Carbon Membranes for Organic Solvent Separation

The pore size of carbon membranes can be adjusted by tuning the carbonization conditions and employment of proper post treatment as described in Chapter 2, and thus the membranes are good candidates for the separation of organic molecules due to their stability and the avoidance of expensive supports or complex multi-step fabrication processes [26]. However, the critical challenge is the creation of “mid-range" (5-9 A) microstructures that allow for facile permeation of organic solvents and selection between similarly sized guest molecules. A carbon membrane made from a microporous polymer (PIM-1) with an average pore size of 5.1 A under low concentrations of hydrogen gas has been reported to show a high р-xylene/o-xylene selectivity of 14.7 for equimolar mixture tests [26]. The reported approach was successfully extended to hollow fiber membranes operating in organic solvent reverse-osmosis mode, highlighting the potential of this method to be translated from the laboratory to the field. [1] [2] [3] [4] [5]

[5] Hagg, M. B.; Lindbrathen, A., CO, capture from natural gas fired power plants by using membrane technology. Ind. Eng. Chem. Res. 2005,44 (20), 7668-7675.

[6] Huang, J.; Zou, J.; Ho, W. S. W., Carbon dioxide capture using a C02-selective facilitated transport membrane. Ind. Eng. Client. Res. 2008,47 (4), 1261-1267.

[7] Reijerkerk, S. R. Polyether based block copolymer membranes for C02 separation [PhD]. University of Twente, Enschede, 2010.

[8] Lin, H.; Freeman, B. D., Materials selection guidelines for membranes that remove CO, from gas mixtures. /. Mol. Struct. 2005, 739 (1-3), 57-74.

[9] Deng, L.; Kim, T.-J.; Hagg, M.-B., Facilitated transport of CO, in novel PVAm/ PVA blend membrane. J. Membr. Sci. 2009,340 (1-2), 154-163.

[10] Sandru, M.; Haukebo, S. H.; Hagg, M.-B., Composite hollow fiber membranes for CO, capture. /. Membr. Sci. 2010, 346 (1), 172-186.

[11] He, X.; Hagg, M.-B., Hollow fiber carbon membranes: Investigations for CO, capture. ]. Membr. Sci. 2011,378 (1-2), 1-9.

[12] He, X.; Hagg, M.-B., Hollow fiber carbon membranes: From material to application. Chem. Eng. J. 2013, 215-216 (0), 440-448.

[13] He, X., A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries. Energy Sust. Soc. 2018,8 (1), 34.

[14] Hou, J.; Liu, P; Jiang, M.; Yu, L.; Li, L.; Tang, Z., Olefin/paraffin separation through membranes: from mechanisms to critical materials. /. Mater. Chem. A 2019, 7 (41), 23489-23511.

[15] Hagg, M.-B.; Lie, J. A.; Lindbrathen, A., Carbon molecular sieve membranes. A promising alternative for selected industrial applications. Ann. N.Y. Acad. Sci. 2003, 984 (1), 329-345.

[16] Xu, L.; Rungta, M.; Brayden, M. K.; Martinez, M. V.; Stears, B. A.; Barbay, G. A.; Koros, W. J., Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. /. Membr. Sci. 2012, 423-424, 314-323.

[17] Xu, L.; Rungta, M.; Hessler, J.; Qiu, W.; Brayden, M.; Martinez, M.; Barbay, G.; Koros, W. J., Physical aging in carbon molecular sieve membranes. Carbon 2014, 80,155-166.

[18] An Artificial Leaf: a photo-electro-catalytic cell from earth-abundant materials for sustainable solar production of C02-based chemicals and fuels, https://cor- dis.europa.eu/project/id/732840 (accessed May 3).

[19] Soap film based artificial photosynthesis, https://cordis.europa.eu/project/ id/828838 (accessed May 3).

[20] Artificial photosynthesis: A contribution to the energy transition, https: / / www. creavis.com/sites/creavis/en/activities/current-projects/rheticus/ (accessed May 3).

[21] Yamada, T.; Domen, K., Development of sunlight driven water splitting devices towards future artificial photosynthetic industry. ChemEngineering 2018,2 (3), 36.

[22] Kopp, M.; Coleman, D.; Stiller, C.; Scheffer, K.; Aichinger, J.; Scheppat, B., Energiepark Mainz: Technical and economic analysis of the worldwide largest power-to-gas plant with PEM electrolysis. Int. J. Hydrogen Energy 2017, 42 (19), 13311-13320.

[23] Mitsubishi Electr., MLU series photovoltaic modules, n.d., https://www.mit- subishielectricsolar.com/images/uploads/documents/specs/MLU_spec_ sheet_250W_255W.pdf (accessed May 3).

[24] Goto, Y.; Hisatomi, T.; Wang, Q.; Higashi, T.; Ishikiriyama, K.; Maeda, T.; Sakata, Y.; Okunaka, S.; Tokudome, H.; Katayama, M.; Akiyama, S.; Nishiyama, H.; Inoue, Y.; Takewaki, T.; Setoyama, T; Minegishi, T.; Takata, T.; Yamada, T.; Domen, K., A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2018, 2 (3), 509-520.

[25] Jones, C. W.; Koros, W. J., Carbon composite membranes: A solution to adverse humidity effects. Ind. Eng. Chem. Res. 1995,34 (1), 164-167.

[26] Ma, Y.; Jue, M. L.; Zhang, F.; Mathias, R.; Jang, H. Y.; Lively, R. P., Creation of well-defined "mid-sized" micropores in carbon molecular sieve membranes. Angew. Chem. lnt. Ed. 2019,58 (38), 13259-13265.

10__

  • [1] References
  • [2] He, X.; Yu, Q.; Hagg, M.-B., C02 capture. In Encyclopedia of Membrane Science andTechnology, Hoek, E. M. V.; Tarabara, V. V, Eds. John Wiley & Sons, Inc., 2013.
  • [3] Carapellucci, R.; Milazzo, A., Membrane systems for CO, capture and their integration with gas turbine plants. Proc. Inst. Mech. Env. Part A I. Power Energy2003, 217 (5), 505-517.
  • [4] Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R. B.; Bland, A. E.; Wright, I.,Progress in carbon dioxide separation and capture: A review. /. Environ. Sci.2008, 20,14-27.
  • [5] Bredesen, R.; Jordal, K.; Bolland, O., High-temperature membranes in powergeneration with CO, capture. Chew. Eng. Process. 2004,43 (9), 1129-1158.
 
Source
< Prev   CONTENTS   Source   Next >