Menu
Home
Log in / Register
 
Home arrow Environment arrow Bats in the Anthropocene: Conservation of Bats in a Changing World

Africa

Little work has been done on wind energy facilities in Africa, and prior to 2012, no studies had been published from the continent. During a pilot study at a single turbine located in the Eastern Cape of South Africa, Doty and Martin (2012) found 18 carcasses of 2 species of bats—the Cape serotine (Neoromicia capensis) and Egyptian free-tailed bat (Tadarida aegyptiaca). No estimates of fatality rates were provided, likely because of small sample size of recovered carcasses and no bat carcasses were used during field bias trials. In the Western Cape of South Africa, Aronson et al. (2013) reported only one carcass of a Cape serotine. These studies confirm at least some species of bats are vulnerable to wind turbine mortality in South Africa, which could have implications for ecosystem function and conservation of bats in this region.

New Zealand and Australia

In Australia, Hall and Richards (1972) were the first to report bat fatalities at a wind facility in the world, and 22 white-striped free-tailed bats (Tadarida australis) were found over a 4-year period. Little work had been done in the region since this pioneering discovery, until Hull and Cawthen (2012) surveyed two wind facilities in Tasmania, where they recorded 54 bat fatalities from two species, Gould's wattled bats (Chalinolobus gouldii) and an unknown Vespadelus sp. More recently, Bennett (2012) found white-striped free-tailed bats at two turbines located in Victoria. While no estimates of fatality rates were provided for these studies, they indicate that some species of bats are at risk of wind turbine mortality in this part of the world.

South America, Central America, and the Caribbean

Few studies have been done in Latin American regions on bat fatalities caused by wind turbines. Puerto Rico hosts 13 species of bats of five families. Five of these 13 species belong to the family Phyllostomidae, which feed on fruits and nectar and forage in the understory and canopy (Gannon et al. 2005). It was originally speculated that these species would be at low risk for mortality caused by wind turbines based on their life histories and foraging patterns. Species in the family Molossidae also occur in Puerto Rico, and conversely, these species have been considered to be at higher risk to turbine collisions because they fly high in open spaces. Species from both families of bats have been detected during preconstruction surveys in areas where wind facilities were proposed. Twenty months of ongoing post-construction surveys in Puerto Rico revealed 30 carcasses from 11 of the 13 species, for a corrected mortality rate of about 10 bats/turbine /year (Rodríguez-Durán, Universidad Interamericana, unpublished data). Aside from the expected mortality of species in the family Molossidae, it was surprising that fruit and nectar feeding species of phyllostomids were followed in number of fatalities given their flight and foraging patterns. One important hazard for bats in this region relates to their use of hot caves as roosts (Rodríguez-Durán 2009; Ladle et al. 2012). Although little studied, these systems may be ubiquitous throughout parts of México, Panamá, Colombia, Venezuela, Brazil, and the Greater Antilles. Phyllostomids and mormoopids (family Mormoopidae) form large aggregations in hot caves and commute to foraging areas flying long distances at high altitude. This reliance on hot caves may place them at risk from wind facilities located near their feeding sites or along their commuting routes.

 
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel