Recent technological developments in various CMS membranes for H2 separation have been discussed in this chapter. Although few studies have examined FT-separation processes using carbon membranes, CMS membranes offer several advantages, especially for MRs, such as a high resistance to chemicals and the capacity to operate at high temperatures. For CMS membrane commercialization, scaling up is one of the most challenging hurdles to surmount. It will be necessary to prepare high-quality CMS membranes with large surface areas in a reliable and cost-effective manner as well as to integrate these membranes into process modules with high-temperature sealing. The scope of this challenge is considerable, but extensive potential and opportunities exist for using new polymer precursors, new production methods, or new module-fabrication techniques. Proper reactor design, with regards to heat and mass transport issues during the reaction as well as the separation processes, is a significant factor. [1] [2]

[4] Li, H., Song, Z., Zhang, X., Huang, Y., Li, S., Mao, Y., Ploehn, H.J., Bao, Y., Yu, M., 2013. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95-98.

[5] Yoo, B.M., Shin, J.E., Lee, H.D., Park, H.B., 2017. Graphene and graphene oxide membranes for gas separation applications. Current Opinion in Chemical Engineering, 16,39M7.

[6] Hamm, J.B., Ambrosi, A., Griebeler, J.G., Marcilio, N.R., Tessaro, I.C., Polio, L.D., 2017. Recent advances in the development of supported carbon membranes for gas separation. International Journal of Hydrogen Energy, 42,24830-24845.

[7] Ismail, A.F., David, L.I.B., 2001. A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science, 193,1-18.

[8] Ismail, A.F., Li, K., 2008. From polymeric precursors to hollow fiber carbon and ceramic membranes. Inorganic Membranes: Synthesis, Characterization and Applications. Mallada, R., Menendez, M. (Eds.), 81-120, Elsevier, Inc., Oxford.

[9] Kita, H., 2006. Gas and vapor separation membranes based on carbon membranes. Material Science of Membranes for Gas and Vapor Separation. Yampolskii, Y., Pinnau, I., Freeman, B.D. (Eds.), 337-354, John Wiley & Sons, Inc., Chichester.

[10] Salleh, W.N.W., Ismail, A.F., Matsuura, T., Abdullah, M.S., 2011. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review. Separation and Purification Reviews, 40,261-311.

[11] Saufi, S.M., Ismail, A.F., 2004. Fabrication of carbon membranes for gas separation—A review. Carbon. 42,241-259.

[12] Williams, P.J., Koros, W.J., 2008. Gas separation by carbon membranes. Advanced Membrane Technology and Applications. Li, N.N., Fane, A.G., Ho, W.S.W., Matsuura, T. (Eds.), 599-632, John Wiley & Sons, Inc., New Jersey.

[13] He, X., Lie, J.A., Sheridan, E., Hiigg, M.-B., 2011. Preparation and characterization of hollow fiber carbon membranes from cellulose acetate precursors. Industrial & Engineering Chemistry Research, 50,2080-2087.

[14] Campo, M.C., Magalhaes, F.D., Mendes, A., 2010. Carbon molecular sieve membranes from cellophane paper. Journal of Membrane Science, 350,180-188.

[15] Tseng, H.-H., Shih, K., Shiu, P.-Т., Lin, Y.-S., 2011. Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation. International Journal of Hydrogen Energy, 36,15352-15363.

[16] Tseng, H.-H., Wang C.-Т., Zhuang G.-L., Uchytil P, Reznickova J., Setnickova

K., 2016. Enhanced H2/CH4 and H2/C02 separation by carbon molecular sieve membrane coated on titania modified alumina support: Effects of ТЮ2 intermediate layer preparation variables on interfacial adhesion. Journal of Membrane Science, 510,391-404.

[17] Teixeira, M., Rodrigues, S.C., Campo, M., Pacheco Tanaka, D.A., Llosa Tanco, M.A., Madeira, L., Sousa, J.M., Mendes, A., 2014. Boehmite-phenolic resin carbon molecular sieve membranes—Permeation and adsorption studies. Chemical Engineering Research and Design, 92, 2668-2680.

[18] Rodrigues, S.C., Whitley, R., Mendes, A., 2014. Preparation and characterization of carbon molecular sieve membranes based on resorcinol-formaldehyde resin. Journal of Membrane Science, 459,207-216.

[19] Itta, A.K., Tseng, H.-H., Wey, M.-Y., 2011. Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation. Journal of Membrane Science, 372, 387-395.

[20] Tseng, H.-H., Itta, A.K., 2012. Modification of carbon molecular sieve membrane structure by self-assisted deposition carbon segment for gas separation. Journal of Membrane Science, 389,223-233.

[21] Hosseini, S.S., Chung, T.S., 2009. Carbon membranes from blends of PBI and polyimides for N2/CH4 and C02/CH4 separation and hydrogen purification. Journal of Membrane Science, 328,174-185.

[22] Ma, X., Swaidan, R., Teng, B., Tan, H., Salinas, O., Litwiller, E., Han, Y., Pinnau, I., 2013. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon 62, 88-96.

[23] Zhang, B., Wu, Y., Wang, T., Qiu, J., Zhang, S., 2011. Microporous carbon membranes from sulfonated poly(phthalazinone ether sulfone ketone): Preparation, characterization, and gas permeation. Journal of Applied Polymer Science, 122, 1190-1197.

[24] Sa, S., Sousa, J.M., Mendes, A., 2011. Steam reforming of methanol over a CuO/ ZnO/A1203 catalyst part II: A carbon membrane reactor. Chemical Engineering Science, 66, 5523-5530.

[25] Favvas, E.P, Heliopoulos, N.S., Papageorgiou, S.K., Mitropoulos, A.C., Kapantaidakis, G.C., Kanellopoulos, N.K., 2015. Helium and hydrogen selective carbon hollow fiber membranes: The effect of pyrolysis isothermal time. Separation and Purification Technology, 142,176-181.

[26] Sazali, N., Salleh, W.N.W., Ismail, A.F., 2017. Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation. International Journal of Hydrogen Energy, 42,9952-9957.

[27] Li, L., Song, C, Jiang, H., Qiu, J., Wang, T., 2014. Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer. Journal of Membrane Science, 450,469-477.

[28] Ngamou, P.H.T., Ivanova, M.E., Guillon, O., Meulenberg, W.A., 2019. High- performance carbon molecular sieve membranes for hydrogen purification and pervaporation dehydration of organic solvents. Journal of Materials Chemistry A, 7, 7082-7091.

[29] Song, C, Wang, T., Qiu, J., 2009. Preparation of C/CMS composite membranes derived from polyffurfuryl alcohol) polymerized by iodine catalyst. Desalination 249, 486-489.

[30] Hirota, Y., Ishikado, A., Uchida, Y., Egashira, Y., Nishiyama, N., 2013. Pore size control of microporous carbon membranes by post-synthesis activation and their use in a membrane reactor for dehydrogenation of methylcyclohexane. Journal of Membrane Science, 440,134-139.

[31] Yoshimune, M., Haraya, K., 2010. Flexible carbon hollow fiber membranes derived from sulfonated polyfphenylene oxide). Separation and Purification Technology, 75,193-197.

[32] Yoshimune, M., Haraya, K., 2019. Simple control of the pore structures and gas separation performances of carbon hollow fiber membranes by chemical vapor deposition of propylene. Separation and Purification Technology, 233,162-167.

[33] Richter, H., Voss, H., Kaltenborn, N., Kamnitz, S., Wollbrink, A., Feldhoff, A., Caro, J., Roitsch, S., Voigt, I., 2017. High-flux carbon molecular sieve membranes for gas separation. Angewandte Chemie International Edition, 56, 7760-7763.

[34] Robeson, L.M., 1991. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62,165-185.

[35] Robeson, L.M., 2008. The upper bound revisited. Journal of Membrane Science, 321,390-100.

[36] Briceno, K., Montane, D, Garcia-Valls, R., Iulianelli, A., Basile, A., 2012a. Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation. Journal of Membrane Science, 415-416, 288-297.

[37] Yoshimune, M., Fujiwara, I., Suda, H., Haraya, K., 2005. Novel carbon molecular sieve membranes derived from polyfphenylene oxide) and its derivatives for gas separation. Chemistry Letters, 34,958-959.

[38] Grainger, D., Hagg, M.-B., 2008. The recovery by carbon molecular sieve membranes of hydrogen transmitted in natural gas networks. International Journal of Hydrogen Energy, 33,2379-2388.

[39] He, X., 2017. Techno-economic feasibility analysis on carbon membranes for hydrogen purification. Separation and Purification Technology, 186,117-124.

[40] Itoh, N., Haraya, K., 2000. A carbon membrane reactor. Catalysis Today, 56, 103-111.

[41] Sznejer, G., Sheintuch, M., 2004. Application of a carbon membrane reactor for dehydrogenation reactions. Chemical Engineering Science, 59,2013-2021.

[42] Zhang, X., Hu, H., Zhu, Y., Zhu, S., 2006. Methanol steam reforming to hydrogen in a carbon membrane reactor system. Industrial & Engineering Chemistry Research, 45, 7997-8001.

[43] Harale, A., Hwang, H.T., Liu, P.K.T., Sahimi, M., Tsotsis, T.T., 2007. Experimental studies of a hybrid adsorbent-membrane reactor (HAMR) system for hydrogen production. Chemical Engineering Science, 62,4126-4137.

[44] Abdollahi, M., Yu, J, Liu, P.K.T., Ciora, R., Sahimi, M., Tsotsis, T.T., 2010. Hydrogen production from coal-derived syngas using a catalytic membrane reactor based process. Journal of Membrane Science, 363,160-169.

[45] Parsley, D., Ciora Jr., R.J., Flowers, D.L., Laukaitaus, J., Chen, A., Liu, P.K.T., Yu, J., Sahimi, M., Bonsu, A., Tsotsis, T.T., 2014. Field evaluation of carbon molecular sieve membranes for the separation and purification of hydrogen from coal- and biomass-derived syngas. Journal of Membrane Science, 450, 81-92.

[46] Sheintuch, M., Efremenko, I., 2004. Analysis of a carbon membrane reactor: from atomistic simulations of single-file diffusion to reactor design. Chemical Engineering Science, 59,4739-4746.

[47] Briceno, K., Iulianelli, A., Montane, D, Garcia-Valls, R., Basile, A., 2012b. Carbon molecular sieve membranes supported on non-modified ceramic tubes for hydrogen separation in membrane reactors. International Journal of Hydrogen Energy, 37,13536-13544.

[48] Sa, S., Silva, H., Sousa, J.M., Mendes, A., 2009. Hydrogen production by methanol steam reforming in a membrane reactor: palladium vs. carbon molecular sieve membranes. Journal of Membrane Science, 339,160-170.

Carbon Membranes for Microfiltration/ Ultrafiltration/Nanofiltration

Bing Zhang and Yonghong Wu

School of Petrochemical Engineering, Shenyang University of Technology

  • [1] References
  • [2] Rao, М.Б., Sircar, S., 1993. Nanoporous carbon membranes for separation of gasmixtures by selective surface flow. Journal of Membrane Science, 85, 253-264. [2] Rao, M.B., Sircar, S., 1996. Performance and pore characterization of nanoporouscarbon membrane for gas separation. Journal of Membrane Science, 110,109-118. [3] Huang, S., Dakhchoune, M., Luo, W., Oveisi, E., He, G., Rezaei, M., Zhao, J.,Alexander, D.T.L., Ziittel, A., Strano, M.S., Agrawa, K.V., 2018. Single-layergraphene membranes by crack-free transfer for gas mixture separation. NatureCommunications, 9, 2632-2642.
< Prev   CONTENTS   Source   Next >