References

Clark, M. P., B. Nijssen, J. D. Lundquist, et al. 2015. A unified approach to hydrologic modeling: Part 1. Model structure. Water Resources Research 51(4):2498-2514. doi:10.1002/2015WR017198.

Dirmeyer, P. A., J. Wei, M. G. Bosilovich, and D. M. Mocko. 2014. Comparing evaporative sources of terrestrial precipitation and their extremes in MERRA using relative entropy. Journal of Hydrometeorology 15:102-116. doi:10.1175/ JHM-D-13-053.1.

Hamill, T. M., J. S. Whitaker, and S. L. Mullen. 2005. Reforecasts, an important dataset for improving weather predictions. Bulletin of the American Meteorological Society 87:33-46.

Hao, Z., and A. AghaKouchak. 2013. Multivariate standardized drought index: A parametric multi-index model. Advances in Water Resources 57:12-18.

Hoerling, M., J. Eischeid, A. Kumar, et al. 2014. Causes and predictability of the 2012 Great Plains drought. Bulletin of the American Meteorological Society 95:269-282. doi:10.1175/BAMS-D-13-00055.1.

Houborg, R., M. Rodell, B. Li, R. Reichle, and B. Zaitchik. 2012. Drought indicators based on model assimilated GRACE terrestrial water storage observations. Water Resources Research 48:W07525. doi:10.1029/2011WR011291.

Huang, J., M. Svoboda, A. Wood, et al. 2016. Research to Advance National Drought Monitoring and Prediction Capabilities. NOAA Drought Task Force report. http:// cpo.noaa.gov/sites/cpo/MAPP/pdf/rtc_report.pdf. Accessed March 1, 2016.

Huang, J., H. M. van den Dool, and K. G. Georgakakos. 1996. Analysis of model- calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts. Journal of Climate 9:1350-1362. doi:10.1175/1520-0442(1996)009,1350:A0MCSM.2.0.C0;2.

Kirtman, B. P., D. Min, J. M. Infanti, et al. 2014. The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bulletin of the American Meteorological Society 95:585-601. doi:10.1175/BAMS-D-12-00050.1.

Koster, R. D., G. K. Walker, S. P. P. Mahanama, and R. H. Reichle. 2014. Soil moisture initialization error and subgrid variability of precipitation in seasonal streamflow forecasting. Journal of Hydrometeorology 15:69-88. doi:10.1175/JHM-D-13-050.1.

Kumar, S. V., C. D. Peters-Lidard, D. M. Mocko, et al. 2014. Assimilation of passive microwave-based soil moisture and snow depth retrievals for drought estimation. Journal of Hydrometeorology 15(6):2446-2469. doi:10.1175/JHM-D-13-0132.1.

Mitchell, K. E., D. Lohmann, P. R. Houser, et al. 2004. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. Journal of Geophysical Research 109:D07S90. doi:10.1029/2003JD003823.

Otkin, J., M. Anderson, C. Hain, I. Mladenova, J. Basara, and M. Svoboda. 2013. Examining rapid onset drought development using the thermal infrared-based evaporative stress index. Journal of Hydrometeorology 14:1057-1074. doi:10.1175/ JHM-D-12-0144.1.

Schubert, S., M. Kingtse, and A. Mariotti, eds. 2015. Advancing drought monitoring and prediction. Journal of Hydrometeorology. http://journals.ametsoc.org/topic/ drought_monitor. Accessed January 12, 2016.

Seager, R., L. Goddard, J. Nakamura, N. Henderson, and D. E. Lee. 2014. Dynamical causes of the 2010/11 Texas-northern Mexico drought. Journal of Hydrometeorology 15:39-68. doi:10.1175/JHM-D-13-024.1.

Sheffield, J., E. F. Wood, N. Chaney, et al. 2014. A drought monitoring and forecasting system for sub-Sahara African water resources and food security. Bulletin of the American Meteorological Society 95:861-882. doi:10.1175/BAMS-D-12-00124.1.

Shukla, S., and A. W. Wood. 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters 35:L02405. doi:10.1029/2007GL032487.

Svoboda, M., D. LeComte, M. Hayes, et al. 2002. The drought monitor. Bulletin of the American Meteorological Society 83(8):1181-1190.

Wanders, N., and E. F. Wood. 2016. Improved sub-seasonal meteorological forecast skill of extremes using a weighted multi-model ensemble simulation. Environmental Research Letters 11:940007. doi:10.1088/1748-9326/11/9/094007.

Wang, H., S. Schubert, R. Koster, Y.-G. Ham, and M. Suarez. 2014. On the role of SST forcing in the 2011 and 2012 extreme U.S. heat and drought: A study in contrasts. Journal of Hydrometeorology 15:1255-1273. doi:10.1175/JHM-D-13-069.1.

Wood, A. W. 2008. The University of Washington Surface Water Monitor: An experimental platform for national hydrologic prediction. Proceedings of the American Meteorological Society Annual Meeting, New Orleans, LA. http://ams.confex. com/ams/pdfpapers/134844.pdf. Accessed May 1, 2008.

Wood, A. W., A. Kumar, and D. P. Lettenmaier. 2005. A retrospective assessment of NCEP climate model-based ensemble hydrologic forecasting in the western U.S. Journal of Geophysical Research 110: D04105.

Wood, E. F., S. D. Schubert, A. W. Wood, et al. 2015. Prospects for advancing drought understanding, monitoring, and prediction. In Advancing Drought Monitoring and Prediction, a special collection of the Journal of Hydrometeorology 16(4): 16361657. doi:10.1175/JHM-D-14-0164.1.

Xia, Y., M. B. Ek, D. Mocko, et al. 2014. Uncertainties, correlations, and optimal blends of drought indices from the NLDAS multiple land surface model ensemble. Journal of Hydrometeorology 15:1636-1650. doi:10.1175/JHM-D-13-058.1.

Yuan, X., E. F. Wood, J. K. Roundy, and M. Pan. 2013. CFSv2-based seasonal hydroclimatic forecasts over the conterminous United States. Journal of Climate 26:48284847. doi:10.1175/JCLI-D-12-00683.1.

 
Source
< Prev   CONTENTS   Source   Next >