Menu
Home
Log in / Register
 
Home arrow Health arrow Cellular analysis by atomic force microscopy
Source

References

  • 1. Christofori, G. (2006). New signals from the invasive front, Nature, 441, pp. 444-450.
  • 2. Ben-Zeev, A. (1997). Cytoskeletal and adhesion proteins as tumor suppressors, Curr. Opin. Cell Biol., 9, pp. 99-108.
  • 3. Yamazaki, D., Kurisu, S., and Takenawa, Y. (2007). Regulation of cancer motility through actin reorganization, Cancer Sci., 96, pp. 379-386.
  • 4. Drury, J. L., and Dembo, M. (1999). Hydrodynamics of micropipette aspiration, Biophys. J., 76, pp. 110-128.
  • 5. Hochmuth, R. M. (2000). Micropipette aspiration of living cells,

J. Biomech., 33, pp. 15-22.

  • 6. Bausch, A. R., Moller, W., and Sackmann, E. (1999). Measurements of local viscoelasticity and forces in living cells by magnetic tweezers, Biophys. J., 76, pp. 573-579.
  • 7. Zahalak, G. I., and Ma, S. P. (1999). Muscle activation and contraction: Constitutive relations based directly on cross-bridge kinetics, J. Biomech. Eng., 112, pp. 52-62.
  • 8. Kundu, T., Lee, J. P., Blase, C., and Bereiter-Hahn, J. (2006). Acoustic microscope lens modeling and its application in determining biological cell properties from single- and multi-layered cell models, J. Acoust. Soc. Am., 120, pp. 1646-1654.
  • 9. Sleep, J., Wilson, D., Simmons, R., and Gratzer, W. (1999). Elasticity of the red cell membrane and its relation to hemolytic disorders: And optical tweezers study, Biophys. J., 77, pp. 3085-3095.
  • 10. Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, D., Erickson, H. M., Ananthakrishnan, R., Mitchell, D., Kas, J., Ulvick, S., and Bilby, C. (2005). Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence, Biophys. J., 88, pp. 3689-3689.
  • 11. Ochalek, T., Nordt, F. J., Tullberg, K., and Burger, M. M. (1988). Correlation between cell deformability and metastatic potential in B16-F1 melanoma cell variants, Cancer Res., 48, pp. 5124-5128.
  • 12. Lekka, M., Laidler, P., Gil, D., Lekki, J., Stachura, Z., and Hrynkiewicz, A. Z. (1999). Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy, Eur. Biophys. J., 28, pp. 312-316.
  • 13. Wu, H. W., Kuhn, T., and Moy, V. T. (1998). Mechanical properties of L929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking, Scanning, 20, pp. 389-397.
  • 14. Rotsch, C., Braet, F., Wisse, E., and Radmacher, M. (2000). Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study, Biophys. J., 78, pp. 520-535.
  • 15. Wakatsuki, T., Kolodney, M. S., Zahalak, G. I., and Elson, E. L. (2000). Cell mechanics studied by a reconstituted model tissue, Biophys. J., 79, pp. 2353-2368.
  • 16. Goldmann, W. H., and Ezzel, R. M. (1996). Viscoelasticity in wild-type and vinculin deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology, Exp. Cell Res., 226, pp. 234-237.
  • 17. Radmacher, M. (1997). Measuring the elastic properties of biological samples with the atomic force microscope, IEEE Med. Eng. Biol., 16, pp. 47-57.
  • 18. Sokolov, I. (2007). Atomic force microscopy in cancer cell research, in: Cancer Nanotechnology (Nalwa, H. S., and Webster, T., eds.), Chapter 1, American Scientific Publishers, New York, pp. 1-17.
  • 19. Lekka, M., Gil, D., Pogoda, K., Dulinska-Litewka, J., Jach, R., Gostek, J., Klymenko, O., Prauzner-Bechcicki, Sz., Stachura, Z., WiltowskaZuber, J., Okon, K., and Laidler, P. (2012). Cancer cell detection in tissue sections using AFM, Arch. Biochem. Biophys., 518, pp. 151-156.
  • 20. Lekka, M., Laidler, P., Ignacak, J., tab^dz, M., Lekki, J., Struszczyk, H., Stachura, Z., and Hrynkiewicz, A. Z. (2001). The effect of chitosan on stiffness and glycolytic activity of human bladder cells, Biochim. Biophys. Acta (Mol. Cell Res.), 1540, pp. 127-136.
  • 21. Guminska, M., and Ignacak, J. (1996). Electrophoretic pattern of cytosolic pyruvate kinase (PK) fractions A and B (Type L and M2) from normal rat liver and Morris hepatoma 7777, Biochim. Biophys. Acta, 1292, pp. 99-105.
  • 22. Glass-Marmor, L., and Beitner, R. (1997). Detachement of glycolitic enzymes from cytoskeleton of melanoma cells induced by calmodulin antagonist, Europ. J. Pharmacol., 328, pp. 241-248.
  • 23. Levental, I., Georges, P. C., and Janmey, P. A. (2007). Soft biological materials and their impact on cell function, Soft Matter, 1, pp. 229-306.
  • 24. Baker, E. L., Bonnecaze, R. T., and Zaman, M. H. (2009). Extracellular matrix stiffness and architecture govern intracellular rheology in cancer, Biophys. J., 97, pp. 1013-1021.
  • 25. Tang, X., Kuhlenschmidt, T. B., Zhou, J., Bell, P. Wang, F., Kuhlenschmidt, M. S., and Saif, T. A. (2010). Mechanical force affects expression of an in vitro metastasis-like phenotype in HCT-8 cells, Biophys. J., 99, pp. 2460-2469.
  • 26. Baker, E. L., Lu, J., Yu, D., Bonnecaze, R. T., and Zaman, M. H. (2010). Cancer cell stiffness: Integrated role of three-dimensional matrix stiffness and transforming potential, Biophys. J., 99, pp. 2048-2057.
  • 27. Prauzner-Bechcicki, Sz., Raczkowska, J., Madej, E., Pabijan, J., Lukes, J., Sepitka, J., Rysz, J., Awsiuk, K., Bernasik, A., Budkoswki, A., and Lekka, M. (2015). PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells, J. Mech. Behav. Biomed. Mater., 41, pp. 13-22.
  • 28. Pogoda, K., Chin, L., Georges, P. C., Byfield, F. J., Bucki, R., Kim, R., Weaver, M., Wells, R., Marcinkiewicz, C., and Janmey, P. A. (2014). Compression stiffening of brain and its effect on mechanosensitivity by glioma cells, New J. Phys., 16, pp. 075002.
  • 29. Levental, I., Levental, K. R., Klein, E. A., Assoian, R., Miller, R. T., Wells, R. G., and Janmey, P. A. (2010). A simple indentation device for measuring micrometer-scale tissue stiffness, J. Phys. Condens. Matter, 22, pp. 194120.
  • 30. Xu, W., Mezencev, R., Wang, L., McDonald, J., and Sulchek, T. (2012). Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells, PLoS ONE, 7, pp. e46609.
  • 31. Mills, G. B., May, C., Hill, M., Campbell, S., Shaw, P., and Marks, A. (1990). Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells, J. Clin. Invest., 86, pp. 851-855.
  • 32. Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M., Scott, M. P., Zipursky, S. L., and Darnell, J. (2004). Molecular Cell Biology, 5th ed. (W. H. Freeman and Company, New York, USA).
  • 33. Carlier, M. F., and Pantaloni, D. (2007). Control of actin assembly dynamics in cell motility,J. Biol. Chem., 282, pp. 23005-23009.
  • 34. Hinterdorfer, P., and Dufrene, Y. (2006). Detection and localization of single molecular recognition events using atomic force microscopy, Nature, 3, pp. 347-355.
  • 35. Zlatanova, J., and vanHolde, K. (2006). Single-molecule biology: What is it and how does it work?, Mol. Cell, 24, pp. 317-2329.
  • 36. Ikai, A. (2004). Nanomechanics of protein-based biostructures,Jpn. J. Appl. Phys., 1, pp. 7365-7375.
  • 37. Oesterhelt, F., Oesterhelt, D., Pfeiffer, M., Engel, A., Gaub, H. E., and Muller, D. J. (2000). Unfolding pathways of individual bacteriorhodopsins, Science, 288, pp. 143-146.
  • 38. Afrin, R., Yamada, T., and Ikai, A. (2004). Analysis of force curves obtained on the live cell membrane using chemically modified AFM probes, Ultramicroscopy, 100, pp. 187-195.
  • 39. Lekenkari, P. P., and Horton, M. A. (1999). Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy, Biochem. Biophys. Res. Commun., 259, pp. 645-650.
  • 40. Laidler, P., Dulinska, J., Lekka, M., and Lekki, J. (2005). Expression of prostate specific membrane antigen in androgen-independent prostate cancer cell line PC-3, Arch. Biochem. Biophys., 435, pp. 1-14.
  • 41. Lekka, M., Laidler, P., tab^dz, M., Kulik, A. J., Lekki, J., Zaj^c, W., and Stachura, Z. (2006). Specific detection of glycans on a plasma membrane of living cells using atomic force microscopy, Chem. Biol., 13, pp. 505-512.
  • 42. Lekka, M., Gil, D., D^bros, W., Jaczewska, J., Kulik, A. J., Lekki, J., Stachura, Z., Stachura, J., and Laidler, P. (2011). Characterization of N-cadherin unbinding properties in non-malignant (HCV29) and malignant (T24) bladder cells,J. Mol. Recognit., 24, pp. 833-842.
  • 43. Li, F., Redick, S. D., Erickson, H. P., and Moy, V. T. (2003). Force measurements of the a5(32 integrin-fibronectin interaction, Biophys. J., 84, pp. 1252-1262.
  • 44. Zhang, X., Craig, S. E., Kirby, H., Humphries, M. J., and Moy, V. T. (2004). Molecular basis for the dynamic strength of the integrin a4b1/VCAM-1 interaction, Biophys. J., 87, pp. 3470-3478.
  • 45. Taubenberger, A., Cisneros, D. A., Friedrichs, J., Puech, P. H., Muller, D. J., and Franz, C. M. (2007). Revealing early steps of a2b1 integrin- mediated adhesion to collagen type I by using single-cell force spectroscopy, Mol. Cell Biol., 18 pp. 1634-1644.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel