1. Christofori, G. (2006). New signals from the invasive front, Nature, 441, pp. 444-450.
2. Ben-Zeev, A. (1997). Cytoskeletal and adhesion proteins as tumor suppressors, Curr. Opin. Cell Biol., 9, pp. 99-108.
3. Yamazaki, D., Kurisu, S., and Takenawa, Y. (2007). Regulation of cancer motility through actin reorganization, Cancer Sci., 96, pp. 379-386.
4. Drury, J. L., and Dembo, M. (1999). Hydrodynamics of micropipette aspiration, Biophys. J., 76, pp. 110-128.
5. Hochmuth, R. M. (2000). Micropipette aspiration of living cells,
J. Biomech., 33, pp. 15-22.
6. Bausch, A. R., Moller, W., and Sackmann, E. (1999). Measurements of local viscoelasticity and forces in living cells by magnetic tweezers, Biophys. J., 76, pp. 573-579.
7. Zahalak, G. I., and Ma, S. P. (1999). Muscle activation and contraction: Constitutive relations based directly on cross-bridge kinetics, J. Biomech. Eng., 112, pp. 52-62.
8. Kundu, T., Lee, J. P., Blase, C., and Bereiter-Hahn, J. (2006). Acoustic microscope lens modeling and its application in determining biological cell properties from single- and multi-layered cell models, J. Acoust. Soc. Am., 120, pp. 1646-1654.
9. Sleep, J., Wilson, D., Simmons, R., and Gratzer, W. (1999). Elasticity of the red cell membrane and its relation to hemolytic disorders: And optical tweezers study, Biophys. J., 77, pp. 3085-3095.
10. Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, D., Erickson, H. M., Ananthakrishnan, R., Mitchell, D., Kas, J., Ulvick, S., and Bilby, C. (2005). Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence, Biophys. J., 88, pp. 3689-3689.
11. Ochalek, T., Nordt, F. J., Tullberg, K., and Burger, M. M. (1988). Correlation between cell deformability and metastatic potential in B16-F1 melanoma cell variants, Cancer Res., 48, pp. 5124-5128.
12. Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., and Hrynkiewicz, A. Z. (1999). Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy, Eur. Biophys. J., 28, pp. 312-316.
13. Wu, H. W., Kuhn, T., and Moy, V. T. (1998). Mechanical properties of L929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking, Scanning, 20, pp. 389-397.
14. Rotsch, C., Braet, F., Wisse, E., and Radmacher, M. (2000). Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study, Biophys. J., 78, pp. 520-535.
15. Wakatsuki, T., Kolodney, M. S., Zahalak, G. I., and Elson, E. L. (2000). Cell mechanics studied by a reconstituted model tissue, Biophys. J., 79, pp. 2353-2368.
16. Goldmann, W. H., and Ezzel, R. M. (1996). Viscoelasticity in wild-type and vinculin deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology, Exp. Cell Res., 226, pp. 234-237.
17. Radmacher, M. (1997). Measuring the elastic properties of biological samples with the atomic force microscope, IEEE Med. Eng. Biol., 16, pp. 47-57.
18. Sokolov, I. (2007). Atomic force microscopy in cancer cell research, in: Cancer Nanotechnology (Nalwa, H. S., and Webster, T., eds.), Chapter 1, American Scientific Publishers, New York, pp. 1-17.
19. Lekka, M., Gil, D., Pogoda, K., Dulinska-Litewka, J., Jach, R., Gostek, J., Klymenko, O., Prauzner-Bechcicki, Sz., Stachura, Z., WiltowskaZuber, J., Okon, K., and Laidler, P. (2012). Cancer cell detection in tissue sections using AFM, Arch. Biochem. Biophys., 518, pp. 151-156.
20. Lekka, M., Laidler, P., Ignacak, J., tab^dz, M., Lekki, J., Struszczyk, H., Stachura, Z., and Hrynkiewicz, A. Z. (2001). The effect of chitosan on stiffness and glycolytic activity of human bladder cells, Biochim. Biophys. Acta (Mol. Cell Res.), 1540, pp. 127-136.
21. Guminska, M., and Ignacak, J. (1996). Electrophoretic pattern of cytosolic pyruvate kinase (PK) fractions A and B (Type L and M2) from normal rat liver and Morris hepatoma 7777, Biochim. Biophys. Acta, 1292, pp. 99-105.
22. Glass-Marmor, L., and Beitner, R. (1997). Detachement of glycolitic enzymes from cytoskeleton of melanoma cells induced by calmodulin antagonist, Europ. J. Pharmacol., 328, pp. 241-248.
23. Levental, I., Georges, P. C., and Janmey, P. A. (2007). Soft biological materials and their impact on cell function, Soft Matter, 1, pp. 229-306.
24. Baker, E. L., Bonnecaze, R. T., and Zaman, M. H. (2009). Extracellular matrix stiffness and architecture govern intracellular rheology in cancer, Biophys. J., 97, pp. 1013-1021.
25. Tang, X., Kuhlenschmidt, T. B., Zhou, J., Bell, P. Wang, F., Kuhlenschmidt, M. S., and Saif, T. A. (2010). Mechanical force affects expression of an in vitro metastasis-like phenotype in HCT-8 cells, Biophys. J., 99, pp. 2460-2469.
26. Baker, E. L., Lu, J., Yu, D., Bonnecaze, R. T., and Zaman, M. H. (2010). Cancer cell stiffness: Integrated role of three-dimensional matrix stiffness and transforming potential, Biophys. J., 99, pp. 2048-2057.
27. Prauzner-Bechcicki, Sz., Raczkowska, J., Madej, E., Pabijan, J., Lukes, J., Sepitka, J., Rysz, J., Awsiuk, K., Bernasik, A., Budkoswki, A., and Lekka, M. (2015). PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells, J. Mech. Behav. Biomed. Mater., 41, pp. 13-22.
28. Pogoda, K., Chin, L., Georges, P. C., Byfield, F. J., Bucki, R., Kim, R., Weaver, M., Wells, R., Marcinkiewicz, C., and Janmey, P. A. (2014). Compression stiffening of brain and its effect on mechanosensitivity by glioma cells, New J. Phys., 16, pp. 075002.
29. Levental, I., Levental, K. R., Klein, E. A., Assoian, R., Miller, R. T., Wells, R. G., and Janmey, P. A. (2010). A simple indentation device for measuring micrometer-scale tissue stiffness, J. Phys. Condens. Matter, 22, pp. 194120.
30. Xu, W., Mezencev, R., Wang, L., McDonald, J., and Sulchek, T. (2012). Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells, PLoS ONE, 7, pp. e46609.
31. Mills, G. B., May, C., Hill, M., Campbell, S., Shaw, P., and Marks, A. (1990). Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells, J. Clin. Invest., 86, pp. 851-855.
32. Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M., Scott, M. P., Zipursky, S. L., and Darnell, J. (2004). Molecular Cell Biology, 5th ed. (W. H. Freeman and Company, New York, USA).
33. Carlier, M. F., and Pantaloni, D. (2007). Control of actin assembly dynamics in cell motility,J. Biol. Chem., 282, pp. 23005-23009.
34. Hinterdorfer, P., and Dufrene, Y. (2006). Detection and localization of single molecular recognition events using atomic force microscopy, Nature, 3, pp. 347-355.
35. Zlatanova, J., and vanHolde, K. (2006). Single-molecule biology: What is it and how does it work?, Mol. Cell, 24, pp. 317-2329.
36. Ikai, A. (2004). Nanomechanics of protein-based biostructures,Jpn. J. Appl. Phys., 1, pp. 7365-7375.
37. Oesterhelt, F., Oesterhelt, D., Pfeiffer, M., Engel, A., Gaub, H. E., and Muller, D. J. (2000). Unfolding pathways of individual bacteriorhodopsins, Science, 288, pp. 143-146.
38. Afrin, R., Yamada, T., and Ikai, A. (2004). Analysis of force curves obtained on the live cell membrane using chemically modified AFM probes, Ultramicroscopy, 100, pp. 187-195.
39. Lekenkari, P. P., and Horton, M. A. (1999). Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy, Biochem. Biophys. Res. Commun., 259, pp. 645-650.
40. Laidler, P., Dulinska, J., Lekka, M., and Lekki, J. (2005). Expression of prostate specific membrane antigen in androgen-independent prostate cancer cell line PC-3, Arch. Biochem. Biophys., 435, pp. 1-14.
41. Lekka, M., Laidler, P., tab^dz, M., Kulik, A. J., Lekki, J., Zaj^c, W., and Stachura, Z. (2006). Specific detection of glycans on a plasma membrane of living cells using atomic force microscopy, Chem. Biol., 13, pp. 505-512.
42. Lekka, M., Gil, D., D^bros, W., Jaczewska, J., Kulik, A. J., Lekki, J., Stachura, Z., Stachura, J., and Laidler, P. (2011). Characterization of N-cadherin unbinding properties in non-malignant (HCV29) and malignant (T24) bladder cells,J. Mol. Recognit., 24, pp. 833-842.
43. Li, F., Redick, S. D., Erickson, H. P., and Moy, V. T. (2003). Force measurements of the a5(32 integrin-fibronectin interaction, Biophys. J., 84, pp. 1252-1262.
44. Zhang, X., Craig, S. E., Kirby, H., Humphries, M. J., and Moy, V. T. (2004). Molecular basis for the dynamic strength of the integrin a4b1/VCAM-1 interaction, Biophys. J., 87, pp. 3470-3478.
45. Taubenberger, A., Cisneros, D. A., Friedrichs, J., Puech, P. H., Muller, D. J., and Franz, C. M. (2007). Revealing early steps of a2b1 integrin- mediated adhesion to collagen type I by using single-cell force spectroscopy, Mol. Cell Biol., 18 pp. 1634-1644.