balmain, K. G. (2005). Negative-Refraction Metamaterials: Fundamental Principles and Applications (Wiley-IEEE Press, USA).
  • 3. Engheta, N., and Ziolkowski, R. (2006). Metamaterials: Physics and Engineering Explorations (Wiley-IEEE Press, USA).
  • 4. Cui, T. J., Smith, D. R., and Liu, R. (2009). Metamaterials: Theory, Design, and Applications (Springer, UK).
  • 5. Werner, D. H., and Kwon, D.-H. (2014). Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications (Springer, UK).
  • 6. Pendry, J. B. (2000). Negative refraction makes a perfect lens, Phys. Rev. Lett., 85, pp. 3966-3969.
  • 7. Grbic, A., and Eleftheriades, G. V. (2004). Overcome the diffraction limit with a planar left-handed transmission-line lens, Phys. Rev. Lett., 92, pp. 117403(1)-(4).
  • 8. Fang, N., Lee, H., Sun, C., and Zhang, X. (2005). Sub-diffraction-limited optical imaging with a silver superlens, Science, 308, pp. 534-537.
  • 9. Pendry, J. B., Schurig, D., and Smith, D. R. (2006). Controlling electromagnetic fields, Science, 312, pp. 1780-1782.
  • 10. Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., and Smith, D. R. (2006). Electromagnetic metamaterial cloaking at microwave frequencies, Science, 314, pp. 977-980.
  • 11. Cai, W., Chettiar, U. K., Kildishev, A. V., and Shalaev, V. M. (2007). Optical cloaking with metamaterials, Nat. Photon., 1, pp. 224-227.
  • 12. Ma, Y. G., Ong, C. K., Tyc, T., and Leonhardt, U. (2009). An omnidirectional retroreflector based on the transmutation of dielectric singularities, Nat. Mater., 8, pp. 639-642.
  • 13. Jiang, Z. H., Yun, S., Toor, F., Werner, D. H., and Mayer, T. S. (2011). Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating, ACS Nano, 5, pp. 4641-4647.
  • 14. Jiang, W. X., Qiu, C.-W., Han, T., Zhang, S., and Cui, T. J. (2013). Creation of ghost illusions using wave dynamics in metamaterials, Adv. Funct. Mater., 23, pp. 4028-4034.
  • 15. Jiang, Z. H., and Werner, D. H. (2014). Quasi-three-dimensional angle- tolerant electromagnetic illusion using ultrathin metasurface coatings, Adv. Funct. Mater., 24, pp. 7728-7736.
  • 16. Chen, H.-T., Padilla, W. J., Cich, M. J., Azad, A. K., Averitt, R. D., and Taylor, A. J. (2009). A metamaterial solid-state terahertz phase modulator, Nat. Photon, 3, pp. 148-151.
  • 17. Ziolkowski, R. W., Jin, P., and Lin, C.-C. (2011). Metamaterial-inspired engineering of antennas, Proc. IEEE, 99, pp. 1720-1731.
  • 18. Fedotov, V. A., Mladyonov, P. L., Prosvirnin, S. L., Rogacheva, A. V., Chen, Y., and Zheludev, N. I. (2006). Asymmetric propagation of electromagnetic waves through a planar chiral structure, Phys. Rev. Lett, 97, pp. 167401(1)-(4).
  • 19. Liu, R., Ji, C., Mock, J. J., Chin, J. Y., Cui, T. J., and Smith, D. R. (2009). Broadband ground-plane cloak, Science, 323, pp. 366-369.
  • 20. Ma, H. F., and Cui, T. J. (2010). Three-dimensional broadband ground- plane cloak made of metamaterials, Nat. Commun., 1, pp. 21.
  • 21. Chen, H., Hou, B., Chen, S., Ao, X., Wen, W., and Chan, C. T. (2009). Design and experimental realization of a broadband transformation media field rotator at microwave frequencies, Phys. Rev. Lett., 102, pp. 183903(1)-(4).
  • 22. Kundtz, N., and Smith, D. R. (2010). Extreme-angle broadband metamaterial lens, Nat. Mater., 9, pp. 129-132.
  • 23. Ma, H. F., and Cui, T. J. (2010). Three-dimensional broadband and broad-angle transformation-optics lens, Nat. Commun., 1, pp. 124.
  • 24. Jackson, D. R., Caloz, C., and Itoh, T. (2012). Leaky-wave antennas, Proc. IEEE, 100, pp. 2194-2206.
  • 25. Okabe, H., Caloz, C., and Itoh, T. (2004). A compact enhanced- bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section, IEEE Trans. Microw. Theory Tech., 52, pp. 798-804.
  • 26. Lier, E., Werner, D. H., Scarborough, C. P., Wu, Q., and Bossard, J. A. (2011). An octave-bandwidth negligible-loss radiofrequency metamaterial, Nat. Mater., 10, pp. 216-222.
  • 27. Volakis, J. L., and Sertel, K. (2011). Narrowband and wideband metamaterial antennas based on degenerate band edge and magnetic photonic crystals, Proc. IEEE, 99, pp. 1732-1745.
  • 28. Zhou, R., Zhang, H., and Xin, H. (2010). Metallic wire array as low- effective index of refraction medium for directive antenna application, IEEE Trans. Antennas Propag., 58, pp. 79-87.
  • 29. Jiang, Z. H., Gregory, M. D., and Werner, D. H. (2011). Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission, Phys. Rev. B, 84, pp. 165111(1)-(6).
  • 30. Ge, Y., Esselle, K. P., and Hao, Y. (2007). Design of low-profile high-gain EBG resonator antennas using a genetic algorithm, IEEE Antennas Wireless Propag. Lett., 6, pp. 480-483.
  • 31. Guerin, N., Enoch, S., Tayeb, G., Sabouroux, P., Vincent, P., and Legay, H. (2006). A metallic Fabry-Perot directive antenna, IEEE Trans. Antennas Propag., 54, pp. 220-224.
  • 32. Feresidis, A. P., Goussetis, G., Wang, S., and Vardaxoglou, J. C. (2005). Artificial magnetic conductor surfaces and their application to low- profile high-gain planar antennas, IEEE Trans. Antennas Propag., 53, pp. 209-215.
  • 33. Sun, Y., Chen, Z. N., Zhang, Y., Chen, H., and See, T. S. P. (2012). Subwavelength substrate-integrated Fabry-Perot cavity antennas using artificial magnetic conductor, IEEE Trans. Antennas Propag., 60, pp. 30-35.
  • 34. Enoch, S., Tayeb, G., Sabouroux, P., Guerin, N., and Vincent, P. (2002). A metamaterial for directive emission, Phys. Rev. Lett., 89, pp. 213902(1)-(4).
  • 35. Ziolkowski, R. W. (2004). Propagation in and scattering from a matched metamaterial having a zero index of refraction, Phys. Rev. E, 70, pp. 046608(1)-(12).
  • 36. Turpin, J. P., Massoud, A. T., Jiang, Z. H., Werner, P. L., and Werner, D. H. (2010). Conformal mappings to achieve simple material parameters for transformation optics devices, Opt. Express, 18, pp. 244-252.
  • 37. Cheng, Q., and Cui, T. J. (2011). Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials, Appl. Phys. Lett., 99, pp. 131913(1)-(3).
  • 38. Palandoken, M., Grede, A., and Henke, H. (2009). Broadband microstrip antenna with left-handed metamaterials, IEEE Trans. Antennas Propag., 57, pp. 331-338.
  • 39. Antoniades, M. A., and Eleftheriades, G. V. (2009). A broadband dualmode monopole antenna using NRI-TL metamaterial loading, IEEE Antennas Wireless Propag. Lett., 8, pp. 258-261.
  • 40. Antoniades, M. A., and Eleftheriades, G. V. (2012). Multiband compact printed dipole antennas using NRI-TL metamaterial loading, IEEE Trans. Antennas Propag., 60, pp. 5613-5626.
  • 41. Mehdipour, A., Denidni, T. A., and Sebak, A.-R. (2014). Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern, IEEE Trans. Antennas Propag., 62, pp. 555-562.
  • 42. Kim, K., and Varadan, V. V. (2010). Electrically small, millimeter wave dual band meta-resonator antennas, IEEE Trans. Antennas Propag., 58, pp. 3458-3463.
  • 43. Jiang, Z. H., Bossard, J. A., Wang, X., and Werner, D. H. (2011). Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm, J. Appl. Phys., 109, pp. 1013515(1)-(11).
  • 44. Jiang, Z. H., Gregory, M. D., and Werner, D. H. (2011). A broadband monopole antenna enabled by an ultrathin anisotropic metamaterial coating, IEEE Antennas Wireless Propag. Lett., 10, pp. 1543-1546.
  • 45. Kong, J. A. (2000). Electromagnetic Wave Theory (EMW Cambridge, USA).
  • 46. Volakis, J. (2007). Antenna Engineering Handbook, 4th ed. (McGraw- Hill Professional, USA).
  • 47. Smith, D. R., and Schurig, D. (2003). Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors, Phys. Rev. Lett., 90, pp. 077405(1)-(4).
  • 48. Jiang, Z. H., Wu, Q., Brocker, D. E., Sieber, P. E., and Werner, D. H. (2014). A low-profile high-gain substrate-integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating, IEEE Trans. Antennas Propag., 62, pp. 1173-1184.
  • 49. Schurig, D., Mock, J. J., and Smith, D. R. (2006). Electric-field-coupled resonators for negative permittivity metamaterials, Appl. Phys. Lett., 88, pp. 041109(1)-(3).
  • 50. Liu, B., Hong, W., Zhang, Y., Tang, H. J., Yin, X., and Wu, K. (2007). Half mode substrate integrated waveguide 180° 3-dB directional couplers, IEEE Trans. Microw. Theory Tech., 55, pp. 2586-2592.
