Preventing Water Pollution
The key to preventing water pollution from the soil zone is to manage the source of pollution. For example, nitrate pollution of groundwater will always occur if there is excess nitrate in the soil at a time when there is excess water leaching through the soil. This suggests that we should aim to reduce the nitrogen in the soil during wet seasons and the drainage through the soil. Local research may be needed to demonstrate the success of best management techniques in reducing nutrient, sediment, metal, and chemical exports via surface runoff and infiltration to groundwater. Production figures from the same experiments may also convince local farmers of the benefits of maintaining nutrients and chemicals where needed by a crop rather than losing them off site, and facilitate uptake of best management practices.
Global Challenges and Responsibility
The biosphere is a life-supporting system to the living organisms. Each species in this system has a role to play and thus every species is important and biological diversity is vital for ecosystem health and functioning. The detection of hazardous compounds in Antarctica, where these compounds were never used or no man has ever lived before, indicates how serious the problem of long-range atmospheric transport and deposition of these pollutants is. Clearly, pollution knows no boundaries. This ubiquitous pollution has had a global effect on our soils, which in turn has been affecting their biological health and productivity. Coupled with this, over 100,000 chemicals are being used in countries throughout the world. Recent focus has been on the endocrine disruptor chemicals that mimic natural hormones and do great harm to animal and human reproductive cycles.
These pollutants are only a few examples of contaminants that are found in the terrestrial environment.
References
- 1. Chan, C.H.; Bruce, G.; Harrison, B. Wet deposition of organochlorine pesticides and polychlorinated biphenyls to the great lakes. J. Great Lakes Res. 1994,20,546-560.
- 2. Lodovici, M.; Dolara, R; Taiti, S.; Del Carmine, R; Bernardi, L.; Agati, L.; Ciappellano, S. Polycyclic aromatic hydrocarbons in the leaves of the evergreen tree Laurus Nobilis. Sci. Total Environ. 1994, 153, 61-68.
- 3. Sweet, C.W.; Murphy, T.J.; Bannasch, J.H.; Kelsey, C.A.; Hong, J. Atmospheric deposition of PCBs into green bay. J. Great Lakes Res. 1993,18,109-128.
- 4. Patil, G.P.; Gore, S.D.; Johnson, G.D. Manual on Statistical Design and Analysis with Composite Samples; Technical Report No. 96-0501; EPA Observational Economy Series Center for Statistical Ecology and Environmental Statistics; Pennsylvania State University, 1996; Vol. 3.
- 5. Vangronsveld, J.; Van Assche, F.; Clijsters, H. Reclamation of a bare industrial area, contaminated by non-ferrous metals; in situ metal immobilisation and revegetation. Environ. Pollut. 1995, 87, 51-59.
- 6. Ma, Q.Y.; Logan, T.J.; Traina, S.J. Lead immobilisation from aqueous solutions and contaminated soils using phosphate rocks. Environ. Sci. Technol. 1995,29,1118-1126.
- 7. Wenzel, W.W.; Adriano, D.C.; Salt, D.; Smith, R. Phytoremediation: a plant-microbe based remediation system. In Bioremediation of Contaminated Soils; Soil Science Society of America Special Monograph No. 37, Adriano, D.C., Bollag, J.M., Frankenberger, W.T., Jr., Sims, W.R., Eds.; Soil Science Society of America: Madison, USA, 1999; 772 pp.
- 8. Barzi, F.; Naidu, R.; McLaughlin, M.J. Contaminants and the Australian Soil Environment. In Contaminants and the Soil Environment in the Australasia-Pacific Region; Naidu, R., Kookana, R.S., Oliver, D., Rogers, S., McLaughlin, M.J., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 1996; 451-484.
6