Menu
Home
Log in / Register
 
Home arrow Health arrow Cognitive impairment and dementia in Parkinson disease
Source

References

  • 1. Hely MA, Reid WG, Adena MA, et al. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord 2008; 23: 837-44.
  • 2. Aarsland D, Andersen K, Larsen JP, et al. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch Neurol 2003; 60: 387-92.
  • 3. Pedersen KF, Larsen JP, Tysnes OB, et al. Prognosis of Mild Cognitive Impairment in Early Parkinson Disease: The Norwegian ParkWest Study. J Am Med Assoc Neurol 2013; 70: 580-6.
  • 4. Janvin CC, Larsen JP, Aarsland D, et al. Subtypes of mild cognitive impairment in Parkinson’s disease: progression to dementia. Mov Disord 2006; 21: 1343-9.
  • 5. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 2006; 368: 387-403.
  • 6. Aarsland D, Bronnick K, Larsen JP, et al. Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology 2009; 72: 1121-6.
  • 7. Elgh E, Domellof M, Linder J, et al. Cognitive function in early Parkinson’s disease: a population- based study. Eur J Neurol 2009; 16: 1278-84.
  • 8. Muslimovic D, Post B, Speelman JD, et al. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 2005; 65: 1239-45.
  • 9. Kehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol 2010; 9: 1200-13.
  • 10. Williams-Gray CH, Evans JR, Goris A, et al. The distinct cognitive syndromes of Parkinson’s disease:
  • 5 year follow-up of the CamPaIGN cohort. Brain 2009; 132: 2958-69.
  • 11. Levy G, Jacobs DM, Tang MX, et al. Memory and executive function impairment predict dementia in Parkinson’s disease. Mov Disord 2002; 17: 1221-6.
  • 12. Woods SP, Troster AI. Prodromal frontal/executive dysfunction predicts incident dementia in Parkinson’s disease. J Int Neuropsychol Soc 2003; 9: 17-24.
  • 13. Irwin DJ, Lee VM, Trojanowski JQ. Parkinson’s disease dementia: convergence of alpha-synuclein, tau and amyloid-beta pathologies. Nat Rev Neurosci 2013; 14: 626-36.
  • 14. Hindle JV, Martyr A, Clare L. Cognitive reserve in Parkinson’s disease: a systematic review and metaanalysis. Parkinsonism Relat Disord 2014; 20: 1-7.
  • 15. Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord 2011; 26: 1049-55.
  • 16. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Therapeut 2001; 69: 89-95.
  • 17. Consensus report of the Working Group on: ‘Molecular and biochemical markers of Alzheimer’s disease’. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Neurobiol Aging 1998; 19: 109-16.
  • 18. Jesse S, Lehnert S, Jahn O, et al. Differential sialylation of serpin A1 in the early diagnosis of Parkinson’s disease dementia. PLoS ONE 2012; 7: e48783.
  • 19. Lehnert S, Jesse S, Rist W, et al. iTRAQ and multiple reaction monitoring as proteomic tools for biomarker search in cerebrospinal fluid of patients with Parkinson’s disease dementia. Exp Neurol 2012; 234: 499-505.
  • 20. George S, Rey NL, Reichenbach N, et al. Alpha-synuclein: the long distance runner. Brain Pathol 2013; 23: 350-7.
  • 21. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276: 2045-7.
  • 22. Fujiwara H, Hasegawa M, Dohmae N, et al. Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 2002; 4: 160-4.
  • 23. Edwards TL, Scott WK, Almonte C, et al. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 2010; 74: 97-109.
  • 24. Parnetti L, Castrioto A, Chiasserini D, et al. Cerebrospinal fluid biomarkers in Parkinson disease. Nat Rev Neurol 2013; 9: 131-40.
  • 25. Zetterberg H, Petzold M, Magdalinou N. Cerebrospinal fluid alpha-synuclein levels in Parkinson’s disease—changed or unchanged? Eur J Neurol 2014; 21: 365-7.
  • 26. Tokuda T, Qureshi MM, Ardah MT, et al. Detection of elevated levels of alpha-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 2010; 75: 1766-72.
  • 27. Kang JH, Irwin DJ, Chen-Plotkin AS, et al. Association of cerebrospinal fluid beta-amyloid 1-42, t-tau, p-tau181, and alpha-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. J Am Med Assoc Neurol 2013; 70: 1277-87.
  • 28. Wennstrom M, Surova Y, Hall S, et al. Low CSF levels of both alpha-synuclein and the alpha-synuclein cleaving enzyme neurosin in patients with synucleinopathy. PLoS ONE 2013; 8: e53250.
  • 29. Hall S, Ohrfelt A, Constantinescu R, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 2012; 69: 1445-52.
  • 30. Yarnall AJ, Breen DP, Duncan GW, et al. Characterizing mild cognitive impairment in incident Parkinson disease: the ICICLE-PD Study. Neurology 2014; 82: 308-16.
  • 31. Alves G, Larsen JP, Emre M, et al. Changes in motor subtype and risk for incident dementia in Parkinson’s disease. Mov Disord 2006; 21: 1123-30.
  • 32. Burn DJ, Rowan EN, Allan LM, et al. Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 2006; 77: 585-9.
  • 33. Strozyk D, Blennow K, White LR, et al. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 2003; 60: 652-6.
  • 34. Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006; 59: 512-19.
  • 35. Jack CR, Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12: 207-16.
  • 36. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7: 280-92.
  • 37. Jellinger KA, Attems J. Prevalence and impact of vascular and Alzheimer pathologies in Lewy body disease. Acta Neuropathol 2008; 115: 427-36.
  • 38. Ballard C, Ziabreva I, Perry R, et al. Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 2006; 67: 1931-4.
  • 39. Halliday G, Hely M, Reid W, et al. The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol 2008; 115: 409-15.
  • 40. Mollenhauer B, Trenkwalder C, von Ahsen N, et al. Beta-amlyoid 1-42 and tau-protein in cerebrospinal fluid of patients with Parkinson’s disease dementia. Dement Geriatr Cogn Disord 2006; 22: 200-8.
  • 41. Parnetti L, Tiraboschi P, Lanari A, et al. Cerebrospinal fluid biomarkers in Parkinson’s disease with dementia and dementia with Lewy bodies. Biol Psychiatry 2008; 64: 850-5.
  • 42. Compta Y, Marti MJ, Ibarretxe-Bilbao N, et al. Cerebrospinal tau, phospho-tau, and beta-amyloid and neuropsychological functions in Parkinson’s disease. Mov Disord 2009; 24: 2203-10.
  • 43. Montine TJ, Shi M, Quinn JF, et al. CSF Abeta(42) and tau in Parkinson’s disease with cognitive impairment. Mov Disord 2010; 25: 2682-5.
  • 44. Mulugeta E, Londos E, Ballard C, et al. CSF amyloid beta38 as a novel diagnostic marker for dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 2011; 82: 160-4.
  • 45. Parnetti L, Chiasserini D, Bellomo G, et al. Cerebrospinal fluid tau/alpha-synuclein ratio in Parkinson’s disease and degenerative dementias. Mov Disord 2011; 26: 1428-35.
  • 46. Andersson M, Zetterberg H, Minthon L, et al. The cognitive profile and CSF biomarkers in dementia with Lewy bodies and Parkinson’s disease dementia. Int J Geriatr Psychiatry 2011; 26: 100-5.
  • 47. Alves G, Bronnick K, Aarsland D, et al. CSF amyloid-beta and tau proteins, and cognitive performance, in early and untreated Parkinson’s disease: the Norwegian ParkWest study. J Neurol Neurosurg Psychiatry 2010; 81: 1080-6.
  • 48. Compta Y, Parkkinen L, O’Sullivan SS, et al. Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 2011; 134: 1493-505.
  • 49. Pletnikova O, West N, Lee MK, et al. Abeta deposition is associated with enhanced cortical alpha- synuclein lesions in Lewy body diseases. Neurobiol Aging 2005; 26: 1183-92.
  • 50. Leverenz JB, Watson GS, Shofer J, et al. Cerebrospinal fluid biomarkers and cognitive performance in non-demented patients with Parkinson’s disease. Parkinsonism Relat Disord 2011; 17: 61-4.
  • 51. Andreasson U, Portelius E, Andersson ME, et al. Aspects of P-amyloid as a biomarker for Alzheimer’s disease. Biomark Med 2007; 1: 59-78.
  • 52. Beyer MK, Alves G, Hwang KS, et al. Cerebrospinal fluid Abeta levels correlate with structural brain changes in Parkinson’s disease. Mov Disord 2013; 28: 302-10.
  • 53. Alves G, Pedersen KF, Bloem BR, et al. Cerebrospinal fluid amyloid-beta and phenotypic heterogeneity in de novo Parkinson’s disease. J Neurol Neurosurg Psychiatry 2013; 84: 537-43.
  • 54. Siderowf A, Xie SX, Hurtig H, et al. CSF amyloid в 1-42 predicts cognitive decline in Parkinson disease. Neurology 2010; 75: 1055-61.
  • 55. Compta Y, Pereira JB, Rios J, et al. Combined dementia-risk biomarkers in Parkinson’s disease: a prospective longitudinal study. Parkinsonism Relat Disord 2013; 19: 717-24.
  • 56. Alves G, Lange J, Blennow K, et al. Cerebrospinal fluid Ap42 predicts early onset dementia in Parkinson disease. Neurology 2014; 82: 1784-90.
  • 57. Ost M, Nylen K, Csajbok L, et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 2006; 67: 1600-4.
  • 58. Van Everbroeck B, Quoilin S, Boons J, et al. A prospective study of CSF markers in 250 patients with possible Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 2003; 74: 1210-14.
  • 59. Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, et al. Alpha-synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 2011; 10: 230-40.
  • 60. Xilouri M, Brekk OR, Stefanis L. Alpha-synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol 2013; 47: 537-51.
  • 61. Balducci C, Pierguidi L, Persichetti E, et al. Lysosomal hydrolases in cerebrospinal fluid from subjects with Parkinson’s disease. Mov Disord 2007; 22: 1481-4.
  • 62. van Dijk KD, Persichetti E, Chiasserini D, et al. Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson’s disease. Mov Disord 2013; 28: 747-54.
  • 63. Tatebe H, Watanabe Y, Kasai T, et al. Extracellular neurosin degrades alpha-synuclein in cultured cells. Neurosci Res 2010; 67: 341-6.
  • 64. Zetterberg H, Andreasson U, Hansson O, et al. Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch Neurol 2008; 65: 1102-7.
  • 65. Maruyama M, Higuchi M, Takaki Y, et al. Cerebrospinal fluid neprilysin is reduced in prodromal Alzheimer’s disease. Ann Neurol 2005; 57: 832-42.
  • 66. Maetzler W, Stoycheva V, Schmid B, et al. Neprilysin activity in cerebrospinal fluid is associated with dementia and amyloid-beta42 levels in Lewy body disease. J Alzheimers Dis 2010; 22: 933-8.
  • 67. Tarawneh R, D’Angelo G, Macy E, et al. Visinin-like protein-1: diagnostic and prognostic biomarker in Alzheimer disease. Ann Neurol 2011; 70: 274-85.
  • 68. Tarawneh R, Lee JM, Ladenson JH, et al. CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease. Neurology 2012; 78: 709-19.
  • 69. Hong Z, Shi M, Chung KA, et al. DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 2010; 133: 713-26.
  • 70. Waragai M, Wei J, Fujita M, et al. Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson’s disease. Biochem Biophys Res Commun 2006; 345: 967-72.
  • 71. Gmitterova K, Heinemann U, Gawinecka J, et al. 8-OHdG in cerebrospinal fluid as a marker of oxidative stress in various neurodegenerative diseases. Neurodegener Dis 2009; 6: 263-9.
  • 72. Phani S, Loike JD, Przedborski S. Neurodegeneration and inflammation in Parkinson’s disease. Parkinsonism Relat Disord 2012; 18: S207-S209.
  • 73. Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 2011; 26: 6-17.
  • 74. Menza M, Dobkin RD, Marin H, et al. The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosomatics 2010; 51: 474-9.
  • 75. Cipriani S, Chen X, Schwarzschild MA. Urate: a novel biomarker of Parkinson’s disease risk, diagnosis and prognosis. Biomark Med 2010; 4: 701-12.
  • 76. Annanmaki T, Pessala-Driver A, Hokkanen L, et al. Uric acid associates with cognition in Parkinson’s disease. Parkinsonism Relat Disord 2008; 14: 576-8.
  • 77. Annanmaki T, Pohja M, Parviainen T, et al. Uric acid and cognition in Parkinson’s disease: a followup study. Parkinsonism Relat Disord 2011; 17: 333-7.
  • 78. Chen-Plotkin AS, Hu WT, Siderowf A, et al. Plasma epidermal growth factor levels predict cognitive decline in Parkinson disease. Ann Neurol 2011; 69: 655-63.
  • 79. Pellecchia MT, Santangelo G, Picillo M, et al. Serum epidermal growth factor predicts cognitive functions in early, drug-naive Parkinson’s disease patients. J Neurol 2013; 260: 438-44.
  • 80. Marder K, Tang MX, Alfaro B, et al. Risk of Alzheimer’s disease in relatives of Parkinson’s disease patients with and without dementia. Neurology 1999; 52: 719-24.
  • 81. Kurz MW, Larsen JP, Kvaloy JT, et al. Associations between family history of Parkinson’s disease and dementia and risk of dementia in Parkinson’s disease: a community-based, longitudinal study. Mov Disord 2006; 21: 2170-4.
  • 82. Pankratz N, Byder L, Halter C, et al. Presence of an APOE4 allele results in significantly earlier onset of Parkinson’s disease and a higher risk with dementia. Mov Disord 2006; 21: 45-9.
  • 83. Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. J Am Med Assoc 1997; 278: 1349-56.
  • 84. Kurz MW, Dekomien G, Nilsen OB, et al. APOE alleles in Parkinson disease and their relationship to cognitive decline: a population-based, longitudinal study. J Geriatr Psychiatry Neurol 2009; 22: 166-70.
  • 85. Williams-Gray CH, Goris A, Saiki M, et al. Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson’s disease. J Neurol 2009; 256: 493-8.
  • 86. Morley JF, Xie SX, Hurtig HI, et al. Genetic influences on cognitive decline in Parkinson’s disease. Mov Disord 2012; 27: 512-18.
  • 87. Tsuang D, Leverenz JB, Lopez OL, et al. APOE epsilon4 increases risk for dementia in pure synucle- inopathies. J Am Med Assoc Neurol 2013; 70: 223-8.
  • 88. Irwin DJ, White MT, Toledo JB, et al. Neuropathologic substrates of Parkinson disease dementia.

Ann Neurol 2012; 72: 587-98.

  • 89. Zabetian CP, Hutter CM, Factor SA, et al. Association analysis of MAPT H1 haplotype and subhaplo- types in Parkinson’s disease. Ann Neurol 2007; 62: 137-44.
  • 90. Goris A, Williams-Gray CH, Clark GR, et al. Tau and alpha-synuclein in susceptibility to, and dementia in, Parkinson’s disease. Ann Neurol 2007; 62: 145-53.
  • 91. Williams-Gray CH, Mason SL, Evans JR, et al. The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort. J Neurol Neurosurg Psychiatry 2013; 84: 1258-64.
  • 92. Sidransky E, Nalls MA, Aasly JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009; 361: 1651-61.
  • 93. Neumann J, Bras J, Deas E, et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 2009; 132: 1783-94.
  • 94. Winder-Rhodes SE, Evans JR, Ban M, et al. Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain 2013; 136: 392-9.
  • 95. Murphy KE, Gysbers AM, Abbott SK, et al. Reduced glucocerebrosidase is associated with increased alpha-synuclein in sporadic Parkinson’s disease. Brain 2014; 137: 834-48.
  • 96. Hoogland J, de Bie RM, Williams-Gray CH, et al. Catechol-O-methyltransferase val158met and cognitive function in Parkinson’s disease. Mov Disord 2010; 25: 2550-4.
  • 97. Weintraub D, Dietz N, Duda JE, et al. Alzheimer’s disease pattern of brain atrophy predicts cognitive decline in Parkinson’s disease. Brain 2012; 135(Pt 1): 170-80.
  • 98. Nobili F, Arnaldi D, Campus C, et al. Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson’s disease. Eur J Nucl Med Molec Imaging 2011; 38: 2209-18.
  • 99. Bohnen NI, Koeppe RA, Minoshima S, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med 2011; 52: 848-55.
  • 100. Klassen BT, Hentz JG, Shill HA, et al. Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 2011; 77: 118-24.
 
Source
Found a mistake? Please highlight the word and press Shift + Enter  
< Prev   CONTENTS   Next >
 
Subjects
Accounting
Business & Finance
Communication
Computer Science
Economics
Education
Engineering
Environment
Geography
Health
History
Language & Literature
Law
Management
Marketing
Mathematics
Political science
Philosophy
Psychology
Religion
Sociology
Travel