  • 51. Zhang, Y., Chen, Z. N., Qing, X., and Hong, W. (2011). Wideband millimeter-wave substrate integrated waveguide slotted narrow-wall fed cavity antennas, IEEE Trans. Antennas Propag., 59, pp. 1488-1496.
  • 52. Turpin, J. P., Wu, Q., Werner, D. H., Martin, B., Bray, M., and Lier, E. (2012). Low cost and broadband dual-polarization metamaterial lens for directivity enhancement, IEEE Trans. Antennas Propag., 60, pp. 5717-5726.
  • 53. Turpin, J. P., Wu, Q., Werner, D. H., Martin, B., Bray, M., and Lier, E. (2014). Near-zero-index metamaterial lens combined with AMC metasurface for high-directivity low-profile antennas, IEEE Trans. Antennas Propag., 62, pp. 1928-1936.
  • 54. Falcone, F., Lopetegi, T., Laso, M. A. G., Baena, J. D., Bonache, J., Beruete, M., Marques, R., Martin, F., and Sorolla, M. (2004). Babinet principle applied to the design of metasurfaces and metamaterials, Phys. Rev. Lett., 93, pp. 197401(1)-(4).
  • 55. Smith, D., Schultz, S., Markos, P., and Soukoulis, C. (2002). Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B, 65, pp. 195104(1)-(5).
  • 56. Koschny, T., Markos, P., Economou, E. N., Smith, D. R., Vier, D. C., and Soukoulis, C. M. (2005). Impact of the inherent periodic structure on effective medium description of left-handed and related metamaterials, Phys. Rev. B, 71, pp. 245105(1)-(22).
  • 57. Bayraktar, Z., Turpin, J. P., and Werner, D. H. (2011). Nature-inspired optimization of high-impedance metasurfaces with ultrasmall interwoven unit cells, IEEE Antennas Wireless Propag. Lett., 10, pp. 1563-1566.
  • 58. Xin, H., Matsugatani, K., Kim, M., Hacker, J., Higgins, J. A., Rosker, M., and Tanaka, M. (2002). Mutual coupling reduction of low-profile monopole antennas on high-impedance ground plane, Electron. Lett., 38, pp. 849-850.
  • 59. Sievenpiper, D., Zhang, L., Broas, R. F. J., Alexopolous, N. G., and Yablonovitch, E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microw. Theory Tech., 47, pp. 2059-2074.
  • 60. Cho, C., Choo, H., and Park, I. (2008). Printed symmetric inverted-F antenna with a quasi-isotropic radiation pattern, Microw. Opt. Technol. Lett., 50, pp. 927-930.
  • 61. Erenok, A., Luljak, P. L., and Ziolkowski, R. W. (2005). Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications, IEEE Trans. Antennas Propag., 53, pp. 160-172.
  • 62. Jiang, Z. H., Gregory, M. D., and Werner, D. H. (2012). Broadband highly directive multi-beam emission through transformation optics enabled metamaterial lenses, IEEE Trans. Antennas Propag., 60, pp. 50635074.
  • 63. Wu, Q., Jiang, Z. H., Quevedo-Teruel, O., Turpin, J. P., Tang, W., Hao, Y., and Werner, D., H. (2013). Transformation optics inspired multibeam lens antennas for broadband directive radiation, IEEE Trans. Antennas Propag., 61, pp. 2910-5922.
  • 64. Turpin, J. P., and Werner, D. H. (2014). Construction and measurements of a prototype near-zero-index reconfigurable metamaterial antenna, in Proc. 2014 IEEE Ant. Propag. Int. Symp., Memphis, TN, USA.
  • 65. Turpin, J. P., and Werner, D. H. (2012). Cylindrical metamaterial lens for single-feed adaptive beamforming, in Proc. 2012 IEEE Ant. Propag. Int. Symp., Chicago, IL, USA.
  • 66. Turpin, J. P., Bossard, J. A., Morgan, K. L., Werner, D. H., and Werner, P. L. (2014). Reconfigurable and tunable metamaterials: A review of the theory and applications, Int. J. Antennas Propag., 2014, pp. 1-18.
  • 67. Turpin, J. P., Werner, D. H., and Wolfe, D. W. (2015). Design considerations for spatially reconfigurable metamaterials, IEEE Trans. Antennas Propag., 63, pp. 3513-3521.
  • 68. Turpin, J. P., and Werner, D. H. (2013). Beam scanning antenna enabled by a spatially reconfigurable near-zero index metamaterial, in Proc. 7th European Conf. Antennas Propag., Gothenburg, Sweden.
  • 69. Cho, C., Choo, H., and Park, I. (2008). Printed symmetric inverted-F antenna with a quasi-isotropic radiation pattern, Microw. Opt. Technol. Lett., 50, pp. 927-930.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel