Menu
Home
Log in / Register
 
Home arrow Engineering arrow Broadband metamaterials in electromagnetics : technology and applications
Source

References

  • 1. A. Figotin and I. Vitebsky, "Slow wave phenomena in photonic crystals," Laser Photon. Rev., vol. 5, no. 2, pp. 201-213, 2006.
  • 2. T. Baba, "Slow light in photonic crystals," Nat. Photon., vol. 2, pp. 465473, 2008.
  • 3. S. Yarga, K. Sertel, and J. L. Volakis, "Degenerate band edge crystals for directive antennas," IEEE Trans. Antennas Propag., vol. 56, no. 1, pp. 119-126, 2008.
  • 4. B. Epsztein, "Slow-wave structures in microwave tubes," IEDM Tech. Dig., pp. 486-489, 1984.
  • 5. N. Apaydin, L. Zhang, K. Sertel, and J. L. Volakis, "Experimental validation of frozen modes guided on printed coupled transmission lines," IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp.1513-1518, 2012.
  • 6. Z. Zhang and S. Satpathy, "Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations," Phys. Rev. Lett., vol. 65, pp. 2650-2653, 1990.
  • 7. A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E, vol. 63, no. 066609, pp. 1-20, 2001.
  • 8. M. Caiazzo, S. Maci, and N. Engheta, 'A metamaterial surface for compact cavity resonators," IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 261-264, 2004.
  • 9. S. Yarga, K. Sertel, and J. L. Volakis, "Finite degenerate band edge crystals using barium titanate-alumina layers emulating uniaxial media for directive planar antennas," 2007 IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, pp. 1317-1320, 2007.
  • 10. A. Figotin and I. Vitebsky, "Electromagnetic unidirectionality in magnetic photonic crystals," Phys. Rev. B, vol. 67, no. 165210, pp. 1-20, 2003.
  • 11. J. L. Volakis, G. Mumcu, K. Sertel, C.-C. Chen, M. Lee, B. Kramer, D. Psychoudakis, and G. Kiziltas, "Antenna miniaturization using magnetic photonic and degenerate band-edge crystals," IEEE Trans. Antenn. Propag., vol. 48, pp. 12-28, 2006.
  • 12. E. Irci, K. Sertel, and J. L. Volakis, "Antenna miniaturization for vehicular platforms using printed coupled lines emulating magnetic photonic crystals," Metamaterials, vol. 4, no. 2-3, pp. 127-138, 2010.
  • 13. G. Mumcu, K. Sertel, J. L. Volakis, I. Vitebskiy, and A. Figotin, "RF propagation in finite thickness unidirectional magnetic photonic crystals," IEEE Trans. Antennas Propag., vol. 53, no. 12, pp. 4026-4034, 2005.
  • 14. C. Locker, K. Sertel, and J. L. Volakis, "Emulation of propagation in layered anisotropic media with equivalent coupled microstrip lines," IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 642-644, 2006.
  • 15. M. B. Stephanson, K. Sertel, and J. L. Volakis, "Frozen modes in coupled microstrip lines printed on ferromagnetic substrates," IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 305-307, 2008.
  • 16. K. Zhang and D. Li, Electromagnetic Theory for Microwave and Optoelectronics, Springer, 2nd ed., 2007.
  • 17. Robert E. Collin, Field Theory of Guided Waves, IEEE Press, 1991.
  • 18. I. A. Sukhoivanov and I. V. Guryev, Photonic Crystals: Physics and Practical Modeling, Springer-Verlag, Berlin, 2009.
  • 19. D. A. Watkins, Topics in Electromagnetic Theory, John Wiley & Sons, New York, 1958.
  • 20. A. Figotin and I. Vitebsky, "Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers," Phys. Rev. E, vol. 72-036619, pp. 1-12, 2005.
  • 21. R. Chilton, K.-Y. Jung, R. Lee, and F. L. Teixeira, "Frozen modes in parallel- plate waveguides loaded with magnetic photonic crystals," IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2631-2641, 2007.
  • 22. L. Zhang, G. Mumcu, S. Yarga, K. Sertel, J. L. Volakis, and H. Verweij, "Fabrication and characterization of anisotropic dielectrics for low- loss microwave applications," J. Mater. Sci., vol. 43, no. 5, pp. 15051509, 2008.
  • 23. G. Mumcu, K. Sertel, and J. L. Volakis, "Miniature antenna using printed coupled lines emulating degenerate band edge crystals," IEEE Trans. Antennas Propag., vol. 57, no. 6, pp. 1618-1624, 2009.
  • 24. W. X. Wang, Y. Y. Wei, G. F. Yu, Y. B. Gong, M. Z. Huang, and G. Q. Zhao, "Review of the novel slow-wave structures for high-power traveling- wave tube," Int. J. Infrared Millimeter Waves, vol. 24, no. 9, pp. 14691484, 2003.
  • 25. A. S. Gilmour Jr., "Traveling wave tubes," in Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons, Artech House, 2011.
  • 26. J. R. Pierce, Traveling-Wave Tubes, New York: Van Nostrand, 1950.
  • 27. S. K. Datta, V. B. Naidu, P. R. R. Rao, L. Kumar, B. N. Basu, "Equivalent circuit analysis of a ring-bar slow-wave structure for high-power traveling-wave tubes," IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 3184-3190, 2009.
  • 28. T. Munehiro, M. Yoshida, K. Tomikawa, A. Kajiwara, and K. Tsutaki, "Development of an S-band l KW pulsed mini-TWT for MPMs," Vacuum Electronics Conference, 2007 IEEE International, pp. I-2, 2007.
  • 29. J. L. Volakis and K. Sertel, "Narrowband and wideband metamaterial antennas based on degenerate band edge and magnetic photonic crystals," Proc. IEEE, vol. 99, no. 10, pp. 1732-1745, 2011.
  • 30. W. E. Kock, "Metallic delay lenses," Bell Syst. Tech. J., vol. 27, pp. 58-82, 1948.
  • 31. A. Munir, N. Hamanaga, H. Kubo, and I. Awai, 'Artificial dielectric rectangular resonator with novel anisotropic permittivity and its TE mode waveguide filter application," IEICE Trans. Electron., vol. E88-C, no. 1, pp. 40-46, 2005.
  • 32. I. Awai, H. Kubo, T. Iribe, D. Wakamiya, and A. Sanada, "An artificial dielectric material of huge permittivity with novel anisotropy and its application to a microwave BPF," IEICE Trans. Electron., vol. E88-C, no. 7, pp. 1412-1419, 2005.
  • 33. S. Yarga, K. Sertel, and J. L. Volakis, "Multilayer dielectric resonator antenna operating at degenerate band edge modes," IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 287-290, 2009.
  • 34. G. Mumcu, K. Sertel, and J. L. Volakis, "Lumped circuit models for degenerate band edge and magnetic photonic crystals," IEEE Microwave Wireless Components Lett., vol. 20, no. 1, pp. 4-6, 2010.
  • 35. G. Mumcu, K. Sertel, and J. L. Volakis, "Printed coupled lines with lumped loads for realizing degenerate band edge and magnetic photonic crystal modes," 2008 IEEE Antennas and Propagation Society Symposium, San Diego, CA, 2008.
  • 36. G. Mumcu, K. Sertel, and J. L. Volakis, "Partially coupled microstrip lines for antenna miniaturization," IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials (IWAT), Santa Monica, CA, 2009.
  • 37. G. Mumcu, S. Gupta, K. Sertel, and J. L. Volakis, "Small wideband doubleloop antennas using lumped inductors and coupling capacitors," IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 107-110, 2011.
  • 38. E. Irci, K. Sertel, and J. L. Volakis, "Antenna miniaturization for vehicular platforms using printed coupled lines emulating magnetic photonic crystals", Metamaterials, vol. 4, no. 2-3, pp. 127-138, 2010.
  • 39. N. Apaydin, G. Mumcu, E. Irci, K. Sertel, and J. L. Volakis, "Miniature antennas based on printed coupled lines emulating anisotropy," IET Microwaves, Antennas and Propagation, vol. 61, no. 7, 2013.
  • 40. D. R. Jackson, C. Caloz, and T. Itoh, "Leaky-wave antennas," Proc. IEEE, vol. 100, no. 7, pp. 2194-2206, 2012.
  • 41. A. A. Oliner and D. R. Jackson, "Leaky-wave antennas," in Antenna Engineering Handbook, J. L. Volakis, Ed. McGraw Hill, 2007.
  • 42. N. Apaydin, L. Zhang, K. Sertel, and J. L. Volakis, "Nonreciprocal and magnetically scanned leaky-wave antenna using coupled microstrip lines," in Proceedings of Antennas and Propagation Society International Symposium, Chicago, IL, USA, 2012.
  • 43. N. Apaydin, K. Serlel, and J. L. Volakis, "Nonreciprocal leaky-wave antenna based on coupled microstrip lines on a non-uniformly biased ferrite substrate," IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3458-3465, 2013.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel