Menu
Home
Log in / Register
 
Home arrow Environment arrow Bats in the Anthropocene: Conservation of Bats in a Changing World

Dark Matters: The Effects of Artificial Lighting on Bats

E.G. Rowse, D. Lewanzik, E.L. Stone, S. Harris and G. Jones

Abstract While artificial lighting is a major component of global change, its biological impacts have only recently been recognised. Artificial lighting attracts and repels animals in taxon-specific ways and affects physiological processes. Being nocturnal, bats are likely to be strongly affected by artificial lighting. Moreover, many species of bats are insectivorous, and insects are also strongly influenced by lighting. Lighting technologies are changing rapidly, with the use of light-emitting diode (LED) lamps increasing. Impacts on bats and their prey depend on the light spectra produced by street lights; ultraviolet (UV) wavelengths attract more insects and consequently insectivorous bats. Bat responses to lighting are species-specific and reflect differences in flight morphology and performance; fast-flying aerial hawking species frequently feed around street lights, whereas relatively slowflying bats that forage in more confined spaces are often light-averse. Both highpressure sodium and LED lights reduce commuting activity by clutter-tolerant bats of the genera Myotis and Rhinolophus, and these bats still avoided LED lights when dimmed. Light-induced reductions in the activity of frugivorous bats may affect ecosystem services by reducing dispersal of the seeds of pioneer plants and hence reforestation. Rapid changes in street lighting offer the potential to explore mitigation methods such as part-night lighting (PNL), dimming, directed lighting, and motion-sensitive lighting that may have beneficial consequences for lightaverse bat species.

Introduction

Anthropogenic change is altering ecosystems at unprecedented rates and humans now dominate most ecosystems (Vitousek et al. 1997; McDonald 2008). Urbanisation in particular has major impacts on bat activity and abundance (Jung and Threlfall 2016), and one aspect of global change that occurs predominately, but not exclusively, in urban areas is increased artificial light at night. Almost a fifth of the global land area was affected by light pollution in 2001 (Cinzano et al. 2001). Although night-time brightness generally increased in Europe between 1995 and 2010, regional patterns are complex, with some localised declines (Bennie et al. 2014). However, the biological impacts of light pollution have only recently been recognised (Longcore and Rich 2004).

Being nocturnal, bats are likely to be affected by light pollution. In this chapter, we review the types of artificial light that bats experience, describe how light pollution has become more widespread in recent years, show how technological changes may lead to significant reductions in light pollution and describe some of the physiological consequences of light pollution that may be relevant to bats. We then discuss how artificial lighting affects the insect prey of bats, and why some bats may benefit from the growth in artificial lighting, whereas others are affected detrimentally. After highlighting some aspects of bat vision, we describe the shift from observational to experimental studies of how bats respond to lighting. Finally, we identify some of the major knowledge gaps and suggest priorities for future research on the effects of artificial lighting on bats.

 
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel