Future Challenges

With a number of changes to street lighting planned in the coming years, including dimming, PNL and modifications to luminaire design to reduce light pollution, energy expenditure and greenhouse gas emissions, nightscapes could increase in heterogeneity, making it even more challenging to understand the impacts of artificial lighting on biodiversity (Gaston et al. 2012).

This is further complicated because current metrics for measuring emissions from light sources omit key biological information (Longcore and Rich 2004; Gaston et al. 2012). Illumination is measured in lux, which is defined as the brightness of a light according to human spectral sensitivities; spectral sensitivities of other taxa are often very different from ours (Peitsch et al. 1992; Briscoe and Chittka 2001). In bats, for example, many species can detect wavelengths in the UV range (Winter et al. 2003; Wang et al. 2004; Müller et al. 2009). So HPS and LPS lamps could have the same intensity of light, e.g. 50 lux, but HPS lamps emit UV wavelengths, whereas LPS lamps do not, thereby affecting both bats and their insect prey in different ways (Longcore and Rich 2004). Since lux is commonly used as a metric by lighting engineers, designers and environmental regulators, migrating from this measure may thwart interdisciplinary communication (Longcore and Rich 2004).

Another challenge is to find more effective ways of quantifying the impact of artificial lighting on bat species. Current methods use acoustic survey methods to quantify bat activity; this underestimates the activity of bats that use low-intensity echolocation calls (O'Farrell and Gannon 1999). Crucially, we also need to determine whether artificial lighting has fitness consequences (Stone et al. 2012). A decrease in bat activity may have no relevance for fitness if, for example, the bats are able to utilise equally suitable alternative sites nearby.

A transdisciplinary approach needs to be adopted to minimise the impact of light on biodiversity, reduce CO2 emissions, increase energy efficiency and reduce costs (Hölker et al. 2010a; Gaston et al. 2012). Scientists, policymakers and engineers need to work together to implement successful strategies (Stone et al. 2012). Moreover, it is vital to find ways to broaden awareness of light pollution and its ecological impacts. Since the public plays an integral part in agreeing mitigation schemes such as dimming lights, their support is pivotal in moving forward (Hölker et al. 2010a).

< Prev   CONTENTS   Next >