Menu
Home
Log in / Register
 
Home arrow Health arrow Cellular analysis by atomic force microscopy
Source

References

  • 1. Bongrand, P. (1999). Ligand-receptor interactions. Rep. Prog. Phys, 62, pp. 921-968.
  • 2. Lekka, M. (2007). The use of atomic force microscopy as a technique for the identification of cancerous cells. Report IF] PAN, 2001/AP, pp. 1-147.
  • 3. Orsello, C. E., Lauffenburger, D. A., and Hammer, D. A. (2001). Molecular properties in cell adhesion: A physical and engineering perspective. Trends Biotechnol., 19, pp. 310-316.
  • 4. Dembo, M., Torney, D. C., Saxman, K., and Hammer, D. (1988). The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. London Biol. Sci., 234, pp. 55-83.
  • 5. Kramers, H. A. (1940). Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, VII, pp. 284-304.
  • 6. Hanggi, P., Talkner, P., and Borkovec, M. (1990). Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys., 62 pp. 251-341.
  • 7. Bell, G. I. (1978). Models for the specific adhesion of cells to cells. Science, 200, pp. 618-627.
  • 8. Evans, E. (1999). Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy. Biophys. Chem., 82, pp. 83-97.
  • 9. Evans, E., and Ritchie, K. (1997). Dynamic strength of molecular adhesion bonds. Biophys. J., 72, pp. 1541-1555.
  • 10. Tees, D. F., Chang, K. C., Rodgers, S. D., and Hammer, D. A. (2002). Simulation of cell adhesion to bioreactive surfaces in shear: The effect of cell size. Ind. Eng. Chem. Res., 41, pp. 486-493.
  • 11. Fritz, J., Katopodis, A. G., Kolbinger, F., and Anselmetti, D. (1998). Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl. Acad. Sci. U. S. A, 95, pp. 12283-12288.
  • 12. Nishizaka, T., Seo, R., Tadakuma, H., Kinosita, K., and Ishiwata, S. (2000). Characterization of single actomyosin rigor bonds: Load dependence of lifetime and mechanical properties. Biophys. J., 79, pp. 962-974.
  • 13. Kienberger, F., Kada, G., Mueller, H., and Hinterdorfer, P. (2005). Single molecule studies of antibody-antigen interaction strength versus intra-molecular antigen stability. J. Mol. Biol., 347, pp. 597-606.
  • 14. Neuert, G., Albrecht, C., Pamir, E., and Gaub, H. E. (2006). Dynamic force spectroscopy of the digoxigenin-antibody complex. FEBS Lett., 580, pp. 505-509.
  • 15. Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y., and Schulten, K. (1997). Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J., 72, pp. 1568-1581.
  • 16. Evans, E. (2001). Probing the relation between force-lifetime and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct., 30, pp. 105-128.
  • 17. Li, F., Redick, S. D., Erickson, H. P., and Moy, V. T. (2003). Force measurements of the a5b2 integrin-fibronectin interaction. Biophys. J, 84, pp. 1252-1262.
  • 18. Zhang, X., Bogorin, D. F., and Moy, V. T. (2004). Molecular basis of the dynamic strength of the sialyl Lewis X-selectin interaction. ChemPhysChem, 5, pp. 175-182.
  • 19. Lebed, K., Kulik, A. J., Forro, F., and Lekka, M. (2006). Lectin- carbohydrate affinity measured using quartz crystal microbalance. J. Coll. Interface Sci., 299, pp. 41-48.
  • 20. Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem., 377, pp. 528-539.
  • 21. Jelesarov, I., and Bosshard, R. H. (1999). Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit., 12, pp. 3-18.
  • 22. Strunz, T., Oroszlan, K., Schaefer, R., and Gunterodt, H. J. (1999). Dynamic force spectroscopy of single DNA molecules. Proc. Natl. Acad. Sci. U. S. A., 96, pp. 11277-11282.
  • 23. Cocco, S., Monasson, R., and Marko, J. F. (2001). Force and kinetics barriers to initiation of DNA unzipping. Phys. Rev. E, 65, p. 0419071.
  • 24. Williams, P M. (2003). Analytical descriptions of dynamic force spectroscopy: Behavior of multiple connections. Anal. Chim. Acta, 479, pp. 107-115.
  • 25. Seifert, U. (2000). Rupture of multiple parallel bonds under dynamic loading, Phys. Rev. Lett., 84, pp. 2750-2754.
  • 26. Sulchek, T. A., Friddle, R. W., Langry, K., Lau, E. Y., Albrecht, H., Ratto, T. V., DeNardo, S. J., Colvin, M. E., and Noy, A. (2005). Dynamic force spectroscopy of parallel individual mucinl-antibody bonds. Proc. Natl. Acad. Sci. U. S. A., 102, pp. 16638-16643.
  • 27. Bizzarri, A. R., and Cannistraro, S. (2012). Dynamic Force Spectroscopy and Biomolecular Recognition, 1st ed. (CRC Press Taylor & Francis Group, Boca Raton, USA).
  • 28. Hummer, G., and Szabo, A. (2003). Kinetics from non-equilibrium single molecule pulling experiments. Biophys. J., 85, pp. 5-15.
  • 29. Dutko, O. K., Hummer, G., and Szabo, A. (2006). Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett., 96(1-4), p. 108101.
  • 30. Friddle, R. W., Noy, A., and De Yoreo, J. J. (2012). Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc. Natl. Acad. Sci. U. S. A., 109, pp. 13573-13578.
  • 31. Senkara-Barwijuk, E. Lebed, K., Kobiela, T., and Lekka, M. (2012). Reaction pathway and free energy profile determined for specific recognition of oligosaccharide moiety of carboxypeptidase Y. Biosens. Bioelectron., 36, pp. 103-109.
  • 32. Merkel, R., Nassoy, P., Leung, A., Ritchie, K., and Evans, E. (1999). Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature, 397, pp. 0-53.
  • 33. Pierres, A., Benoliel, A. M., Bongrand, P., and van der Merwe, P. A. (1996). Determination of the lifetime and force dependence of interactions of single bonds between surface-attached CD2 and CD48 adhesion molecules. Proc. Natl. Acad. Sci., 93, pp. 15114-15118.
  • 34. Smith, S. B., Finzi, L., and Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258, pp. 1122-1126.
  • 35. Kellermayer, M. S. (2005). Visualizing and manipulating individual protein molecules. Physiol. Meas., 26, pp. R119-R153.
  • 36. Allen, S., Davies, J., Davies, M. C., Dawkes, A. C., Roberts, C. J., Tendler, A. J. B., and Williams, P. M. (1999). The influence of epitope availability on atomic-force microscope studies of antigen-antibody interactions. Biochem. J., 341, pp. 173-178.
  • 37. Hinterdorfer, P., and Dufrene, Y. F. (2006). Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods, 3, pp. 347-355.
  • 38. Helenius, J., Heisenberg, C. P, Gaub, H. E., and Muller, D. J. (2008). Single-cell force spectroscopy. J. Cell. Sci., 121, pp. 1785-1791.
  • 39. Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K., and Schindler, H. (1996). Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. U. S. A, 93, pp. 3477-3481.
  • 40. Verbelen, C., Gruber, H. J., and Dufrene, Y. F. (2007). The NTA-His6 bond is strong enough for AFM single-molecular recognition studies. J. Mol. Recognit., 20, pp. 490-494.
  • 41. Dupres, V., Menozzi, F. D., Locht, C., Clare, B. H., Abbott, N. L., Cuenot, S., Bompard, C., Raze, D., and Dufrene, Y. F. (2005). Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat. Methods, 2, pp. 515-520.
  • 42. Gabai, R., Segev, L., and Joselevich, E. (2005). Single polymer chains as specific transducers of molecular recognition in scanning probe microscopy. J. Am. Chem. Soc., 127, pp. 11390-1398.
  • 43. Israelaschvili, J. N. (1992). Intermolecular and Surface Forces, 2nd ed. (Academic Press Inc., San Diego, USA).
  • 44. Zlatanova, J., and vanHolde, K. (2006). Single-molecule biology: What is it and how does it work?. Mol. Cell, 24, pp. 317-329.
  • 45. Zhang, X., Wojcikiewicz, E., and Moy, V. T. (2002). Force Spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. Biophys. J., 83, pp. 2270-2279.
  • 46. Lebed, K., Kulik, A. J., Forro, L., and Lekka, M. (2007). Study the kinetics of lectin carbohydrate interaction using atomic force microscopy and quartz crystal microbalance methods. Acta Phys. Polon. A, 111, pp. 273-287.
  • 47. Lebed, K., Dqbrowska, A., Sharma, G., Lekki, J., Stachura, Z., and Lekka, M. (2006). Force spectroscopy of mannose-binding to patterned concanavalin A and lentil lectin. Proc. VIII Linz Winter Workshop, pp. 84-86.
  • 48. Goffin, J. M., Pittet, P., Csucs, G., Lussi, J. W., Meister, J. J., and Hinz, B. (2006). Focal adhesion size controls tension-dependent recruitment of а-smooth muscle actin to stress fibers. J. Ceil. Biol., 172, pp. 259-268.
  • 49. Lebed, K., Kulik, A. J., Forro, L., and Lekka, M. (2004). Lectin- carbohydrate affinity measured using quartz crystal microbalance. J. Coll. Interface Sci., 299, pp. 41-48.
  • 50. Laidler, P., Dulinska, J., Lekka, M., and Lekki, J. (2005). Expression of prostate specific membrane antigen in androgen-independent prostate cancer cell line PC-3. Arch. Biochem. Biophys., 435, pp. 1-14.
  • 51. Lekka, M., Laidler, P., Dulinska, J., Labqdz, M., and Pyka, G. (2004). Probing molecular interaction between concanavalin A and mannose ligands by means of SFM. Eur. Biophys. J., 33, pp. 664-650.
  • 52. Chtcheglova, L. A., and Dietler, G. (2003). Force spectroscopy of polyclonal and monoclonal anti-bovine serum albumin antibodies- BSA complexes. Acta Phys. Pol., 104, pp. 321-326.
  • 53. Lekka M., Laidler, P., Labqdz, M., Kulik, A. J., Lekki, J. Zajqc, W., and Stachura, Z. (2006). Specific detection of glycans on a plasma membrane of living cells using atomic force microscopy. Chem. Biol., 13, pp. 505-512.
  • 54. Lekka, M., Gil, D., Dabros, W., Jaczewska, J., Kulik, A. J., Lekki, J., Stachura, Z., Stachura, J., and Laidler, P. (2011). Characterization of N-cadherin unbinding properties in non-malignant (HCV29) and malignant (T24) bladder cells. J. Mol. Recognit., 24, pp. 833-842.
  • 55. Fouquet, B., Zimbelmann, R., and Franke, W. W. (1992). Identification of plakoglobin in oocytes and early embryos of Xenopus laevis: Maternal expression of a gene encoding a junctional plaque protein. Differentiation, 51, pp. 87-194.
  • 56. Ramburan, A., and Govender, D. (2002). Cadherins and catenins in pathology. Curr. Diagn. Pathol., 8, pp. 305-317.
  • 57. Nollet, F., Berx, G., and vanRoy, F. (1999). The role of the E-cadherin/ catenin adhesion complex in the development and progression of cancer. Mol. Cell Biol. Res. Commun., 2, pp. 77-85.
  • 58. Reiss, K., Maretzky, T., Ludwig, A., Tousseyn, T., deStrooper, B., Hartmann, D., and Saftig, P. (2005). ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and b-catenin nuclear signaling. EMBOJ., 24, pp. 742-752.
  • 59. Harrison, O. J., Corps, E. M., Berge, T., and Kilshaw, P. J. (2005). The mechanism of cell adhesion by classical cadherins: The role of domain 1. J. Cell. Sci., 118, pp. 711-721.
  • 60. Tsukasaki, Y., Kitamura, K., Shimizu, K., Iwane, A. H., Takai, Y., and Yanagida, T. (2007). Role of multiple bonds between the single cell adhesion molecules, nectin and cadherin, revealed by high sensitive force measurements. J. Mol. Biol., 367, pp. 996-1006.
  • 61. Giroldi, L. A., Bringuier, P. P, Shimazui, T., Jansen, K., and Schalken, J. A. (1999). Changes in cadherin-catenin complexes in the progression of human bladder carcinoma. Int. J. Cancer, 82, pp. 70-76.
  • 62. Przybyio, M., Hoja-fcukowicz, D., Litynska, A., and Laidler, P. (2002). Different glycosylation of cadherins from human bladder nonmalignant and cancer cell lines. Can. Cell Int., 2, pp. 6-10.
  • 63. Laurent, V. M., Duperray, A., Sundar Rajan, V., and Verdier, C. (2014). Atomic force microscopy reveals a role for endothelial cell ICAM-1 expression in bladder cancer cell adherence. PLoS ONE, 9, p. e98034.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel