Concluding Remarks

In this review, various methods for sampling, isolating and identifying microplastics ingested by fish and invertebrates were examined. As research progresses, the need for method standardization becomes clear, so that a finer picture of the threat of microplastics to organisms emerges and ecological and environmental risks can be assessed. Such standardized methodologies must take into account the numerous potential sources of error and contamination, as outlined above, and also the general need for monitoring, which demands that a great number of samples be processed hastily.

Many of the studies covered in this review have focused on the issue of whether microplastic uptake occurs, only addresses the level of plastic contamination in a single species or group and do not allow the assessment of risk and disturbance at the ecosystem level. These studies have resulted in numerous further questions regarding the uptake and transfer of microplastics within ecosystems: Is plastic uptake selective, or passive? To what extent does trophic transfer occur? And, are the negative effects of plastic ingestion observed in laboratory experiments valid in the environment? There is a strong need to design studies in such a way that their results contribute to clarify these issues, for example, contrasting microplastic loads with environmental contamination or diet, to give a more holistic approach to the study of microplastic pollution.

References

  • 1. Plastics the Facts 2014/2015, https://issuu.com/plasticseuropeebook/docs/final_ plastics_the_facts_2014_19122 (accessed August 2018).
  • 2. Cole M, Lindeque P, Halsband C, and Galloway TS, Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull 2011, 62(12), 2588-2597.
  • 3. UNEP, Marine Plastic Debris and Microplastic Technical Report, United Nations Environmental Programme, Nairobi, 2016.
  • 4. Lusher A. In: Bergmann M, Gutow L, and Klages M (eds) Marine Anthropogenic Litter. Springer, Berlin. 2015, pp. 245-308.
  • 5. Wagner M, Scherer C, Alvarez-Munoz D, Brennholt N, Bourrain X, Buchinger S et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur 2014, 26(12), 1-9.
  • 6. Eerkes-Medrano D, Thompson RC, and Aldridge DC. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 2015, 75, 63-82.
  • 7. Duis K, and Coors A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur 2016, 28(1), 1-25.
  • 8. Christaki U, Dolan JR, Pelegri S, and Rassoulozadegan F. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Limnol. Oceanogr 1998, 43(3), 458-464.
  • 9. Wilson DS, Food size selection among Copepods. Ecology, 1973, 54(4), 909-914.
  • 10. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, and Galloway TS. Microplastic Ingestion by Zooplankton. Environ. Sci. Technol 2013, 47(12), 6646-6655.
  • 11. Lee K-W, Shim WJ, Kwon OY, and Kang J-H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicas. Environ. Sci. Technol 2013, 47(19), 11278-11283.
  • 12. Cole M, Webb H, Lindeque PK, Fileman ES, Halsband C, and Galloway TS. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep 2014, 4, 4528, DOI: 10.1038/srep04528.
  • 13. Setala O, Flemming-Lehtinen V, and Lehtiniemi M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut 2014, 185, 77-83.
  • 14. Cole M, Lindeque H, Fileman ES, Halsband C, and Galloway TS. The Impact of Polystyrene Microplastics on Feeding, Function and Fecundity in the Marine Copepod Calanus helgolandicus. Environ. Sci. Technol 2015, 49(2), 1130-1137.
  • 15. Cole M, and Galloway TS. Ingestion of Nanoplastics and Microplastics by Pacific Oyster Larvae. Environ. Sci. Technol 2015, 49(24), 14625-14632.
  • 16. Desforges, JPW Galbraith M, and Ross PS. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol 2015,69(3), 320-330.
  • 17. Cole M, Lindeque P, Fileman ES, Halsband C, and Galloway TS. Microplastics Alter the Properties and Sinking Rates of Zooplankton Faecal Pellets. Environ. Sci. Technol 2016, 50(6), 3239- 3246.
  • 18. Bolton TF, and Havenhand JN. Physiological versus viscosity-induced effects of an acute reduction in water temperature on microsphere ingestion by trochophore larvae of the serpulid polychaete Galeolaria caespitosa./. Plankton Res 1998, 20(11), 2153-2164.
  • 19. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, McGonigle D, and Russell AE. Lost at Sea: Where Is All the Plastic? Science, 2004, 304(5672), 838.
  • 20. Besseling E, Wegner A, Foekema EM, Van Den Heuvel-Greve MJ, and Koelmans AA. Effects of Microplastic on Fitness and PCB Bioaccumulation by the Lugworm Arenicola marina (L.). Environ. Sci. Technol 2013, 47(1), 593-600.
  • 21. Browne MA, Niven SJ, Galloway TS, Rowland SJ, and Thompson RC. Microplastic Moves Pollutants and Additives to Worms, Reducing Functions Linked to Health and Biodiversity. Curr. Biol 2013, 23(23), 2388-2392.
  • 22. Wright SL, Rowe D, Thompson RC, and Galloway TS. Microplastic ingestion decreases energy reserves in marine worms. Curr. Biol 2013, 23(23), R1031-R1033.
  • 23. Van Cauwenberghe L, Claessens M, Vandegehuchte MB, and Janssen CR. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats.Environ. Pollut 2015, 199, 10-17.
  • 24. Green DS, Boots B, Sigwart J, Jiang S, and Rocha C. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ. Pollut 2016, 208, 426-434.
  • 25. Gusmao F, Di Domenico M, Amaral ACZ, Martinez A, Gonzalez BC, Worsaae K, do Sul JAI, and da Cunha Lana P. In situ ingestion of microfibres by meiofauna from sandy beaches. Environ. Pollut 2016, 216, 584-590.
  • 26. Setiila O, Norkko J, and Lehtiniemi M. Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar. Pollut. Bull 2016, 102(1), 95-101.
  • 27. Hart MW. Particle Captures and the Method of Suspension Feeding by Echinoderm Larvae. Biol. Bull 1991, 180(1), 12-27.
  • 28. Graham ER and Thompson JT. Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. /. Exp. Mar. Biol. Ecol 2009,368(1), 22-29.
  • 29. Della Torre C, Beergami E, Salvati A, Faleri C, Cirino P, Dawson KA, and Corsi I. Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos Paracentrotus lividus. Environ. Sci. Tecbnol 2014, 48(20), 12302-12311.
  • 30. Kaposi KL, Mos B, Kelaher BP, and Dworjanyn SA. Ingestion of Microplastic Has Limited Impact on a Marine Larva. Environ. Sci. Technol 2014, 48(3), 1638-1645.
  • 31. Nobre CR, Santana MFM, Maluf A, Cortez FS, Cesar A, Pereira CDS, and Turra A. Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus(Echinodermata: Echinoidea). Mar. Pollut. Bull 2015, 92(1-2), 99-104.
  • 32. Hall NM, Berry KLE, Rintoul L, and Hoogenboom MO. Microplastic ingestion by scleractinian corals. Mar. Biol 2015, 162(3), 725-732.
  • 33. Ugolini A, Ungherese G, Ciofini M, Lapucci A, and Camaiti M. Microplastic debris in sandhoppers. Estuarine, Coastal Shelf Sci 2013, 129, 19-22
  • 34. Murray F, and Cowie PR. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull 2011, 62(6), 1207-1217.
  • 35. Watts AJ, Lewis C, Goodhead RM, Beckett DJ, Moger J, Tyler C, and Galloway TS. Uptake and Retention of Microplastics by the Shore Crab Carcinus maenas. Environ. Sci. Technol 2014, 48(15), 8823-8830.
  • 36. Brennecke D, Ferreira EC, Costa TMM, Appel D, da Gama BAP, and Lenz M, Ingested microplastics (>100 pm) are translocated to organs of the tropical fiddler crab Uca rapax. Mar. Pollut. Bull 2015, 96, 491-495.
  • 37. Watts AJ, Urbina MA, Corr S, Lewis C, and Galloway TS. Ingestion of Plastic Microfibers by the Crab Carcinus maenas and Its Effect on Food Consumption and Energy Balance. Environ. Sci. Technol 2015, 49(24), 14597- 14604.
  • 38. Devriese LI, van der Meulen MD, Maes T, Bekaert K, Paul-Pont I, Frere L, Robbens J, and Vethaak AD, Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar. Pollut. Bull 2015, 98(1-2), 179-187.
  • 39. Stasolla G, Innocenti G, and Galil BS. On the diet of the invasive crab Charybdis longicollis Leene, 1938 (Brachvura: Portunidae) in the eastern Mediterranean Sea. Isr. J. Ecol. Evol 2016, 61(3-4), 130-134.
  • 40. Watts AJ, Urbina MA, Goodhead R, Moger J, Lewis C, and Galloway TS, Effect of Microplastic on the Gills of the Shore Crab Carcinus maenas. Environ. Sci. Technol 2016, 50(10), 5364-5369.
  • 41. Welden NA and Cowie PR. Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus. Environ. Pollut 2016, 214, 859-865.
  • 42. Hamer J, Gutow L, КёЫег A, and Saborowski R. Fate of Microplastics in the Marine Isopod Idotea emarginata. Environ. Sci. Tecbnol 2012, 48(22), 13451-13458.
  • 43. Ward JE and Targett NM. Influence of marine microalgal metabolites on the feeding behavior of the blue mussel Mytilus edulis. Mar. Biol 1989, 101(3), 313-321.
  • 44. Brilliant MGS and MacDonald BA. Postingestive selection in the sea scallop, Placopecten magellanicus (Gmelin): The role of particle size and density. J. Exp. Mar. Biol. Ecol 2000, 253(2), 211-227.
  • 45. Brillant M and MacDonald B. Postingestive selection in the sea scallop (Placopectenmagellanicus) on the basis of chemical properties of particles. Mar. Biol 2002, 141(3), 457-465.
  • 46. Ward JE, Levinton JS, and Shumway SE. Particle sorting in bivalves: In vivo determination of the pallial organs of selection. f. Exp. Mar. Biol. Ecol 2003,293(2), 129-149.
  • 47. Browne MA, Dissanayake A, Galloway TS, Lowe DM, and Thompson RC. Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environ. Sci. Tecbnol 2008, 42(13), 5026-5031.
  • 48. Ward JE and Kach DJ. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res 2009, 68(3), 137-142.
  • 49. Von Moos N, Burkhardt-Holm P, and Kohler A. Uptake and Effects of Microplastics on Cells and Tissue of the Blue Mussel Mytilus edulis L. after an Experimental Exposure Environ. Sci. Tecbnol 2012, 46(20), 11327-11335.
  • 50. Wegner A, Besseling E, Foekema EM, Kamermans P, and Koelmans AA. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.) Environ. Toxicol. Cbem 2012, 31, 2490-2497.
  • 51. Claessens M, Van Cauwenberghe L, Vandegehuchte MB, and Janssen CR. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull 2013, 70(1-2), 227-233.
  • 52. De Witte B, Devriese L, Bekaert K, Hoffman S, Vandermeersch G, Cooreman K, and Robbens J. Quality assessment of the blue mussel (Mytilus edulis): Comparison between commercial and wild types. Mar. Pollut. Bull 2014, 85(1), 146-155.
  • 53. Mathalon A and Hill P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull 2014, 81(1), 69-79.
  • 54. Van Cauwenberghe L and Janssen CR. Microplastics in bivalves cultured for human consumption. Environ. Pollut 2014, 193, 65-70.
  • 55. Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, d’Errico G, Pauletto M, Bargelloni L, and Regoli F. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut 2015, 198, 211-222.
  • 56. Canesi L, Ciacci C, Bergami E, Monopoli MP, Dawson KA, Papa S, Canonico B, and Corsi I. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar. Environ. Res 2015, 111, 34-40
  • 57. Li J, Yang D, Li L, Jabeen K, and Shi H. Microplastics in commercial bivalves from China. Environ. Pollut 2015, 207, 190-195.
  • 58. Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT, Teh FC, Werorilangi S, and Teh SJ. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep 2015, 5, 14340, DOI: 10.1038/srepl4340.
  • 59. Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ, Le Go'ic N et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. U. S. A 2016, 113(9), 2430-2435.
  • 60. Vandermeersch G, Van Cauwenberghe L, Janssen CR, Marques A, Granby K, Fait G, Kotterman MJ et al. A critical view on microplastic quantification in aquatic organisms. Environ. Res 2015, 143, 46-55.
  • 61. Davidson К and Dudas SE, Microplastic Ingestion by Wild and Cultured Manila Clams (Venerupis pbilippinarum) from Baynes Sound, British Columbia. Arch. Environ. Contam. Toxicol 2016, 71(2), 147-156.
  • 62. Paul-Pont I, Lacroix C, Gonzalez Fernandez C, Hegaret H, Lambert C, Le Goic N, Frere L et al. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environ. Pollut 2016, 216, 724- 737.
  • 63. Santana MFM, Ascer LG, Custodio MR, Moreira FT, and Turra A. Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Mar. Pollut. Bull 2016,106(1-2), 183-189.
  • 64. Braid FIE, Deeds J, DeGreasse SL, Wilson JJ, Osborne J, and Hanner RFL Preying on commercial fisheries and accumulating paralytic shellfish toxins: A dietary analysis of invasive Dosidicus gigas (Cephalopoda Ommastrephidae) stranded in Pacific Canada. Mar. Biol 2012, 159(1), 25-31.
  • 65. Goldstein MC and Goodwin DS. Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre. Peer], 2014, 1, e841.
  • 66. Carpenter EJ, Anderson SJ, Harvey GR, Miklas HP, and Peck BB. Polystyrene Spherules in Coastal Waters.Science, 1972, 178, 749-750.
  • 67. Kartar S, Milne RA, and Sainsbury M. Polystyrene waste in the Severn Estuary. Science, 1976, 79(3), 52.
  • 68. Dos Santos J and Jobling M. A model to describe gastric evacuation in cod (Gadus morhua L.) fed natural prey. ICES J. Mar. Sci 1992, 49(2), 145-154.
  • 69. Boerger CM, Lattin GL, Moore SL, and Moore CJ. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull 2010, 60(12), 2275-2278.
  • 70. Davison P, Asch RG, Davison P, and Asch RG. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Mar. Ecol.: Prog. Ser 2011, 432, 173-180.
  • 71. Possatto FE, Barletta M, Costa MF, do Sul JAI, and Dantas DA. Plastic debris ingestion by marine catfish: An unexpected fisheries impact. Mar. Pollut. Bull 2011, 62(5), 1098-1102.
  • 72. Dantas DV, Barletta M, da Costa MF, The seasonal and spatial patterns of ingestion of polyfilament nylon fragments by estuarine drums (Sciaenidae). Environ. Sci. Pollut. Res 2012, 19(2), 600-606.
  • 73. Ramos JAA, Barletta M, and Costa MF. Movement patterns of catfishes (Ariidae) in a tropical semi-arid estuary. Aquat. Biol 2012, 17, 29-34.
  • 74. Choy CA and Drazen JC. Plastic for dinner? Observations of frequent debris ingestion by pelagic predatory fishes from the central North Pacific. Mar. Ecol.: Prog. Ser 2013,485, 155-163.
  • 75. Foekema EM, De Gruijter C, Mergia MT, van Franeker JA, Murk AJ, and Koelmans AA. Inventory of the presence of plastics in the digestive tract of North Sea fishes Environ. Sci. Technol 2013, 47(15), 8818-8824.
  • 76. Gassel M, Harwani S, Park J-S, and Jahn A. Detection of nonylphenol and persistent organic pollutants in fish from the North Pacific Central Gyre. Mar. Pollut. Bull 2013, 73,231-242.
  • 77. Lusher AL, McHugh M, and Thompson RC. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel; Mar. Pollut. Bull 2013, 67(1-2), 94-99.
  • 78. Saji Kumar KK, Ragesh N, Remya R, and Mohamed KS. Scope for mechanized fishing of teleosts with light attraction in Southeastern Arabian Sea; Marine Fisheries Information Service; Technical and Extension Series 2013, 217, 13.
  • 79. Kripa V, Nair PG, Dhanya AM, Pravita VP, Abhilash S, Mohamed AA, Vijayan D et al. Microplastics in the gut of anchovies caught from the mud bank area of Alappuzha, Kerala; Marine Fisheries Information Service; Technical and Extension Series, 2014,219, 27-28.
  • 80. Sulochanan B, Bhat GS, Lavanya S, Dineshbabu AP, and Kaladharan P. A preliminary assessment of ecosystem process and marine litter in the beaches of Mangalore. Indian J. Geo-Mar. Sci 2013, 43(9), 1-6.
  • 81. Avio CG, Gorbi S, and Regoli F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea. Mar. Environ. Res 2015,111, 18-26.
  • 82. Collard F, Gilbert B, Eppe G, Parmentier E, and Das K. Detection of Anthropogenic Particles in Fish Stomachs: An Isolation Method Adapted to Identification by Raman Spectroscopy. Arch. Environ. Contam. Toxicol 2015, 69(3), 331-339.
  • 83. Neves D, Sobral P, Ferreira JL, and Pereira T. Ingestion of microplastics by commercial fish off the Portuguese coast. Mar. Pollut. Bull 2015, 101, 119-126.
  • 84. Phillips MB and Bonner TH. Occurrence and amount of microplastic ingested by fishes in watersheds of the Gulf of Mexico. Pollut. Bull 2015, 100, 264-269.
  • 85. Romeo T, Pietro B, Peda C, Consoli P, Andaloro F, and Fossi MC. First evidence of presence of plastic debris in stomach of large pelagic fish in the Mediterranean Sea. Mar. Pollut. Bull 2015, 95, 358-361.
  • 86. Bellas J, Martinez-Armental J, Martinez-Camara A, Besada V, and Martfnez- Gomez C. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Mar. Pollut. Bull 2016, 109(1), 55-60.
  • 87. Cannon SME, Lavers JL, and Figueiredo B. Plastic ingestion by fish in the Southern Hemisphere: A baseline study and review of methods. Mar. Pollut. Bull 2016, 107, 286-291.
  • 88. Miranda DDA and de Carvalho-Souza GF. Are we eating plastic-ingesting fish? Mar. Pollut. Bull 2016, 103, 109-114.
  • 89. Lusher AL, O’Donnell C, Officer R, and O’Connor I. Microplastic interactions with North Atlantic mesopelagic fish. ICES J. Mar. Sci 2016, 73(4), 1214-1225.
  • 90. Nadal MA, Alomar C, and Deudero S. High levels of microplastic ingestion by the semipelagic fish bogue Boops boops (L.) around the Balearic Islands. Environ. Pollut 2016, 214, 517-523.
  • 91. Naidoo T, Smit AJ, and Glassom D. Plastic ingestion by estuarine mullet Mugil cephalus (Mugilidae) in an urban harbour, KwaZulu-Natal, South Africa. Afr. J. Mar. Sci 2016, 38(1), 145-149.
  • 92. Peda C, Caccamo L, Fossi MC, Gai F, Andaloro F, Genovese L, Perdichizzi A, Romeo T, and Maricchiolo G. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environ. Pollut 2016, 212,251-256.
  • 93. Rummel CD, Loder MG, Fricke NF, Lang T, Griebeler EM, Janke M, and Gerdts G. Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar. Pollut. Bull 2016, 102, 134-141.
  • 94. Ferreira P, Fonre E, Soares ME, Carvalho F, and Guilhermino L. Effects of multistressors on juveniles of the marine fish Pomatoschistus microps: Gold nanoparticles, microplastics and temperature. Aquat. Toxicol 2016, 170, 89-103.
  • 95. Tourinho PS, do Sul JAI, and Fillmann G. Is marine debris ingestion still a problem for the coastal marine biota of southern Brazil..Mar. Pollut. Bull 2010, 60(3), 396-401.
  • 96. Van Franeker JA, Blaize C, Danielsen J, Fairclough K, Gollan J, Guse N, Hansen PL et al. Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea. Environ. Pollut 2011, 159(10), 2609-2615.
  • 97. Besseling E, Foekema EM, van Franeker JA, Leopold MF, Kuhn S, Rebolledo EB, Hefie E et al. Microplastic in a macro filter feeder: Humpback whale Megaptera novaeangliae. Mar. Pollut. Bull 2015, 95(1), 248-252.
  • 98. Lusher AL, Hernandez-Milian G, O’Brien J, Berrow S, O’Connor I, and Officer R. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: The True’s beaked whale Mesoplodon mints. Environ. Pollut 2015, 199, 185-191.
  • 99. Rosenkranz P, Chaudhry Q, Stone V, and Fernandes TF. A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ. Toxicol. Chem 2009, 28(10), 2142-2149.
  • 100. Imhof HK, Schmid J, Niessner R, Ivleva NP, and Laforsch C. Contamination of beach sediments of a subalpine lake with microplastic particles. Limnol. Oceanogr.: Methods, 2012, 10(7), 524- 537.
  • 101. Sanchez W, Bender C, and Porcher JM. Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: Preliminary study and first evidence. Environ. Res 2014, 128, 98-100.
  • 102. Faure F, Demars C, Wieser O, Kunz M, and De Alencastro LF. Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants. Environ. Cbem 2015, 12(5), 582-591.
  • 103. Biginagwa FJ, Mayoma BS, Shashoua Y, Syberg K, and Khan FR. First evidence of microplastics in the African Great Lakes: Recovery from Lake Victoria Nile perch and Nile tilapia. J. Great Lakes Res 2016, 42(1), 146-149.
  • 104. Lonnstedt OM and Eklov P. Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science, 2016, 352(6290), 1213-1216.
  • 105. Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ding L, and Ren H. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ. Sci. Tecbnol 2016, 50(7), 4054-4060.
  • 106. Wardrop P, Shimeta J, Nugegoda D, Morrison PD, Miranda A, Tang M, and Clarke BO. Chemical Pollutants Sorbed to Ingested Microbeads from Personal Care Products Accumulate in Fish. Environ. Sci. Tecbnol 2016, 50(7), 4037-4044.
  • 107. Peters CA and Bratton SP. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environ. Pollut 2016,210, 380-387.
  • 108. Besseling E, Wang B, Lurling M, and Koelmans AA. Nanoplastic Affects Growth of S. obliquus and Reproduction of D. magna. Environ. Sci. Tecbnol 2014, 48(20), 12336-12343.
  • 109. Ogonowski M, Schur C, Jarsen A, and Gorokhova E. The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna.PLoS One 2016, 11(5), e0155063.
  • 110. Nasser F and Lynch I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna./. Proteomics, 2016, 137, 45-51.
  • 111. Rehse S, Kloas W, and Zarfl C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Cbemospbere 2016, 153, 91-99.
  • 112. Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salanki T, van der Ploeg M, Besseling E, Koelmans AA, and Geissen V. Potential risk of microplastics transportation into ground water. Environ. Sci. Tecbnol 2016, 50(5), 2685-2691.
  • 113. Cedervall T, Hansson LA, Lard M, Frohm B, and Linse S. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One, 2012, 7(2), e32254.
  • 114. Farrell P and Nelson K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut 2013, 177, 1-3.
  • 115. Batel A, Linti F, Scherer M, Erdinger L, and Braunbeck T. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebra fish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environ. Toxicol. Cbem 2016, 35(7), 1656-1666.
  • 116. Bhattacharya P, Lin S, Turner JP, and Ke P-C. Physical adsorption of charged plastic nanoparticles affects Algal Photosynthesis./. Pbys. Cbem. C, 2010, 114(39), 16556-16561.
  • 117. Long M, Moriceau B, Gallinari M, Lambert C, Huvet A, Raffray J, and Soudant P. Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. Mar. Cbem 2015, 175, 39-46.
  • 118. Lagarde F, Olivier O, Zanella M, Daniel P, Hiard S, and Caruso A. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut 2016,215,331-339.
  • 119. Gutow L, Eckerlebe A, Gimenez L, and Saborowski R. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Sci. Tecbnol 2016, 50, 915-923.
  • 120. Bakir A, Rowland SJ, and Thompson RC. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ. Pollut 2014, 185, 16-23.
  • 121. Rochman CM. In: Bergmann M, Gutow Land Klages M (eds) Marine Anthropogenic Litter. Springer, Berlin. 2015, pp. 117-140.
  • 122. Rochman CM, Ecologically relevant data are policy-relevant data Science, 2016, 352(6290), 1172.
  • 123. Hidalgo-Ruz V, Gutow L, Thompson RC, and Thiel M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ.Sci. Tecbnol 2012, 46(6), 3060-3075.
  • 124. Saether BS and Jobling M. Gastrointestinal evacuation of inert particles by turbot, Psetta maxima: Evaluation of the X-radiographic method for use in feed intake studies. Aquat. Living Resour 1997, 10(6), 359-364.
  • 125. McGaw IJ and Curtis DL. A review of gastric processing in decapod crustaceans. J. Comp. Physiol, B, 2013, 183(4), 443-465.
  • 126. Powell MD and Berry AJ. Ingestion and regurgitation of living and inert materials by the estuarine copepod Eurytemora affinis (Poppe) and the influence of salinity. Estuarine, Coastal Shelf Sci 1990, 31(6), 763-773.
  • 127. Bromley PJ, The role of gastric evacuation experiments in quantifying the feeding rates of predatory fish. Rev. Fish Biol. Fish 1994, 4(1), 36-66.
  • 128. Bowman RE. Effect of regurgitation on stomach content data of marine fishes Environ. Biol. Fishes, 1986, 16(1), 171-181.
  • 129. Bowen SH. In: Murphy BR and Willis DW (eds) Fisheries Techniques, 2nd edn. American Fisheries Society, Bethesda, MD. 1996, pp. 513-532.
  • 130. Daan N. A quantitative analysis of the food intake of North Sea cod, Gadus Morhua. Neth.J. Sea Res 1973, 6(4), 479-517.
  • 131. Barltrop D and Meek F. Effect of particle size on lead absorption from the Gut. Arch. Environ. Health, 1979, 34(4), 280-385.
  • 132. Reineke JJ, Cho DY, Dingle Y-T, Morello AP, Jacob J, Thanos CG, and Mathiowitz E. Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres. Proc. Natl. Acad. Sci. U. S. A 2013, 110(34), 13803-13808.
  • 133. Andrady AL. In: Bergmann M, Gutow L and Klages M (eds) Marine Anthropogenic Litter. Springer, Berlin. 2015, pp. 57-72.
  • 134. Nakashima S, Sturgeon RE, Willie SN, and Berman SS. Acid digestion of marine samples for trace element analysis using microwave heating. Analyst, 1988, 113, 159-163.
  • 135. Dehaut A, Cassone A-L, Frere L, Hermabessiere L, Himber C, Rinnert E, Riviere G et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut 2016, 215, 223-233.
  • 136. Jin Y, Li FI, Mahar RB, Wang Z, and Nie Y. Effects and model of alkaline waste activated sludge treatment. /. Environ. Sci 2009, 21, 279-284.
  • 137. Nuelle MT, Dekiff JH, Remy D, and Fries E. A new analytical approach for monitoring microplastics in marine sediments. Environ. Pollut 2014, 184, 161-169.
  • 138. Stojicic S, Zivkovic S, Qian W, Zhang H, and Flaapasalo M. Tissue Dissolution by Sodium Hypochlorite: Effect of Concentration, Temperature, Agitation, and Surfactant./. Endod 2010, 36(9), 1558-1562.
  • 139. Duncan E. Presented in part at Micro 2016, Lanzarote, Canary Islands, Spain, May, 2016.
  • 140. Catarino Al, Thompson R, Sanderson W, and Henry ТВ. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environ. Toxicol. Chem 2017, 36 (4), 947-951.
  • 141. Scholz-Bottcher B. Presented in part at Micro 2016, Lanzarote, Canary Islands, Spain, May, 2016.
  • 142. Horton AA, Svendsen C, Williams RJ, Spurgeon DJ, and Lahive E. Large microplastic particles in sediments of tributaries of the River Thames, UK - Abundance, sources and methods for effective quantification. Mar. Pollut. Bull 2017, 114(1), 218-226.
  • 143. Gilftllan LR, Ohman MD, Doyle MJ, and Watson W. California Cooperative Oceanic and Fisheries Investigations, 2009, 50, 123-133.
  • 144. Sgier L, Freimann R, Zupanic A, and Kroll A. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics Nat. Commun 2016, 7, 11587, DOI: 10.1038/ncommsll587.
  • 145. Reisser J, Shaw J, Hallegraeff G, Proietti M, Barnes DA, Thums M, Wilcox C, Hardesty BD, and Pattiaratchi C. Millimeter-Sized Marine Plastics: A New Pelagic Habitat for Microorganisms and Invertebrates. PLoS ONE 9(6): el00289. doi:10.1371/journal.pone.0100289
  • 146. Loder M and Gerdts G. In: Bergmann M, Gutow L, Klages M (eds) Marine Anthropogenic Litter. Springer, Berlin, 2015, pp. 201-227.
  • 147. Remy F, Collard F, Gilbert B, Compere P. Eppe G, and Lepoint G. When Microplastic Is Not Plastic: The Ingestion of Artificial Cellulose Fibers by Macrofauna Living in Seagrass Macrophvtodetritus. Environ. Sci. Technol 2015, 49 (18), 11158-11166.
  • 148. Rocha-Santos T and Duarte AC. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC, Trends Anal. Cbem 2015, 65, 47-53.
  • 149. Song YK, Hong SH, Jang M, Han GM, Rani M, Lee J, and Shim WJ. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar. Pollut. Bull 2015, 93(1-2), 202-209.
  • 150. Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, Farley H, and Amato S. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull 2013, 77(1-2), 177-182.
  • 151. Lima ARA, Costa MF, and Barletta M. Distribution patterns of microplastics within the plankton of a tropical estuary. Environ. Res 2014, 132, 146-155.
  • 152. Lima ARA, Barletta M, and Costa MF. Seasonal-Dial Shifts of Ichthyoplankton Assemblages and Plastic Debris around an Equatorial Atlantic Archipelago Front. Environ.Sci 2016, 4, 56.
  • 153. Hamza A A, Sokkar TZN, and Ramadan WA. On the microinterferometric determination of refractive indices and birefringence of fibres. Pure Appl. Opt 1992, 1(6), 321
  • 154. Fries E, Dekiff JH, Willmeyer J, Nuelle MT, Ebert M, and Remv D. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ. Sci.: Processes Impacts, 2013, 15(10), 1949-1956.
  • 155. Dumichen E, Barthel A-К, Braun U, Bannick CG, Brand K, Jekel M, and Senz R. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res 2015, 85, 451-457.
  • 156. Hintersteiner I, Himmelsbach M, and Buchberger WW. Characterization and quantitation of polyolefin microplastics in personal-care products using high-temperature gel-permeation chromatography. Anal. Bioanal. Cbem 2015, 407, 1253-1259.
  • 157. Fischer M. Presented in part at Micro 2016, Lanzarote, Canary Islands, Spain, May, 2016.
  • 158. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, and Thompson RC. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Tecbnol 2011, 45(21), 9175-9179.
  • 159. Dris R, Gasperi J, Saad M, Mirande C, and Tassin B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment?. Mar. Pollut. Bull 2016, 104, 290-293.
  • 160. Woodall LC, Gwinnett C, Packera M, Thompson RC, Robinson LF, and Paterson GLJ. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar. Pollut. Bull 2015, 95(1), 40-46.
  • 161. de Sa LC, Luis LG, and Guilhermino L. Effects of microplastics on juveniles of the common goby (Pomatoscbistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut 2015, 196, 359-362.
  • 162. Rochman CM, Hoh E, Kurobe T, and Teh SJ. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep 2013, 3, 03263.
  • 163. Rochman CM, Kurobe T, Flores I, and Teh SJ. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci. Total Environ 2014, 493, 656-661.
  • 164. Bergami E, Bocci E, Vannuccini ML, Monopoli M, Salvati A, Dawson К A, and Corsi I. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae. Ecotoxicol. Environ. Saf 2016, 123, 18-25.
  • 165. R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, 2013, Vienna, Austria, http://www.R-project.org/.
  • 166. EFSA CONTAM Panel EFSA Panel on Contaminants in the food chain. EFSA J 2016, 14(6), e04501, DOI: 10.2903/j.efsa.2016.4501.
  • 167. Urbina MA, Watts AJR, and Reardon EE. Labs should cut plastic waste too. Nature 2015, 528, 479, DOE 10.1038/528479c.
  • 168. Mattsson K, Ekvall MT, Hansson LA, Linse S, Malmendal A, and Cedervall T. Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles. Environ. Sci. Technol 2015, 49(1), 553-561.
  • 169. Rummel CD, Adolfsson-Erici M, Jahnke A, and MacLeod L. No measurable “cleaning” of polychlorinated biphenyls from Rainbow Trout in a 9 week depuration study with dietary exposure to 40% polyethylene microspheres. Environ. Sci.: Processes Impacts 2016, 18, 788-795.
  • 170. Welden NA and Cowie P. Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus. Environ. Pollut206,218,895-900.
  • 171. Davarpanah E and Guilhermino L. Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii. Estuarine, Coastal Shelf Sci 2015, 167, 269-275.
  • 172. Mazurais D, Ernande B, Quazuguel P, Severe A, Huelvan C, Madec L, Mouchel О et al. Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Mar. Environ. Res 2015, 112, 78-85.
  • 173. Luis LG, Ferreira P, Fonte E, Oliveira M, and Guilhermino L. Does the presence of microplastics influence the acute toxicity of chromium(VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations. Aquat. Toxicol 2015, 164, 163-174.
  • 174. Oliveria M, Riberio A, Hylland K, and Guilhermino L. Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecol. Indie, 2013, 34, 641-647.
  • 175. Clarke JR, Cole M, Lindeque PK, Fileman E, Blackford J, Lewis C, Lenton TM, and Galloway TS. Marine microplastic debris: A targeted plan for understanding and quantifying interactions with marine life. Front. Ecol. Environ 2016, 14, 317-324.

SECTION V

 
Source
< Prev   CONTENTS   Source   Next >