References

  • 1. Burton EJ, McKeith IG, Burn DJ, et al. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 2004; 127: 791-800.
  • 2. Hattori T, Orimo S, Aoki S, et al. Cognitive status correlates with white matter alteration in Parkinson’s disease. Hum Brain Mapp 2012; 33: 727-39.
  • 3. Nagano-Saito A, Washimi Y, Arahata Y, et al. Cerebral atrophy and its relation to cognitive impairment in Parkinson’s disease. Neurology 2005; 64: 224-9.
  • 4. Summerfield C, Junque C, Tolosa E, et al. Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch Neurol 2005; 62: 281-5.
  • 5. Song SK, Lee JE, Park HJ, et al. The pattern of cortical atrophy in patients with Parkinson’s disease according to cognitive status. Mov Disord 2011; 26: 289-96.
  • 6. Melzer TR, Watts R, MacAskill MR, et al. Grey matter atrophy in cognitively impaired Parkinson’s disease. J Neurol Neurosurg Psychiatry 2012; 83: 188-94.
  • 7. Zarei M, Ibarretxe-Bilbao N, Compta Y, et al. Cortical thinning is associated with disease stages and dementia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2013; 84: 875-81.
  • 8. Pagonabarraga J, Corcuera-Solano I, Vives-Gilabert Y, et al. Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson’s disease. PLoS ONE 2013; 8: e54980.
  • 9. Tam CW, Burton EJ, McKeith IG, et al. Temporal lobe atrophy on MRI in Parkinson disease with dementia: a comparison with Alzheimer disease and dementia with Lewy bodies. Neurology 2005; 64: 861-5.
  • 10. Beyer MK, Janvin CC, Larsen JP, et al. A magnetic resonance imaging study of patients with Parkinson’s disease with mild cognitive impairment and dementia using voxel-based morphometry. J Neurol Neurosurg Psychiatry 2007; 78: 254-9.
  • 11. Goldman JG, Stebbins GT, Bernard B, et al. Entorhinal cortex atrophy differentiates Parkinson’s disease patients with and without dementia. Mov Disord 2012; 27: 727-34.
  • 12. Kenny ER, Burton EJ, O’Brien JT. A volumetric magnetic resonance imaging study of entorhinal cortex volume in dementia with Lewy bodies. A comparison with Alzheimer’s disease and Parkinson’s disease with and without dementia. Dement Geriatr Cogn Disord 2008; 26: 218-25.
  • 13. Junque C, Ramirez-Ruiz B, Tolosa E, et al. Amygdalar and hippocampal MRI volumetric reductions in Parkinson’s disease with dementia. Mov Disord 2005; 20: 540-4.
  • 14. Bouchard TP, Malykhin N, Martin WR, et al. Age and dementia-associated atrophy predominates in the hippocampal head and amygdala in Parkinson’s disease. Neurobiol Aging 2008; 29: 1027-39.
  • 15. Almeida OP, Burton EJ, McKeith I, et al. MRI study of caudate nucleus volume in Parkinson’s disease with and without dementia with Lewy bodies and Alzheimer’s disease. Dement Geriatr Cogn Disord 2003; 16: 57-63.
  • 16. Dalaker TO, Zivadinov R, Larsen JP, et al. Gray matter correlations of cognition in incident Parkinson’s disease. Mov Disord 2010; 25: 629-33.
  • 17. Agosta F, Canu E, Stojkovic T, et al. The topography of brain damage at different stages of Parkinson’s disease. Hum Brain Mapp 2013; 34: 2798-807.
  • 18. Lyoo CH, Ryu YH, Lee MS. Topographical distribution of cerebral cortical thinning in patients with mild Parkinson’s disease without dementia. Mov Disord 2010; 25: 496-9.
  • 19. Martin WR, Wieler M, Gee M, et al. Temporal lobe changes in early, untreated Parkinson’s disease. Mov Disord 2009; 24: 1949-54.
  • 20. Weintraub D, Doshi J, Koka D, et al. Neurodegeneration across stages of cognitive decline in Parkinson disease. Arch Neurol 2011; 68: 1562-8.
  • 21. Tinaz S, Courtney MG, Stern CE. Focal cortical and subcortical atrophy in early Parkinson’s disease. Mov Disord 2011; 26: 436-41.
  • 22. Pereira JB, Ibarretxe-Bilbao N, Marti MJ, et al. Assessment of cortical degeneration in patients with Parkinson’s disease by voxel-based morphometry, cortical folding, and cortical thickness. Hum Brain Mapp 2012; 33: 2521-34.
  • 23. Jubault T, Gagnon JF, Karama S, et al. Patterns of cortical thickness and surface area in early Parkinson’s disease. Neuroimage 2011; 55: 462-7.
  • 24. Ibarretxe-Bilbao N, Junque C, Tolosa E, et al. Neuroanatomical correlates of impaired decision-making and facial emotion recognition in early Parkinson’s disease. Eur J Neurosci 2009; 30: 1162-71.
  • 25. Litvan I, Goldman JG, Troster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord 2012; 27: 349-56.
  • 26. Mak E, Zhou J, Tan LC, et al. Cognitive deficits in mild Parkinson’s disease are associated with distinct areas of grey matter atrophy. J Neurol Neurosurg Psychiatry 2013; 85: 576-80.
  • 27. Lee JE, Cho KH, Song SK, et al. Exploratory analysis of neuropsychological and neuroanatomical correlates of progressive mild cognitive impairment in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2014; 85: 7-16.
  • 28. Davatzikos C, Xu F, An Y, et al. Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain 2009; 132: 2026-35.
  • 29. Fan Y, Batmanghelich N, Clark CM, et al. Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 2008; 39: 1731-43.
  • 30. Weintraub D, Dietz N, Duda JE, et al. Alzheimer’s disease pattern of brain atrophy predicts cognitive decline in Parkinson’s disease. Brain 2012; 135: 170-80.
  • 31. Bruck A, Kurki T, Kaasinen V, et al. Hippocampal and prefrontal atrophy in patients with early nondemented Parkinson’s disease is related to cognitive impairment. J Neurol Neurosurg Psychiatry 2004; 75: 1467-9.
  • 32. Pereira JB, Junque C, Marti MJ, et al. Structural brain correlates of verbal fluency in Parkinson’s disease. NeuroReport 2009; 20: 741-4.
  • 33. Pereira JB, Junque C, Marti MJ, et al. Neuroanatomical substrate of visuospatial and visuoperceptual impairment in Parkinson’s disease. Mov Disord 2009; 24: 1193-9.
  • 34. Hanyu H, Asano T, Sakurai H, et al. MR analysis of the substantia innominata in normal aging, Alzheimer disease, and other types of dementia. Am J Neuroradiol 2002; 23: 27-32.
  • 35. Oikawa H, Sasaki M, Ehara S, et al. Substantia innominata: MR findings in Parkinson’s disease. Neuroradiology 2004; 46: 817-21.
  • 36. Choi SH, Jung TM, Lee JE, et al. Volumetric analysis of the substantia innominata in patients with Parkinson’s disease according to cognitive status. Neurobiol Aging 2012; 33: 1265-72.
  • 37. Aarsland D, Bronnick K, Ehrt U, et al. Neuropsychiatric symptoms in patients with Parkinson’s disease and dementia: frequency, profile and associated care giver stress. J Neurol Neurosurg Psychiatry 2007; 78: 36-42.
  • 38. Aarsland D, Larsen JP, Cummins JL, et al. Prevalence and clinical correlates of psychotic symptoms in Parkinson disease: a community-based study. Arch Neurol 1999; 56: 595-601.
  • 39. Ramirez-Ruiz B, Marti MJ, Tolosa E, et al. Cerebral atrophy in Parkinson’s disease patients with visual hallucinations. Eur J Neurol 2007; 14: 750-6.
  • 40. Ibarretxe-Bilbao N, Ramirez-Ruiz B, Junque C, et al. Differential progression of brain atrophy in Parkinson’s disease with and without visual hallucinations. J Neurol Neurosurg Psychiatry 2010; 81: 650-7.
  • 41. Burton EJ, McKeith IG, Burn DJ, et al. Brain atrophy rates in Parkinson’s disease with and without dementia using serial magnetic resonance imaging. Mov Disord 2005; 20: 1571-6.
  • 42. Hu MT, White SJ, Chaudhuri KR, et al. Correlating rates of cerebral atrophy in Parkinson’s disease with measures of cognitive decline. J Neural Transm 2001; 108: 571-80.
  • 43. Ramirez-Ruiz B, Marti MJ, Tolosa E, et al. Longitudinal evaluation of cerebral morphological changes in Parkinson’s disease with and without dementia. J Neurol 2005; 252: 1345-52.
  • 44. Camicioli R, Sabino J, Gee M, et al. Ventricular dilatation and brain atrophy in patients with Parkinson’s disease with incipient dementia. Mov Disord 2011; 26: 1443-50.
  • 45. Lewis MM, Smith AB, Styner M, et al. Asymmetrical lateral ventricular enlargement in Parkinson’s disease. Eur J Neurol 2009; 16: 475-81.
  • 46. Dalaker TO, Zivadinov R, Ramasamy DP, et al. Ventricular enlargement and mild cognitive impairment in early Parkinson’s disease. Mov Disord 2011; 26: 297-301.
  • 47. de Leeuw FE, de Groot JC, Achten E, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 2001; 70: 9-14.
  • 48. de Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 2000; 47: 145-51.
  • 49. de Laat KF, Tuladhar AM, van Norden AG, et al. Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease. Brain 2011; 134: 73-83.
  • 50. Nucifora PG, Verma R, Lee SK, et al. Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 2007; 245: 367-84.
  • 51. Yoshikawa K, Nakata Y, Yamada K, et al. Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J Neurol Neurosurg Psychiatry 2004; 75: 481-4.
  • 52. Chan LL, Rumpel H, Yap K, et al. Case control study of diffusion tensor imaging in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2007; 78: 1383-6.
  • 53. Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006; 31: 1487-505.
  • 54. Rae CL, Correia MM, Altena E, et al. White matter pathology in Parkinson’s disease: the effect of imaging protocol differences and relevance to executive function. NeuroImage 2012; 62: 1675-84.
  • 55. Melzer TR, Watts R, MacAskill MR, et al. White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology 2013; 80: 1841-9.
  • 56. Matsui H, Nishinaka K, Oda M, et al. Wisconsin Card Sorting Test in Parkinson’s disease: diffusion tensor imaging. Acta Neurol Scand 2007; 116: 108-12.
  • 57. Matsui H, Nishinaka K, Oda M, et al. Dementia in Parkinson’s disease: diffusion tensor imaging. Acta Neurol Scand 2007; 116: 177-81.
  • 58. Jezzard P, Matthews PM, Smith SM (ed.) Functional MRI: an introduction to methods. Oxford: Oxford University Press, 2003.
  • 59. Ibarretxe-Bilbao N, Zarei M, Junque C, et al. Dysfunctions of cerebral networks precede recognition memory deficits in early Parkinson’s disease. Neuroimage 2011; 57: 589-97.
  • 60. Williams-Gray CH, Hampshire A, Barker RA, et al. Attentional control in Parkinson’s disease is dependent on COMT val 158 met genotype. Brain 2008; 131: 397-408.
  • 61. Lewis SJ, Dove A, Robbins TW, et al. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 2003; 23: 6351-6.
  • 62. Monchi O, Petrides M, Mejia-Constain B, et al. Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain 2007; 130: 233-44.
  • 63. Tinaz S, Schendan HE, Stern CE. Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiol Aging 2008; 29: 397-407.
  • 64. Marie RM, Lozza C, Chavoix C, et al. Functional imaging of working memory in Parkinson’s disease: compensations and deficits. J Neuroimaging 2007; 17: 277-85.
  • 65. Feigin A, Ghilardi MF, Carbon M, et al. Effects of levodopa on motor sequence learning in Parkinson’s disease. Neurology 2003; 60: 1744-9.
  • 66. Mattay VS, Tessitore A, Callicott JH, et al. Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol 2002; 51: 156-64.
  • 67. Tessitore A, Hariri AR, Fera F, et al. Dopamine modulates the response of the human amygdala: a study in Parkinson’s disease. J Neurosci 2002; 22: 9099-103.
  • 68. Rowe JB, Hughes L, Ghosh BC, et al. Parkinson’s disease and dopaminergic therapy—differential effects on movement, reward and cognition. Brain 2008; 131: 2094-105.
  • 69. Stebbins GT, Goetz CG, Carrillo MC, et al. Altered cortical visual processing in PD with hallucinations: an fMRI study. Neurology 2004; 63: 1409-16.
  • 70. Howard R, David A, Woodruff P, et al. Seeing visual hallucinations with functional magnetic resonance imaging. Dement Geriatr Cogn Disord 1997; 8: 73-7.
  • 71. Meppelink AM, de Jong BM, Renken R, et al. Impaired visual processing preceding image recognition in Parkinson’s disease patients with visual hallucinations. Brain 2009; 132: 2980-93.
  • 72. Tessitore A, Esposito F, Vitale C, et al. Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 2012; 79: 2226-32.
  • 73. van Eimeren T, Monchi O, Ballanger B, et al. Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Arch Neurol 2009; 66: 877-83.
  • 74. Nagano-Saito A, Liu J, Doyon J, et al. Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task. Neurosci Lett 2009; 458: 1-5.
  • 75. Soonawala D, Amin T, Ebmeier KP, et al. Statistical parametric mapping of (99m)Tc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. Neuroimage 2002; 17: 1193-202.
  • 76. Borghammer P, Jonsdottir KY, Cumming P, et al. Normalization in PET group comparison studies— the importance of a valid reference region. Neuroimage 2008; 40: 529-40.
  • 77. Yong SW, Yoon JK, An YS, et al. A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 2007; 14: 1357-62.
  • 78. Jokinen P, Scheinin N, Aalto S, et al. [(11)C]PIB-, [(18)F]FDG-PET and MRI imaging in patients with Parkinson’s disease with and without dementia. Parkinsonism Relat Disord 2010; 16: 666-70.
  • 79. Vander Borght T, Minoshima S, Giordani B, et al. Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity. J Nucl Med 1997; 38: 797-802.
  • 80. Huang C, Mattis P, Tang C, et al. Metabolic brain networks associated with cognitive function in Parkinson’s disease. NeuroImage 2007; 34: 714-23.
  • 81. Huang C, Mattis P, Perrine K, et al. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology 2008; 70: 1470-7.
  • 82. Huang C, Tang C, Feigin A, et al. Changes in network activity with the progression of Parkinson’s disease. Brain 2007; 130: 1834-46.
  • 83. Bohnen NI, Koeppe RA, Minoshima S, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med 2011; 52: 848-55.
  • 84. Waragai M, Yamada T, Matsuda H. Evaluation of brain perfusion SPECT using an easy Z-score imaging system (eZIS) as an adjunct to early-diagnosis of neurodegenerative diseases. J Neurol Sci 2007; 260: 57-64.
  • 85. Matsui H, Udaka F, Miyoshi T, et al. N-isopropyl-p-123I iodoamphetamine single photon emission computed tomography study of Parkinson’s disease with dementia. Intern Med 2005; 44: 1046-50.
  • 86. Osaki Y, Morita Y, Fukumoto M, et al. Three-dimensional stereotactic surface projection SPECT analysis in Parkinson’s disease with and without dementia. Mov Disord 2005; 20: 999-1005.
  • 87. Derejko M, Slawek J, Wieczorek D, et al. Regional cerebral blood flow in Parkinson’s disease as an indicator of cognitive impairment. Nucl Med Commun 2006; 27: 945-51.
  • 88. Firbank MJ, Colloby SJ, Burn DJ, et al. Regional cerebral blood flow in Parkinson’s disease with and without dementia. Neuroimage 2003; 20: 1309-19.
  • 89. Van Laere K, Santens P, Bosman T, et al. Statistical parametric mapping of (99m)Tc-ECD SPECT in idiopathic Parkinson’s disease and multiple system atrophy with predominant parkinsonian features: correlation with clinical parameters. J Nucl Med 2004; 45: 933-42.
  • 90. Mito Y, Yoshida K, Yabe I, et al. Brain 3D-SSP SPECT analysis in dementia with Lewy bodies, Parkinson’s disease with and without dementia, and Alzheimer’s disease. Clin Neurol Neurosurg 2005; 107: 396-403.
  • 91. Chen Y, Wolk DA, Reddin JS, et al. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 2011; 77: 1977-85.
  • 92. Kamagata K, Motoi Y, Hori M, et al. Posterior hypoperfusion in Parkinson’s disease with and without dementia measured with arterial spin labeling MRI. J Magn Reson Imaging 2011; 33: 803-7.
  • 93. Melzer TR, Watts R, MacAskill MR, et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain 2011; 134: 845-55.
  • 94. Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 2009; 64: 12-21.
  • 95. Williams-Gray CH, Evans JR, Goris A, et al. The distinct cognitive syndromes of Parkinson’s disease:
  • 5 year follow-up of the CamPaIGN cohort. Brain 2009; 132: 2958-69.
  • 96. Pagonabarraga J, Gomez-Anson B, Rotger R, et al. Spectroscopic changes associated with mild cognitive impairment and dementia in Parkinson’s disease. Dement Geriatr Cogn Disord 2012; 34: 312-18.
  • 97. Summerfield C, Gomez-Anson B, Tolosa E, et al. Dementia in Parkinson disease: a proton magnetic resonance spectroscopy study. Arch Neurol 2002; 59: 1415-20.
  • 98. Griffith HR, den Hollander JA, Okonkwo OC, et al. Brain metabolism differs in Alzheimer’s disease and Parkinson’s disease dementia. Alzheimers Dement 2008; 4: 421-7.
  • 99. Griffith HR, den Hollander JA, Okonkwo OC, et al. Brain N-acetylaspartate is reduced in Parkinson disease with dementia. Alzheimer Dis Assoc Disord 2008; 22: 54-60.
  • 100. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985; 5: 584-90.
  • 101. Broussolle E, Dentresangle C, Landais P, et al. The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson’s disease. J Neurol Sci 1999; 166: 141-51.
  • 102. Rinne JO, Portin R, Ruottinen H, et al. Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study. Arch Neurol 2000; 57: 470-5.
  • 103. van Beilen M, Portman AT, Kiers HA, et al. Striatal FDOPA uptake and cognition in advanced nondemented Parkinson’s disease: a clinical and FDOPA-PET study. Parkinsonism Relat Disord 2008; 14: 224-8.
  • 104. Ito K, Nagano-Saito A, Kato T, et al. Striatal and extrastriatal dysfunction in Parkinson’s disease with dementia: a 6-[18F]fluoro-L-dopa PET study. Brain 2002; 125: 1358-65.
  • 105. Bruck A, Aalto S, Nurmi E, et al. Cortical 6-[18F]fluoro-L-dopa uptake and frontal cognitive functions in early Parkinson’s disease. Neurobiol Aging 2005; 26: 891-8.
  • 106. Cropley VL, Fujita M, Bara-Jimenez W, et al. Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA. Psychiatry Res 2008; 163: 171-82.
  • 107. Hilker R, Thomas AV, Klein JC, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 2005; 65: 1716-22.
  • 108. McKeith I, O’Brien J, Walker Z, et al. Sensitivity and specificity of dopamine transporter imaging with (123)I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 2007; 6: 305-13.
  • 109. O’Brien JT, Colloby S, Fenwick J, et al. Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol 2004; 61: 919-25.
  • 110. Walker Z, Costa DC, Walker RW, et al. Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: a comparison. Neurology 2004; 62: 1568-72.
  • 111. Ehrt U, Broich K, Larsen JP, et al. Use of drugs with anticholinergic effect and impact on cognition in Parkinson’s disease: a cohort study. J Neurol Neurosurg Psychiatry 2010; 81: 160-5.
  • 112. Dubois B, Tolosa E, Katzenschlager R, et al. Donepezil in Parkinson’s disease dementia: a randomized, double-blind efficacy and safety study. Mov Disord 2012; 27: 1230-8.
  • 113. Emre M, Aarsland D, Albanese A, et al. Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med 2004; 351: 2509-18.
  • 114. Perry E, Walker M, Grace J, et al. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 1999; 22: 273-80.
  • 115. Braak H, Ghebremedhin E, Rub U, et al. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 2004; 318: 121-34.
  • 116. Pahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson’s disease. Brain 2000; 123: 1767-83.
  • 117. Tiraboschi P, Hansen LA, Alford M, et al. Cholinergic dysfunction in diseases with Lewy bodies. Neurology 2000; 54: 407-11.
  • 118. Kuhl DE, Minoshima S, Fessler JA, et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 1996; 40: 399-410.
  • 119. Colloby SJ, Pakrasi S, Firbank MJ, et al. In vivo SPECT imaging of muscarinic acetylcholine receptors using (R,R) 123I-QNB in dementia with Lewy bodies and Parkinson’s disease dementia. Neuroimage 2006; 33: 423-9.
  • 120. O’Brien JT, Colloby SJ, Pakrasi S, et al. Nicotinic alpha4beta2 receptor binding in dementia with Lewy bodies using 123I-5IA-85380 SPECT demonstrates a link between occipital changes and visual hallucinations. NeuroImage 2008; 40: 1056-63.
  • 121. Shimada H, Hirano S, Shinotoh H, et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 2009; 73: 273-8.
  • 122. Bohnen NI, Kaufer DI, Ivanco LS, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 2003; 60: 1745-8.
  • 123. Bohnen NI, Kaufer DI, Hendrickson R, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 2006;253:242-7.
  • 124. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004; 55: 306-19.
  • 125. Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67: 446-52.
  • 126. Gomperts SN, Rentz DM, Moran E, et al. Imaging amyloid deposition in Lewy body diseases. Neurology 2008; 71: 903-10.
  • 127. Edison P, Rowe CC, Rinne JO, et al. Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatry 2008; 79: 1331-8.
  • 128. Maetzler W, Reimold M, Liepelt I, et al. [11C]PIB binding in Parkinson’s disease dementia. NeuroImage 2008; 39: 1027-33.
  • 129. Donaghy P, Thomas AJ, O’Brien JT. Amyloid PET imaging in Lewy body disorders. Am J Geriatr Psychiatry 2013; doi: 10.1016/j.jagp.2013.03.001
  • 130. Goldstein DS. Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Lancet Neurol 2003; 2: 669-76.
  • 131. Treglia G, Cason E. Diagnostic performance of myocardial innervation imaging using MIBG scintigraphy in differential diagnosis between dementia with Lewy bodies and other dementias: a systematic review and a meta-analysis. J Neuroimaging 2012; 22: 111-17.
  • 132. Orimo S, Suzuki M, Inaba A, et al. 123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative parkinsonism: a systematic review and meta-analysis. Parkinsonism Relat Disord 2012; 18: 494-500.
 
Source
< Prev   CONTENTS   Source   Next >