Menu
Home
Log in / Register
 
Home arrow Engineering arrow Broadband metamaterials in electromagnetics : technology and applications
Source

Conclusion

In summary, we have presented a very efficient methodology to synthesize broadband and multiband EBGs. The approach exploits the fact that non-uniform capacitively loaded EBGs exhibit, in principle, wider bandgaps compared to those of the same EBG with uniform capacitive loads. Additionally, the documented methodology exploits the fact that EBGs loaded with lumped capacitors can be conveniently represented as multiport networks whose response is fully characterized by their 5-matrix. Consequently, their analysis can be performed via simple circuit-based calculations rather than through computationally expensive full-wave simulations. Finally, it was demonstrated that this circuit-based analysis can be extended for the design of mushroom-based absorbers loaded with lumped tuning capacitors and resistors.

References

  • 1. Sievenpiper, D., Zhang, L., Broas, R., Alexopolous, N., and Yablonovitch, E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microwave Theory Tech., 47, pp. 20592074.
  • 2. Kern, D. J., Werner, D. H., Monorchio, A., Lanuzza, L., and Wilhelm, M. J. (2005). The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces, IEEE Trans. Antennas Propag., 53, pp. 8-17.
  • 3. Martin, S. H., Martinez, I., Turpin, J. P., Werner, D. H., Lier, E., Bray, M. G. (2014). The synthesis of wide- and multi-bandgap electromagnetic surfaces with finite size and nonuniform capacitive loading, IEEE Trans. Microw. Theory Tech., 62, pp. 1962-1972.
  • 4. Diaz, R. E., Sanchez, V., Caswell, E., and Miller, A. (2003). Magnetic loading of artificial magnetic conductors for bandwidth enhancement, Proc. IEEE Antennas Propag. Soc. Int. Symp., 2, pp. 431-434.
  • 5. Kern, D. J., and Werner, D. H. (2006). Magnetic loading of EBG AMC ground planes and ultra-thin absorbers for improved bandwidth performance and reduced size, Microw. Opt. Technol. Lett., 48, pp. 2468-2471.
  • 6. Gousettis, G., Feresidis, A. P., and Vardaxoglou, Y. C. (2005). Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate, IEEE Trans. Antennas Propag., 54, pp. 82-89.
  • 7. Simovski, C. R., De Maagt, P., and Melchakova, I. V. (2005). High- impedance surfaces having stable resonance with respect to polarization and incidence angle, IEEE Trans. Antennas Propag., 53, pp. 908-914.
  • 8. Feresidis, A. P., Gousettis, G., Wang, S., and Vardaxoglou, C. J. (2005). Artificial magnetic conductor surfaces and their application to low- profile high-gain planar antennas, IEEE Trans. Antennas Propag., 53, pp. 209-215.
  • 9. Caloz, C., and Itoh, T. (2005). Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley-IEEE Press, USA).
  • 10. Yazdi, M., and Komjani, N. (2011). Design of a band-notched UWB monopole antenna by means of an EBG structure, IEEE Antennas Wireless Propag. Lett., 10, pp. 170-173.
  • 11. Bianconi, G., Costa, F., Genovesi, S., and Monorchio, A. (2011). Optimal design of dipole antennas backed by a finite high-impedance screen, Prog. Electromagn. Res. C, 18, pp. 137-151.
  • 12. Yang, F., and Rahmat-Samii, Y. (2009). Electromagnetic Band Gap Structures in Antenna Engineering (Cambridge University Press, UK).
  • 13. Bell, J. M., and Iskander, M. F. (2004). A low-profile Archimedean spiral antenna using an EBG ground plane, IEEE Antennas Wireless Propag. Lett., 3, pp. 223-226.
  • 14. Best, A., and Hanna, D. (2008). Design of a broadband dipole in close proximity to an EBG ground plane, IEEE Antennas Propag. Mag., 50, pp. 52-64.
  • 15. Azad, M., and Ali, M. (2008). Novel wideband directional dipole antenna on a mushroom like EBG structure, IEEE Trans. Antennas Propag., 56, pp. 1242-1250.
  • 16. Yang, F., and Rahmat-Samii, Y. (2003). Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Trans. Antennas Propag., 51, pp. 2691-2703.
  • 17. Yang, F., and Rahmat-Samii, Y. (2004). Bent monopole antennas on EBG ground plane with reconfigurable radiation patterns, IEEE Proc. AP-S Int. Symp., 2, pp. 1819-1822.
  • 18. Baggen, R., Martinez-Vazquez, M., Leiss, J., Holzwarth, S., Drioli, L. S., and de Maagt, P. (2008). Low profile Galileo antenna using EBG technology, IEEE Trans. Antennas Propag., 56, pp. 667-674.
  • 19. Yousefi, L., Mohajer-Iravani, B., and Ramahi, O. M. (2007). Enhanced bandwidth artificial magnetic ground plane for low-profile antennas, IEEE Microw. Wireless Compon. Lett., 6, pp. 289-292.
  • 20. Rajo-Iglesias, E., Quevedo-Teruel, O., and Inclan-Sanchez, L. (2008). Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate, IEEE Trans. Antennas Propag., 56, pp. 1648-1655.
  • 21. Rajo-Iglesias, E., Quevedo-Teruel, O., Inclan-Sanchez, L., and Garcia- Munoz, L.-E. (2007). Design of a planar EBG structure to reduce mutual coupling in multilayer patch antennas, Antennas Propag. Conf., LAPC 2007, pp. 149-152.
  • 22. Llombart, N., Neto, A., Gerini, G., and de Maagt, P. (2005). Planar circularly symmetric EBG structures for reducing surface waves in printed antennas, IEEE Trans. Antennas Propag., 53, pp. 3210-3218.
  • 23. Abhari, R., and Eleftheriades, G. V. (2003). Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits, IEEE Trans. Microw. Theory Tech., 51, pp. 1629-1639.
  • 24. Chen, X., Li, L., Liang, C. H., Su, Z. J., and Zhu, C. (2012). Dual-band high impedance surface with mushroom-type cells loaded by symmetric meandered slots, IEEE Trans. Antennas Propag., 60, pp. 4677-4687.
  • 25. Exposito-Dominguez, G., Fernandez-Gonzalez, J.-M., Padilla, P., and Sierra-Castaner, M. (2012). Mutual coupling reduction using EBG in steering antennas, IEEE Antennas Wireless Propag. Lett., 11, pp. 12651268.
  • 26. Yang, L., Fan, M., Chen, F., She, J., and Feng, Z. (2005). A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits, IEEE Trans. Microw. Theory Tech., 53, pp. 183-190.
  • 27. Yang, F., and Rahmat-Samii, Y. (2003). Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications, IEEE Trans. Antennas Propag., 51, pp. 2936-2946.
  • 28. Clavijo, S., Diaz, R., and McKinzie, W. E. (2003). Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas, IEEE Trans. Antennas Propag., 51, pp. 2678-2690.
  • 29. Li, L., Chen, Q., Yuan, Q., Liang, C., and Sawaya, K. (2008). Surface wave suppression band gap and plane-wave reflection phase band of mushroom-like band gap structures,J. Appl. Phys., 103, pp. 023513/1- 10.
  • 30. Maci, S., Caiazzo, M., Cucini, A., and Casaletti, M. (2005). A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab, IEEE Trans. Antennas Propag., 53, pp. 70-81.
  • 31. Samani, M. F., Borji, A., and Safian, R. (2011). Relation between refection phase and surface-wave bandgap in artificial magnetic conductors, IEEE Trans. Microwave Theory Tech., 59, pp. 1901-1908.
  • 32. Aminian, A., Yang, F., and Rahmat-Samii, Y. (2003). In-phase reflection and EM wave suppression characteristics of electromagnetic band gap ground planes, IEEE Proc. AP-S Int. Symp., 4, pp. 430-433.
  • 33. Grbic, A., and Eleftheriades, G. V. (2003). Dispersion analysis of a microstrip based negative-refractive-index periodic structure, IEEE Microwave Wireless Compon. Lett., 13, pp. 155-157.
  • 34. Elek, F., and Eleftheriades, G. V. (2004). Dispersion analysis of the shielded Sievenpiper structure using multiconductor transmissionline theory, IEEE Microw. Wireless Compon. Lett., 14, pp. 434-436.
  • 35. Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of s and p, Sov. Phys. Usp., 10, pp. 509514.
  • 36. Eleftheriades, G. V., Iyer, A. K., and Kremer, P. C. (2002). Planar negative refractive index media using periodically L-C loaded transmission lines, IEEE Trans. Microw. Theory Tech., 50, pp. 2702-2712.
  • 37. Abedin, M. F., Azad, M. Z., and Ali, M. (2008). Wideband smaller unitcell planar EBG structures and their application, IEEE Trans. Antennas Propag., 56, pp. 903-908.
  • 38. Kim, T., and Seo, C. (2000). A novel photonic bandgap structure for low-pass filter of wide stopband, IEEE Microw. Wireless Compon. Lett., 10, pp. 13-15.
  • 39. Karmakar, N. C. (2002). Improved performance of photonic band-gap micro-stripline structures with the use of Chebyshev distributions, Microwave Opt. Technol. Lett., 33, pp. 1-5.
  • 40. Mosallaei, H., and Sarabandi, K. (2005). A compact wide-band EBG structure utilizing embedded resonator circuits, IEEE Antennas Wireless Propag. Lett., 4, pp. 5-8.
  • 41. Karim, M. F., Liu, A. Q., Alphones, A., and Zhang, X. J. (2004). Low-pass filter using a hybrid EBG structure, Microwave Opt. Technol. Lett., 45, pp. 95-98.
  • 42. Chappell, W. J., Little, M. P., and Katehi, L. P. B. (2001). High isolation, planar filters using EBG substrate, IEEE Microwave Wireless Compon. Lett., 11, pp. 246-248.
  • 43. Liang, L., Liang, C., Zhao, X., and Su, Z. (2008). A novel broadband EBG using multi-period mushroom-like structure, Int. Conf. Microw. Millimeter Wave Technol., ICMMT2008, 4, pp. 1609-1612.
  • 44. Chen, L., Wang, C., Zhang, Q., and Yang, X. (2011). A novel wide-band cascaded EBG structure with chip capacitor loading, IEEE Int. Symp. Microw., Antenna, Propag. EMC Technol. Wireless Commun., MAPE2011, pp. 289-291.
  • 45. Pozar D. (2005). Microwave Engineering, 3rd ed. (Wiley).
  • 46. Davidovitz, M. (1995). Reconstruction of the S-matrix for a 3-port using measurements at only two ports, IEEE Microwave Guided Wave Lett., 5, pp. 349-350.
  • 47. Lu, H., and Chu, T. (2000). Port reduction methods for scattering matrix measurement of an n-port network, IEEE Trans. Microwave Theory Tech., 48, pp. 959-968.
  • 48. Hansen, N., and Ostermeier, A. (2001). Completely derandomized selfadaptation in evolutionary strategies, Evol. Comput., 9, pp. 159-195.
  • 49. Gregory, M. D., Bayraktar, Z., and Werner, D. H. (2011). Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy, IEEE Trans. Antennas Propag., 59, pp. 1275-1285.
  • 50. Munk, B. (2000). Frequency selective surfaces: Theory and design (Wiley Press, USA).
  • 51. Engheta, N. (2002). Thin absorbing screens using metamaterial surfaces, Proc. IEEE Antennas Propag. Soc. Int. Symp., San Antonio, TX, 2, pp. 392-395.
  • 52. Kern, D. J., and Werner, D. H. (2003). A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers, Microw. Opt. Technol. Lett., 38, pp. 61-64.
  • 53. Gao, Q., Yin, Y., Yan, D.-B., and Yuan, N.-C. (2005). Application of metamaterials to ultra-thin radar-absorbing material design, Electron. Lett., 41, pp. 1311-1313.
  • 54. Li, Y.-Q., Zhang, H., Fu, Y.-Q., and Yuan, N.-C. (2008). RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material, IEEE Antennas Wireless Propag. Lett., 7, pp. 473-476.
  • 55. Simms, S., and Fusco, V. (2006). Tunable thin radar absorber using artificial magnetic ground plane with variable backplane, Electron. Lett, 42, pp. 1197-1198.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel