Bioactive Compounds in Marine Macro Algae and Their Role in Pharmacological Applications

Subramaniam Kalidass, Lakshmanan Ranjith, Palavesam Arunachalam, Amarnath Mathan Babu, and Karuppasamy Kaviarasan


Marine organisms are a great source for the discovery of novel bioactive molecules with commercially valuable pharmacological applications (Heo and Jeon 2009; Dfaz-Rubio et al., 2009). Macro algae or seaweeds are the most important sustainable resources in the marine environment that can be used for industrial and therapeutic applications (Manilal et al. 2009), these produce numerous bioactive molecules with various structures and functional properties (Choi et al. 2002; Amarowicz et al. 2004; Shibata et al. 2008; Kong et al. 2009; Kim and Bae 2010). The bioactive molecules include sulfated polysaccharides, proteins, polyunsaturated fatty acids, minerals, and plant growth hormones (Chojnacka et al. 2012). Some of them are thought to be valuable with functional health benefits, and the extracted components of seaweeds will increase the value of the potential pharmacological and industrial aspects in a broad extent.

Brown algae, the Phaeophyceae, are the second largest and complex group of marine macro algae, representing 18 orders

and more than 2000 species (Guiry and Guiry 2011), that are available in the intertidal zone. Most of the brown algae have the pigment fucoxanthins that are responsible for the greenish- brown color, and hence the name. Brown algae produce a rich source of bioactive molecules, such as polysaccharides, proteins, pigments, and phlorotannins, and most of them are responsible for the specific bioactivities which give potential for their economic utilization. They produce a large amount of sulfated polysaccharides (e.g., fucans, laminarans, galac- tans, and sargassans) and polyphenols (phlorotannin, bromo- phenol, and meroditerpenoids) that are used for commercially important and global industrial applications. Seaweed polysaccharides are abundantly used for food, pharmaceutical, and industrial applications. Therefore, the seaweed-derived polysaccharide industries operate in extremely regulated surroundings.

For more than a decade, the isolated bioactive molecules from brown algae have been the subject of more attention in the fields of pharmacology and biochemistry. Bioactive compounds from brown algal extracts are known to reveal many biological properties, such as anti-viral, anti-coagulant, anti-inflammatory, and anti-tumoral actions (Costa et al. 2010; Shibata et al. 2008; Lee et al. 2008). In the last few years, sul- fated polysaccharides extracted from brown algae can be used in pharmacological applications (Yang and Zhang 2009). Hence, the main objective of this review paper is to find the present results on the biological properties of brown algae with their pharmacological applications. Moreover, additional efforts have also been made to update the information covered in new research articles on this subject. This communication aims toward the appraisal of bioactive molecules from brown algae with regards to pharmacological applications.

  • 24.2.1 Polysaccharides

Seaweeds consist of different types of polysaccharides that have chemical structures that are related to their cell structure and algal taxonomic classification (Ferreira et al. 2012; Wijesinghe and Jeon 2012). The polysaccharide contents exhibit seasonal changes from one place to another, and 76% of dry weight is present in the total percentage of seaweeds. In prebiotics, seaweed polysaccharides enhance the growth of beneficial bacteria in the digestive system and also produce health-improving effects (Vidanarachchi et al. 2009). Bioactive-sulfated polysaccharides slow down the bacterial activity of many species other than viruses (Leonard et al. 2010). Various brown algal polysaccharides are found, but the most important are fucoidan, alginates, laminarin, and galac- tans (Ferreira et al. 2012), and most of them contain soluble dietary fibers that have a good effect on the digestive systems of animals.

24.2.2 Proteins

Proteins isolated from seaweeds have biologically active components, but there is not a lot of documentation on polysaccharides because of their different biological properties and structures. Generally, the protein content in seaweeds is lower than five percentage (Leonard et al. 2010), and the red and green algae have a higher protein content when compared to the brown algae. Proteins can be isolated from macro algae, and the most essential biologically active components are lectins, which attach to carbohydrates and contribute the most to the biological system, for instance, intercellular communication.

24.2.3 Poly Unsaturated Fatty Acids

The two major classes of lipids that are present in seaweeds are phospholipids and glycolipids. If the environmental temperatures are decreased, polyunsaturated fatty acids will occur in seaweeds. In the marine environment, polyunsaturated fatty acids containing the species in cold waters live better than the species living in hot temperatures (Holdt and Kraan 2011). Long chain polyunsaturated fatty acids play a vital role in regulating human health, and they are synthesized only in plants (Pulz and Gross 2004). Twenty carbon atoms as a minimum with two double bonds are present in these lipids. If the first bond is situated in the third carbon atom, then the lipid molecule is considered as omega-3.

24.2.4 Pigments

There are three major forms of pigments, i.e., carotenoids, chlorophylls, and phycobiliproteins that are found in seaweed pigments. Carotenoids, in the form of organic pigments, are present in chromoplasts and chloroplasts (Wijesinghe and Jeon 2012). These pigments are common in nature and available in the marine algae, plants, fungi, and some of the bacteria (Liaua et al. 2010; Li and Kim 2011). The three main groups, such as p-carotene, fucoxan- thin, and tocopherol play a significant part in carotenoids. The fucoxanthin has the total carotenoid content of about 70% and p-carotene substance, which are present in the values of 36 to 4500 mg/kg from the algal dry mass (Holdt and Kraan 2011). The carotenoid pigment is mainly composed of polyenes that are soluble in lipids, and many types of carotenoids that are available in different algal species are powerful anti-oxidants. The properties of these pigments have the capacity to reduce singlet oxygen and scavenge free radicals (Li and Kim 2011). The water soluble pigments are found in the cyanobacteria that produce the phycobiliproteins and crypto-monads (Mihova et al. 1996), and they hold a total algal dry weight of a few' percent.

24.2.5 Polyphenols

Polyphenols are one of the bioactive components that are found mainly in plants, including seaweeds (Antonisamy and Raj 2011). Macro algal extracts have a considerable amount of polyphenols, and their substance is powerful depending on the extraction method. The polyphenols are produced by means of the polymerization of phloroglucinol on the acetate-malonate pathway (Li et al. 2011; Wijesinghe and Jeon 2012). These polymers consist of various biological activities in the organisms that occur in the host defense mechanisms (Swanson and Druehl, 2002). Ascophyllum spp. has the highest amount of polyphenols compared to other seaweeds, whereas the lowest substances of these compounds are present in the Ulva spp. (Keyrouz et al. 2011; Craigie 2011). Tannins are a compound of polyphenols that are present in both marine and terrestrial plants. The polyphenolic substances like phlorotannin (eckol or dieckol) are a group of tannin compounds that are abundant in brown algae (Antonisamy and Raj 2011; Gupta and Abu-Ghannam 2011). The content of phlorotannin varies in the phlorotannin skeleton, which is composed of eight phenol rings (O’Sullivan et al. 2011), whereas in terrestrial plants, tannins generate about 3 to 4 rings (Antonisamy and Raj 2011). Phenol rings can be used as electron traps for the free radicals (Gupta and Abu-Ghannam 2011).

24.2.6 Minerals

Minerals are rich in seaweeds (Nwosu et al. 2011), and their biomass content is sometimes as high as 40% (Kumar et al. 2011) because seaweeds can occur in metal ions from salt water and give attention to those substances as carbonate salts (Aslam et al. 2010). The researchers reported the mineral substances were found in concentrates on harvested seaweeds on Japanese beaches. The highest concentrations were present in potassium (2.71 g/L), magnesium (0.19 g/L), and calcium (0.16 g/L) ions in the Sargassum ringgoldianum subsp. Coreanum extract. The Codium fragile have a good source of sodium ions that are found in 1.21 g/L (Kuda and Ikemori 2009). The high levels of magnesium and calcium ions are present in the Kapaphycus alvarezii (Rathore et al. 2009), and their concentrations in extracts were 581.20 mg/L and 460.11 mg/L, respectively.

24.2.7 Plant Growth Hormones

Plant growth hormones are available in seaweed extracts, which are used to induce plant growth and to improve the photosynthesis. Cytokinins are plant growth regulators that protect plants from temperature variations (Tarakhovskaya et al. 2007; Zhang et al. 2010), and these are synthesized by means of the bio-chemical modification of adenine. Other plant hormones are auxin, abscisic acid, and betaines that are found in macro algal extracts. Auxin functions to start the root formation and reduce its elongation, their concentration may vary, and it depends up on the species. Gibberellins play a major role to start seed germination and are formed in developing seeds from glyceraldehydes-3-phosphate. They were first identified in two brown algal extracts, such as a Fucus vesiculosus and Fucus spiralis (Tarakhovskaya et al. 2007). Abscisic acid is formed from carotenoids by more than 60 species of algae, and betaines are not usual plant hormones, which are also found in seaweed extracts (MacKinnon et al. 2010), and their role is to guard the plants from drought and frost (Craigie 2011). The brown algal extract, Ascophyllum nodosum, has a rich source of betaines (Khan et al. 2009; Craigie 2011).

  • 24.3.1 Alginates

Alginate is an anionic polysaccharide that is composed of two hexuronic acids, namely, mannuronic and guluronic acids (Andriamanantoanina and Rinaudo 2010). They are present in the cell wall of about an 18%-40% dry weight basis of brown algae, such as Ascophyllum nodosum and Laminaria sp. (Rioux and Turgeon 2015). They are used as by-products in the production of food, such as a gelling agent, thickening agent, stabilizer, and encapsulation that are also useful for human health (Brownlee et al. 2009). In addition, alginate- based composite biomaterials are used for bone-tissue regeneration (Venkatesan et al. 2015a, 2015b).

24.3.2 Fucoidan

Fucoidan is the most important and dominant sulfated polysaccharide, which mainly is composed of fucose linked in (1, 3) and (1, 4) glycosidic linkage (Daniel et al. 2001). In the two brown algal families, such as Fucaceae and Laminariaceae, the cell walls are composed of 2%-10% dry weight of the fucoidans. Fucoidans are derived from numerous species of BA, such as Ascophyllum nodosum, Cladosiphon okamuranus, Fucus vesiculosis, and Undaria pinnatifida. Fucoidan has a higher bioactive potential, and pharmacological activities, such as anti-oxidant, anti-bacterial, anti-virus, anti-tumor, anti-coagulation, immunomodulatory, and antiinflammatory have been performed (Smit 2004; Cumashi et al. 2007; Wijesinghe and Jeon 2012). Fucoidan will show potential in bone-tissue engineering during analyses for the biomedical field (Jeong et al. 2013; Lowe et al. 2016).

24.3.3 Laminarin

Laminarin is primarily formed of (l,3)-p-d-glucan with p (1, 6) branching (Rioux et al. 2007). Moreover, it is classified into two types of laminarin chains with mannitol and glucose, and their molecular weight is about 5000 Da. In brown algae, the laminarin content is up to 35% on a dry basis that varies depending on the species. Potential pharmacological activities are found in laminarin, for instance, anti-tumor, anti-oxidant, and anti-inflammatory activity (Ren et al. 1994; Hoffman et al. 1995; Miao et al. 1999).

24.3.4 Ulvan

Ulvan is composed of water-soluble-sulfated polysaccharides, which are abundant in green algae and primarily consists of 1-rhamnose, d-xylose, d-glucose, and d-glucuronic acid (Rioux and Turgeon 2015). The cell wall of ulvan is formed of 8%-29% of dry weight (Lahaye and Robic 2007). They can be isolated with ammonium oxalate and precipitates of ethyl alcohol with water at 80°C-90°C (Lahaye and Robic 2007).

24.3.5 Agar

Agar is present in red algae formed of Ca-, Mg-, K-, and Na-sulfated esters of d- and 1-galactose units (Wijesekara and Karunarathna 2017). The cell wall consists of 20% of dry weight and is isolated from the Gelidium and Gracilarias genera. Moreover, Pterocladia and Gelidiella species are used to isolate agar and play a vital role in food and industrial applications.

24.3.6 Carrageenans

Carrageenans are sulfated linear polysaccharides formed of ammonium, Ca-, Mg-, K-, and Na-sulfated esters of d-galactose and (3,6)-anhydro-d-galactose (Wijesekara and Karunarathna 2017) that are naturally present in red algae. Three types of carrageenan are formed, i.e., kappa carrageenan (k), iota carrageenan (v), and lambda carrageenan (X). The cell walls of carrageenan consist of 30%-80% dry weight and are extracted from the Kappaphycus alvarezii and Chondrus cris- pus species. In carrageenan, the biological properties, chemical alteration, and its structural analysis have been reviewed (Campo et al. 2009). Tofu is a fermented food that mainly contains k/t-hybrid carrageenans, and it shows the maximum rheological properties, which could be a food additive to change its food textures (Shen and Kuo 2017).

24.3.7 Floridean Starch

Red algae contain the starch granules called floridean starch that are found on the outer surface of the plastids and lack amylase (Wijesekara and Karunarathna 2017).


Seaweeds offer a good source of bioactive molecules with a broad range of pharmacological, therapeutic, and food applications (Table 24.1). The bioactive compounds, such as phe- nolics, fatty acids, steroids, and several acids are found in many structures of seaweeds that have the potential source of antibiotic or anti-fungal activities (Bhagavathy et al. 2011). Most of the seaweed extracts have been found to have biological activities, such as antibiotics, anti-viral, anti-tumor, antioxidant, and anti-inflammatory (Cumashi et al. 2007; Costa et al. 2010; Bhagavathy et al. 2011; Wijesinghe and Jeon 2012). Several halogenated compounds contain bromine, chlorine, and iodine metabolites, and some of them like diterpenes and triterpenes are the potential source of various biological activities such as anti-bacterial, ichtyotoxic, anti-oxidant, anti-malarian, insecticidal, and cytotoxic (Shui-Chun and Yue-Wei 2010).

Polysaccharides have the immunological properties that range from non-specific stimulation of the host immune system as a result of containing biological activities, such as anti-viral, anti-infection, and anti-tumor effects to anti- mutagenic, hematopoietic, or anti-oxidant activity (Nwosu et al. 2011; Athukorala et al. 2006b; Wijesekara et al. 2011). Seaweed polysaccharides exhibit good immunomodulatory properties that are linked with anti-tumor effects. The sulfated polysaccharides are a source of pharmacological activities, such as anti-proliferative activity in cancer cell lines and inhibitory activity against tumors (Suganthy et al. 2010). The brown seaweed Sargassum stenophyllum contains the sulfated polysaccharides that are extracted to reduce vasculogenesis, inhibit the developmental angiogenesis in chick embryos (Dias et al. 2008), and in the brown seaweed Ecklonia cava, the anticoagulant activity was investigated (Wijesinghe et al. 2011). Many of the studies were carried out in fucoidans because those have potential biological activities, such as anti-coagulant, anti-thrombotic, immunomodulatory, anti-proliferative, and anti-cancer (Wijesinghe and Jeon 2012; Takahashi 1983;

Rioux et al. 2010). This molecule contains a high number of sulfate polysaccharides and less than 20% sulfate content that exhibits the potential of anti-tumor and anti-angiogenic activity (Koyanagi et al. 2003). The anti-viral properties are also found in fucoidan toward viruses, such as HIV and human cytomegalovirus (Gupta and Abu-Ghannam 2011). Fucoidan polymers are recommended due to the stimulation of the host immune system against tumors (You et al. 2010).

Protein extracts have the potential source of anti-oxidant properties that are found in some of the phycobiliproteins, such as C-phycocyanin and allophycocyanin. The role of protein in pharmacological applications is less compared to the polysaccharides and polyphenols. Natural pigments are one of the bioactive compounds in macro algal extracts that have been found in advantageous activities, such as anti-cancer (Moreau et al. 2006), anti-obesity, anti-inflammatory, neu- roprotective, and anti-angiogenic (Pangestuti and Kim 2011). In recent years, the anti-oxidant molecules were identified as some of the pigments, such as fucoxanthin, astaxantin, and carotenoids (Heo et al. 2005). Several seaweed pigment products are recommended for use with anti-obesity, immunity booster, and many others that are available in the market (Dufosse et al. 2005).

In seaweed extracts, most of the polyphenolic compounds are present with photoprotective and anti-photo aging activities, which can prevent oxidative stress and damage from UV radiation (Shui-Chun and Yue-Wei 2010; Ryu et al. 2009; Jung et al. 2009; Kumar et al. 2008). They have the properties to suppress the lipid peroxidation in the anti-oxidant activity (Ryu et al. 2009). Phenol-rich extracts from seaweeds have the capacity to stop the digestive enzymes, to treat antidiabetic effects (Nwosu et al. 2011), and have the therapeutic potential for fighting bronchial asthma and allergic diseases. These compounds that are injected intraperitoneally resulted in a reduction of all asthmatic reactions (Jung et al. 2009). Tannins are plant growth hormones that are documented to exhibit their HIV-1 inhibitory mode of action by slowing down HIV-1 RT (polymerase and ribonuclease activities) (Gupta and Abu-Ghannam 2011).

Phlorotannins (polyphenols) are synthesized by algae that have the capacity to absorb UV radiation and perform as photo- protective cells against photo-damage (Li et al. 2011; Kang et al. 2010). These extracts can stop the dose-dependent relationship of a-amylase and a-glucosidase, whereas some other organisms are used to slow down the normal increase in postprandial blood glucose observed for about 20 minutes after a meal by 90% and repeatedly decrease the peak insulin secretion by 40% (Roy et al. 2011). Fucosterol is a compound of phlorotannins that is used to decline the serum glucose concentration, and it showed a reduction of sorbitol substances in rat lenses (Gupta and Abu-Ghannam 2011). Such compounds are used to guard the animals against ultraviolet В radiation (UVB)-induced skin carcinogenesis (Ryu et al. 2009) and natural anti-oxidants in various pharmaceutical products (Guinea et al. 2012). Ecklonia cava is a brown algal species that contains a large amount of phlorotannin derivatives, such as eckol and dieckol to decrease the intracellular reactive oxygen species, which are formed

TABLE 24.1

Bioactive Compounds from Brown Algae with Various Functional Properties as Pharmacological Applications



Biological Activities


Adenocyslis utricularis


Inhibitory against FISV and Anti-HIV and Anti-viral

Ponce et al, (2003) and Trinchero et al. (2009)

Alaria marginata



Usoltseva et al, (2016)

Analipus japonkus



Ushakova et al, (2009)

Ascophyllum nodosum

Fucoidan and Laminaran

Immunomodulatory, Anti-inflammatory, Anti-coagulant, Anti-thrombotic, Anti-metastatic, Anti-tumor, Antiadhesive, Restenosis preventive; and Anti-angiogenic

Percival (1968); Ren et al. (1994); Hoffman et al, (1995); Miao et al, (1999); Chevolot et al. (2001); (1999); Anastase-Ravion et al. (2002); Matou et al.

  • (2002) ; Colliec-Jouault et al. (2003); Luyt et al.
  • (2003) ; Smitt (2004); Cumashi et al. (2007); Ushakova et al. (2009); Foley et al. (2011)

Bifurcaria bifurcata



Smyrniotopoulos et al. (2017)

C. novae-caledoniae



Zhang et al. (2011)

Canistrocarpus cervicornis


Anti-coagulant, Anti-oxidant and Anti-proliferative

Costa et al. (2010); Camara et al. (2011)

Chnoospora bicanaliculata


Anti-tumor, Anti-proliferation, and Anti-cancer

Haneji et al. (2005)

Chorda filum



Ushakova et al. (2009)

Cladosiphon okamuranus


Anti-proliferative, Anti-viral, Antiinflammatory, Anti-adhesive, Anti-tumor, Immunomodulator; Angiogenic, Gastroprotective, Cardioprotective, Restenosis preventive

Takahashi et al. (1998); Ushakova et al. (2009); Cumashi et al. (2007); Wijesinghe and Jeon (2012); Hidari et al. (2007); Nagaoka et al. (1999); Shimizu et al. (2005); Teruya et al. (2007); Kawamoto et al. (2006); Shibata et al. (2003); Shibata et al. (2000); Thornes et al. (2010)

Coccophora langsdorfii



Imbs et al. (2016)

Colpomenia sinuosa


Anti-coagulant and Anti-cancer

Shora et al. (2018); Yousef et al. (2018)

Costaria coslala



Matou et al. (2002)

Cystoseira sedoides



Ammar et al. (2015)

Dictyopteris delicatula


Anti-coagulant, Anti-oxidant, Anti-tumor, and Anti-proliferative

Magalhaes et al. (2011); Costa et al. (2010); Bilan and Usov (2008)

Dictyota menstrualis


Peripheral anti-nociceptive, Antiinflammatory, Anti-oxidant, Anticoagulant, and Anti-proliferative

Albuquerque et al. (2004. 2013); Costa et al. (2010)



Pereira et al. (2004)

Dictyota mertensis


Peripheral anti-nociceptive, Antiinflammatory, Anti-oxidant, Anticoagulant, and Anti-proliferative

Costa et al. (2010)

Dictyota pfaffii


Inhibitory against HSV-1 and Anti-HIV

Abrantes et al. (2010); Barbosa et al. (2007)

Dictyota polypodioides



Sokolova et al. (2011)

Dictyota sp.


Blood Clotting

Devi et al. (2016)



Jongaramruong and Kongkam (2007)

Dictyota. Indica



Yousef et al. (2018)

Ecklonia cava


Anti-diabetic, Anti-hypertension, MMP inhibition, Immunomodulatory, Anti-HIV, Anti-oxidant, Anti-allergy inhibition of melanin formation, Anti-proliferative, Anti-cancer, Anti-tumor Whitening effect, Anti-photoaging

Okada et al. (2004); Lee et al. (2009); Jung et al.

  • (2006) ; Ryu et al. (2009); Lee et al. (2010); Park et al. (2010); Shibata et al. (2008); Li et al. (2009); Yoon et al. (2009); Artan et al. (2008); Ahn et al. (2004); Heo (2009); Kong et al. (2009); Ahn et al.
  • (2007) ; Kang et al. (2005); Park et al. (2008); Ahn et al. (2010); Kim et al. (2006); Wijesinghe et al. (2011); Ryu et al. (2008); Lee et al. (2008);

Ah Kang et al. (2006. 2007); Joe et al. (2006)


Anti-proliferative, Anti-cancer, Anti-tumor, Anti-coagulative, Anti-inflammatory, Anti-allergy, and Anti-thrombotic

Athukorala et al. (2009); Jung et al. (2007); Kang et al. (2011); Athukorala et al. (2006); Ermakova et al. (2011); Yamamoto et al. (1984); Nishino et al. (1989.1991)

TABLE 24.1 (Continued)

Bioactive Compounds from Brown Algae with Various Functional Properties as Pharmacological Applications



Biological Activities


Ecklonia arborea



Sugiura et al. (2006)

Ecklonia bicyclis


Anti-HIV. Anti-oxidation. Anti-diabetic, and MMP inhibition

Okada et al. (2004); Shibata et al. (2008); Lee et al. (2009.2010)

Ecklonia kurome


Anti-HIV, Anti-oxidation, Bactericidal, Algicidal, Anti-allergy, Anti-diabetic, Tyrosinase inhibitor. Anti-photoaging, and Anti-hypertension

Shibata et al. (2008, 2003); Lee et al. (1996); Jung et al. (2006. 2008)


Anti-proliferative, Anti-tumor, Anticoagulant, Anti-oxidant, Anti-thrombotic, Anti-inflammatory, Anti-cancer

Ermakova et al. (2011); Yamamoto et al. (1984); Nishino et al. (1989); (1991); Hu et al. (2001); Kang et al. (2011)

Eisenia arborea


Anti-diabetic and Anti-allergy

Sugiura et al. (2007)

Eisenia bicyclis



Vischuk et al. (2009)

Fucoidan; laminaran

Anti-proliferative, Anti-tumor, Anticoagulant, Anti-tumor, and Anti-cancer

Yamamoto et al. (1984); Takahashi (1983); Usui et al. (1980); Rioux et al. (2010)

Enteromorpha prolifera



Kim et al. (2011)

Epinephelus bruneus

Sodium alginate


Harikrishnan et al. (2011)

Epinephelus coioides

Sodium alginate


Cheng et al. (2007)

Fucus distichus



Ushakova et al. (2009)

Fucus evanescens


Anti-tumor, Anti-metastatic, Anti-viral, Anti-coagulant, Thrombolytic, Hepatoprotective, Immunomodulatory, and Anti-cancer

Alekseyenko et al. (2007); menshova et al. (2016); Kuznetsova et al. (2003); Ushakova et al. (2009)

Fucus serratus



O'Doherty et al. (2011)



Ushakova et al. (2009)

Fucus sp.


Anti-cancer activity and Immunomodulation

Xue et al. (2012); Kim et al. (2010)


Anti-tumor, Anti-bacterial, immunomodulator, Anti-coagulant, Decreases liver triglyceride, cholesterol and phospholipid levels; Serum hypocholesterolemic. Hypotensive

Hoffman et al. (1995); Miao et al. (1999); Percival (1968); Ren et al. (1994)

Fucus spiralis



Ushakova et al. (2009)

Fucus vesiculosus


Inhibitor of avian RT, Anti-HIV, Immunomodulatory, Anti-viral, Antitumor, Anti-proliferative, Anti-adhesive, Anti-coagulant, Anti-oxidant, Anti- metastatic, Anti-inflammatory, Anti- angiogenic, Anti-thrombotic

Queiroz et al. (2008); Mouriio (2004); Kim and Joo (2008); Yang et al. (2008); Choi et al. (2005); Costa et al. (2010); Cumashi et al. (2007); Ale et al. (2011); Beress et al. (1993); Bilan et al. (2002); Mourao and Pereira (1999); Pereira et al. (1999); Nakamura et al. (2006); Park et al. (2011); Synytsy; et al. (2010); Yang et al. (2006. 2008); Kim et al. (2008); Do et al. (2010); Jintang et al. (2010); De Souza et al. (2007); Dockal et al.. 2011: O'Doberty et al. (2011); Ushakova et al. (2009)

Hizikia fusiforme


Immunomodulatory Anti-coagulant and Anti-thrombotic

Jeong et al. (2015); Dobashi et al. (1989)

Ishige okamurae


Whitening effect. Anti-diabetic, Antioxidant, and Anti-HIV

Heo et al. (2009. 2010); Alin et al. (2006)

Iyngaria stellate



Yousef et al. (2018)

Laminaria digitata


Anti-coagulant and Anti-thrombic

Ushakova et al. (2009); Grauffel et al. (1989)

Laminaria japonica


Anti-oxidant, Hypolipidemic activities, Anti-apoptotic

Cheng et al. (2011); Zha et al. (2012); Kim et al. (2006); Li et al. (2011)


Anti-lipidemic, Increases HDL, Anti-viral, Anti-tumor, Anti-oxidant, Neuroprotective, Immunomodulatory, and Anti-inflammation

Fedorov et al. (2013); Cumashi et al. (2007); Vishchuk et al. (2011); Xiaolin et al. (1995); Dockal et al. (2011).

TABLE 24.1 (Continued)

Bioactive Compounds from Brown Algae with Various Functional Properties as Pharmacological Applications



Biological Activities


Laminaria saccharina



Ushakova et al. (2009)


Skin treatment

Yvin et al. (1999)

Laminaria sp.


Anti-tumor. Anti-coagulant, Decreases Liver triglyceride, Cholesterol and Phospholipid levels, Serum Hypocholesterolemic, Hypotensive, Anti-bacterial, Immunomodulatory

Hoffman et al. (1995): Miao et al. (1999): Ren et al. (1994): Park et al. (2012. 2013); Cheng et al. (2011)


Anti-oxidant, Anti-coagulant, Antithrombotic, Anti-adhesive, Antiproliferative, Anti-inflammatory, Anti-angiogenic, Anti-metastatic

Cumashi et al. (2007); Chevolot et al. (1999): Yamamoto et al. (1984): Usov et al. (1998): Maruyama and Yamamoto (1984); Kitamura et al. (1992): Huang et al. (2010): Xue et al. (2004)

Laminaria uryanovae


Anti-tumor, Anti-proliferation, Anti-cancer

Lee et al. (2008)

Leathesia difformis



Feldman et al. (1999)

Lessonia vadose


Anti-coagulant, Anti-tumor, Anti-thrombotic

Li et al. (2008)

Lobophora variegata


Anti-oxidant, Anti-coagulant, Anti-inflammatory

Medeiros et al. (2008): Paiva et al. (2011)

Monocystis pyrifera

Sodium alginate


Fujiki and Yano (1997)

Okinawa mozuku


Anti-proliferative, Antiviral, Antiinflammatory, Anti-adhesive, Anti-tumor, Immunomodulator, Angiogenic, Gastroprotective, Cardioprotective, Restenosis preventive

Cumashi et al. (2007); Wijesinghe and Jeon (2012); Hidari et al. (2008): Nagaoka et al. (1999); Shimizu et al. (2005); Teruya et al. (2007): Kawamoto et al. (2006): Shibata et al. (2000. 2003); Thornes et al. (2010)

Padina boryana



Usoltseva et al. (2018)

Padina gymnospora


Anti-oxidant, Anti-coagulant, Antithrombotic, Anti-viral

Costa et al. (2010); Silva et al. (2005): Zhu et al. (2003): De Souza et al. (2007)

Padilla pavonica


Anti-coagulant and Anti-HIV

Shora et al. (2018): Mohamed and Agili (2013)

Padilla sp.


Cytotoxicity and Anti-oxidant

Isnansetyo et al. (2017); Dang et al. (2018)

Padilla tetrastomatica


Immunomodulatory, Anti- bacterial, Anti-coagulant, Blood Clotting

Rani et al. (2017): Chandini et al. (2008)

Pelvelia canaliculala



Klarzynski et al. (2003)

Pelvelia fastigiata



Venkateswaran et al. (1989)

Pelvelia siliquosa



Lee et al. (2004)

Phyllospora comosa



Dang et al. (2018)

Punctaria plantaginea


Anti-coagulant and Anti-thrombotic

Ustyuzhanina et al. (2016)

Saccharina cichorioides



Vischuk et al. (2009)

Sargassm fusiforme



Huang et al. (2010)

Sargassum cristaefolium



Wuet al. (2015)

Sargassum duplicatum

Laminaran. Fucoidan and Alginic acid

Anti-diabetic, Anti-cancer

Hardoko et al. (2014); Usoltseva et al. (2017)

Sargassum filipendula


Anti-oxidant, Anti-proliferative

Costa et al. (2010, 2011)

Sargassum fulvellum


Anti-coagulant, Anti-thrombotic

Zoysa et al. (2008)

Sargassum hemiphyllum



Hwang et al. (2011)

Sargassum henslowianum


Anti-proliferative, Anti-tumor

Ale et al. (2011)

Sargassum horneri


Anti-tumor, Anti-viral, Anti-cancer

Ale et al. (2011): Hoshino et al. (1998); Ermakova et al. (2011)

Sargassum kjelimanianum



Yamamoto et al. (1981)

Sargassum latifolium



Shora et al. (2018)

Sargassum linearifolium



Dang et al. (2018)

Sargassum marginatum



Chandini et al. (2008)

Sargassum mcclurei


Anti-cancer, Anti-HIV

Thuy et al. (2015)

Sargassum muticum



Namvaret al. (2013)

Sargassum oligocystum



Rani et al. (2017)

Sargassum patens



Zhu et al. (2003)

TABLE 24.1 (Continued)

Bioactive Compounds from Brown Algae with Various Functional Properties as Pharmacological Applications



Biological Activities


Sargassum podocanthum



Dang et al. (2018)

Sargassum polycystum


Anti-HIV. Immunomodulatory, Antioxidant, and Anti-cancer

Thuy et al. (2015): Chotigeat et al. (2004); Palanisamy et al. (2017)

Sargassum siliquastrum



Heo et al. (2008); Heo and Jeon (2009)

Sargassum sp.


Anti-tumor, Anti-oxidant, Emulsification, Cytotoxicity, Prevent hyperlipidemia. Normalize dislipidemia

Sokolova et al. (2011); Ale et al. (2011); Duarte et al. (2001); Hoshino et al. (1998); Isnansetyo et al. (2017); Raghavendran et al. (2005); Josephine et al. (2007)

Sargassum tenerrimum



Guru et al. (2013)

Sargassum vestitum



Dang et al. (2018)

Sargassum vulgare

Alginic acid


De Souza et al. (2007)

Sargassum wighti

Alginic acid


Kudus et al. (2017)


Immunomodulatory. Hepatoprotective, Anti-coagulant, Blood Clotting

Immanuel et al. (2012); Kanimozhi et al. (2013); Prabu et al. (2016); Guru et al. (2013); Jamuna Devi et al. (2016)

Sodium alginate


Immanuel et al. (2012)

Scytothamnus australis



Wozniak et al. (2015)

Spatoglossum schroederi


Anti-coagulant, Anti-thrombotic

Almeida-Lima et al. (2011)

Fucoidan and Alginic acid


Queiroz et al. (2008)

Spatoglossum schroederi


Anti-thrombotic, Peripheral antinociceptive, Anti-proliferative, Antiadhesive, Anti-oxidant

Costa et al. (2010); Almeida-Lima et al. (2010); (2011); Farias et al. (2011); Rocha et al. (2005); Alwarsamy et al. (2016)

Turbinaria conoides



Chandini et al. (2008)


Anti-coagulant activity

Guru et al. (2013)

Alginic acid


Chattopadhyay et al. (2010)

Turbinaria decurens

Laminaran, Fucoidan and Alginic acid


Hardoko et al. (2014)

Turbinaria ornate


Anti-coagulant, Anti-HIV, immunomodulatory, Anti-bacterial

Guru et al. (2013); Thuy et al. (2015); Rani et al. (2017)

Turbinaria sp.



Isnansetyo et al. (2017)

Undaria pinnatifida


Anti-coagulant, Anti-tumor, Serum hypocholesterolemic. Hypotensive, Anti-bacterial, Immunomodulatory, Anti-proliferative, Induced osteoblastic differentiation

Hemmingson et al. (2006); Yang et al. (2008); Yoo et al. (2007); Hayashi et al. (2008); Faggio et al. (2015); Hoffman et al. (1995); Miao et al. (1999); Ren et al. (1994) Preobrazhenskaya et al. (1997); Fedorov et al. (2013); Chevolot et al. (1999); Synytsya et al. (2010); Thompson and Dragar (2004); Maruyama et al. (2003); Clio et al. (2009. 2011); Maruyama et al. (2005)

by gamma-ray radiation (Li et al. 2011). In pharmaceutical applications, bioactive compounds, such as phlorotannin and dieckol have the potential of a whitening effect (Gupta and Abu-Ghannam 2011). Hence, phlorotannins have the potential to cure skin diseases and be used in pharmaceuticals.

Rich extracts of polyphenol and isolated phlorotannin have the potential to stop the multiplication of cancer cells and to manipulate anti-inflammatory responses (Nwosu et al. 2011). For example, Eucheuma cottonii contains rich polyphenol extracts that have the potential of anti-proliferative activity against human breast cancer cells while they are non-toxic to normal cell lines (Namvar et al. 2012). The extracts of the

P. palmate species possess the anti-oxidant activities that are associated with the occurrence of secondary metabolites and function as the UV-absorbing sunscreen molecule (Yuan and Walsh 2006). Most of the phlorotannins that were extracted from Eisenia arborea were documented to have anti-aller- gic properties. The seaweed extracts of Sargasum hemiph- ullum (brown algae) are used in the treatment of various allergic diseases and Korean folk medicine (Vo et al. 2012). Phloroglucinol is a derivative of phlorotannin that released a maximum anti-proliferative activity in a human breast cancer cell and stimulates a major proliferative inhibition and apoptosis (Gupta and Abu-Ghannam 2011).


Biologically active compounds from seaweeds are a key product for the manufacturing of bio-based materials in food, pharmaceutics, therapeutics, and cosmetics. Different types of bioactive molecules can be either formed or released by marine macroalgae. Seaweeds are a rich source of polysaccharides; many of them contain sulfated polysaccharides. Even so, few similarities can be made among the polysaccharides from every group of organisms, and these can be diverse and morphologically varied. Several advantageous bioactivities have been demonstrated by the polysaccharides and polyphenols, both in vitro and in vivo.

Browm algae are well known owing to simply being available producers of sulfated polysaccharides. These produce a variety of significant polyphenolic compounds (phlorotannins), polysaccharides, and carotenoids, together called bioactive compounds. This review describes the brown algal extracts and chemically defined bioactive compounds of natural sources that exhibit a variety of biological effects. The functional metabolites of browm algae show' a potential approach toward the pharmaceutical preparations. In conclusion, the brown algal bioactive compounds have the potential sources of bioactivities that can be used in search of novel functional applications in the relevant pharmaceuticals.


Abrantes, J. L., Barbosa, J., Cavalcanti, D., Pereira, R. C., Fontes,

C. L. F., Teixeira. V. L.. Souza, T. L. M.. and Paixao, I. C. 2010. The effects of the diterpenes isolated from the Brazilian brown algae Dictyotapfaffli and Dictyota menstrualis against the herpes simplex type-1 replicative cycle. Planta Medica, 76(04): 339-344.

Ah Kang, K., Zhang, R., Hwa Lee, K., Chae. S„ Joon Kim. B., Sook Kwak, Y.. Woo Park. J.. Ho Lee. N.. and Won Hyun,

J. 2006. Protective effect of triphlorethol-A from Ecklonia cava against ionizing radiation in vitro. Journal of Radiation Research, 47(1): 61-68.

Ahn, G., Park. E., Park. H. J.. Jeon. Y. J.. Lee, J.. Park, J. W., and Jee, Y., 2010. The classical NFkB pathway is required for phloroglucinol-induced activation of murine lymphocytes. Biochimica et Biophysica Acta (BBA)-General Subjects, 1800(7): 639-645.

Ahn, G. N.. Kim. K. N.. Cha. S. H.. Song. С. B.. Lee. J.. Heo, M. S„ Yeo. I. K.. Lee. N. H„ Jee. Y. H„ Kim. J. S„ and Heu, M. S. 2007. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H,02-mediated DNA damage. European Food Research and Technology, 226(1-2): 71-79.

Albuquerque, I. R. L., Queiroz, К. C. S., Alves, L. G., Santos, E. A.

D. , Leite. E. L„ and Rocha. H. A. O. 2004. Heterofucans from Dictyota menstrualis have anticoagulant activity. Brazilian Journal of Medical and Biological Research , 37(2): 167-171.

Albuquerque, I. R. L., Cordeiro, S. L., Gomes, D. L., Dreyfuss, J.

L., Filgueira, L. G. A., Leite, E. L., Nader, H. B., and Rocha, H. A. O. 2013. Evaluation of anti-nociceptive and anti-inflammatory activities of a heterofucan from Dictyota menstrualis. Marine Drugs, 11: 2722-2740.

Ale, M. T, Mikkelsen. J. D., and Meyer, A. S. 2011. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Marine Drugs, 9(10): 2106-2130.

Alekseyenko, T. V., Zhanayeva, S. Y., Venediktova, A. A., Zvyagintseva, T. N.. Kuznetsova, T. A., Besednova, N. N., and Korolenko, T. A. 2007. Antitumor and antimetastatic activity of fucoidan. a sulfated polysaccharide isolated from the Okhotsk Sea Fucus evanescens brown alga. Bulletin of Experimental Biology and Medicine, 143(6): 730-732.

Almeida-Lima, J., Costa, L. S., Silva, N. B., Melo-Silveira, R. F., Silva, F. V., Cansancao Felipe, M. В. M., Batistuzzo Medeiros, S. R.. Leite, E. L„ and Rocha. H. A. O. 2010. Evaluating the possible genotoxic, mutagenic and tumor cell proliferation-inhibition effects of a non-anticoagulant, but antithrombotic algal heterofucan. Journal of Applied Toxicology, 30(7): 708-715.

Almeida-Lima, J., Dantas-Santos, N.. Gomes, D. L„ Cordeiro, S. L., Sabry, D. A., Costa, L. S.. Freitas, M. D. L., Silva. N. B., Moura, С. E., Lemos.T. M., and Leite, E. L. 2011. Evaluation of acute and subchronic toxicity of a non-anticoagulant, but antithrombotic algal heterofucan from the Spatoglossum schroederi in Wistar rats. Revista Brasileira de Farmacognosia, 21(4): 674-679.

Alwarsamy, M., Gooneratne, R., and Ravichandran, R. 2016. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (А549) cells. Carbohydrate Polymers, 152: 207-213.

Amarowicz, R., Pegg, R. B., Rahimi-Moghaddam, P, Bari, B., and Weil, J. A. 2004. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry. 84(4): 551-562.

Ammar, H. H., Lajili, S., Said, R. B., Le Cerf, D., Bouraoui, A., and Majdoub, H. 2015. Physico-chemical characterization and pharmacological evaluation of sulfated polysaccharides from three species of Mediterranean brown algae of the genus Cystoseira. DARU Journal of Pharmaceutical Sciences, 23(1): 1.

Anastase-Ravion, S., Carreno, M. P, Blondin, C., Ravion, O., Champion, J., Chaubet, F., Haeffner-Cavaillon, N., and Letourneur. D. 2002. Heparin-like polymers modulate proin- flammatory cytokine production by lipopolysaccharide-stim- ulated human monocytes. Journal of Biomedical Materials Research, 60(3), pp. 375-383.

Andriamanantoanina, H., and Rinaudo, M. 2010. Characterization of the alginates from five Madagascan brown algae. Carbohydrate Polymers, 82(3). pp. 555-560.

Antonisamy. J. M„ and Raj. E. D. S. 2016. UV-VIS and HPLC studies on Amphiroa anceps (Lamarck) Decaisne. Arabian Journal of Chemistry, 9. pp. S907-S913.

Artan, M., Li. Y., Karadeniz, F., Lee, S. H., Kim, M. M., and Kim,

  • 5. K. 2008. Anti-HIV-1 activity of phloroglucinol derivative,
  • 6, 6'-bieckol, from Ecklonia cava. Bioorganic & Medicinal Chemistry, 16(17). pp. 7921-7926.

Aslam. M. N., Kreider, J. M., Paruchuri, T., Bhagavathula, N., DaSilva, M., Zernicke, R. F., Goldstein, S. A., and Varani,

J. 2010. A mineral-rich extract from the red marine algae Lithothamnion calcareum preserves bone structure and function in female mice on a Western-style diet. Calcified Tissue International, 86(4). pp. 313-324.

Athukorala. Y.. Ahn. G. N„ Jee. Y. H., Kim. G. Y„ Kim, S. H., Ha. J. H„ Kang. J. S„ Lee. K. W.. and Jeon, Y. J. 2009. Antiproliferative activity of sulfated polysaccharide isolated from an enzymatic digest of Ecklonia cava on the U-937 cell line. Journal of Applied Phycology, 21(3), pp. 307-314.

Athukorala, Y., Jung, W. K., Vasanthan, T., and Jeon, Y. J. 2006a. An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava. Carbohydrate Polymers, 66(2), pp. 184-191.

Athukorala, Y., Kim, K. N., and Jeon, Y. J. 2006b. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food and Chemical Toxicology, 44(7), ррГ 1065-1074.

Barbosa, J. P., Fleury, B. G„ da Gama, B. A., Teixeira, V. L., and Pereira, R. C. 2007. Natural products as antifoulants in the Brazilian brown alga Dictyotapfaffli (Phaeophyta, Dictyotales). Biochemical Systematics and Ecology, 35(8), pp. 549-553.

Camara, R. B.G., Silva Costa, L., Pereira Fidelis, G., Duarte Barreto Nobre, L. T., Dantas-Santos, N., Lima Cordeiro, S., Santana Santos Pereira Costa, M., Guimaraes Alves, L., and Oliveira Rocha, H. A. 2011. Fleterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities. Marine Drugs, 9(1), pp. 124-138.

Beress, A., Wassermann, O., Bruhn, T., Beress, L., Kraiselburd, E. N„ Gonzalez. L. V.. de Motta. G. E., and Chavez. P. I. 1993. A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. Journal of Natural Products, 56(4), pp. 478-488.

Bhagavathy, S„ Sumathi, P, and Bell. I. J. S. 2011. Green algae Chlorococcum humicolaa new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine. 1(1), pp. S1-S7.

Bilan, M. I., and Usov, A. I. 2008. Structural analysis of fucoidans. Natural Product Communications, 3, 1639-1648.

Bilan, M. I., Grachev, A. A., Ustuzhanina, N. E., Shashkov, A. S., Nifantiev, N. E„ and Usov, A. I. 2002. Structure of a fucoi- dan from the brown seaweed Fucus evanescens C. Ag. Carbohydrate Research, 337(8). pp. 719-730.

Brownlee, I. A., Seal, C. J., Wilcox, M., Dettmar, P. W„ and Pearson,

J. P. 2009. Applications of alginates in food. In Alginates: Biology and Applications edited by B.H.A. Rehm (Vol. 13, pp. 211-228). Springer, Berlin, Germany.

Campo, V. L., Kawano, D. F., da Silva Jr, D. B., and Carvalho, I.

2009. Carrageenans: Biological properties, chemical modifications and structural analysis-A review. Carbohydrate Polymers, 77(2). pp. 167-180.

Chandini, S. K., Ganesan, P, and Bhaskar, N. 2008. In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry, 107(2), pp. 707-713.

Chattopadhyay, N.. Ghosh, T., Sinha, S., Chattopadhyay, K., Karmakar, P, and Ray, B. 2010. Polysaccharides from Turbinaria conoides: Structural features and antioxidant capacity. Food Chemistry, 118(3), pp. 823-829.

Cheng, A. C„ Tu, C. W„ Chen. Y. Y., Nan. F. H.. and Chen, J. C. 2007. The immunostimulatory effects of sodium alginate and iota-carrageenan on orange-spotted grouper Epinepltelus coicoides and its resistance against Vibrio alginolyticus. Fish & Shellfish Immunology, 22(3), pp. 197-205.

Cheng, X., Sun. K., Li, W.. Zhang, T., and Li, C. 2011. A new species of Hansfordia isolated from the marine brown alga, Colpomenia sinuosa. Mycotaxon, 116, pp. 431-436.

Chevolot, L., Foucault, A., Chaubet, F., Kervarec, N., Sinquin, C., Fisher, A. M., and Boisson-Vidal, C. 1999. Further data on the structure of brown seaweed fucans: Relationships with anticoagulant activity. Carbohydrate Research, 319(1-4), pp. 154-165.

Chevolot, L., Mulloy, B., Ratiskol, J., Foucault, A., and Colliec- Jouault, S. 2001. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydrate Research, 330(4), pp. 529-535.

Cho, M. L., Lee, B. Y., and You, S. G. 2011. Relationship between oversulfation and conformation of low and high molecular weight fucoidans and evaluation of their in vitro anticancer activity. Molecules. 16(1). pp. 291-297.

Cho. Y. S.. Jung, W. K., Kim, J. A., Choi. I. W.. and Kim, S. K. 2009. Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chemistry, 116(4), pp. 990-994.

Choi, C. W„ Kim, S. C.. Hwang. S. S., Choi, В. K.. Ahn. H. J., Lee,

M. Y.. Park. S. H.. and Kim. S. K. 2002. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science, 163(6). pp. 1161-1168.

Choi. E. M., Kim, A. J.. Kim, Y. O., and Hwang, J. K. 2005. Immunomodulating activity of arabinogalactan and fucoidan in vitro. Journal of Medicinal Food, 8(4), pp. 446-453.

Chojnacka, K.. Saeid, A.. Witkowska. Z., and Tuhy, L. 2012. August. Biologically active compounds in seaweed extracts-the prospects for the application. In The Open Conference Proceedings Journal, 3(1). pp. 20-25.

Chotigeat, W., Tongsupa, S., Supamataya, K., and Phongdara, A. 2004. Effect of fucoidan on disease resistance of black tiger shrimp. Aquaculture, 233(1-4). pp. 23-30.

Colliec-Jouault, S., Millet, J., Helley, D., Sinquin, C., and Fischer, A. M. 2003. Effect of low-molecular-weight fucoidan on experimental arterial thrombosis in the rabbit and rat. Journal of Thrombosis and Haemostasis, 1(5), pp. 1114-1115.

Costa, L. S., Fidelis, G. P, Cordeiro, S. L., Oliveira, R. M., Sabry,

D. D. A., Camara. R. B. G„ Nobre, L. T. D. B., Costa. M. S. S. P, Almeida-Lima, J., Farias, E. H. C., and Leite, E. L.

2010. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64(1),

pp. 21-28.

Costa. L. S., Fidelis. G. P. Telles, С. B. S., Dantas-Santos. N.. Camara, R. B. G.. Cordeiro, S. L., Costa. M. S. S. P. Almeida-Lima,

J., Melo-Silveira, R. F., Oliveira, R. M., and Albuquerque, I. R. L. 2011. Antioxidant and antiproliferative activities of het- erofucans from the seaweed Sargassum filipendula. Marine Drugs, 9(6), pp. 952-966.

Craigie, J. S. 2011. Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), pp. 371-393.

Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D’lncecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich,

G. E.. Berman, A. E.. Bilan, M. I., and Usov. A. I. 2007. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17(5), pp. 541-552.

Dang, T. T.. Van Vuong, Q.. Schreider, M. J.. Bowyer, M. C., Van Altena, I. A., and Scarlett, C. J. 2017. Optimisation of ultra- sound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. Journal of Applied Phycology, 29(6), pp. 3161-3173.

Daniel, R., Berteau, O., Chevolot, L., Varenne, A., Gareil, P, and Goasdoue, N. 2001. Regioselective desulfation of sulfated 1- fucopyranoside by a new sulfoesterase from the marine mol- lusk Pecten maximus. Application to the structural study of algal fucoidan (Ascophyllum nodosum). European Journal of Biochemistry, 268(21), pp. 5617-5626.

De Souza, A. P. A., Torres, M. R., Pessoa, C., de Moraes, M. O., Rocha Filho. F. D.. Alves, A. P. N. N.. and Costa-Lotufo. L. V. 2007. In vivo growth-inhibition of Sarcoma 180 tumor by alginates from brown seaweed Sargassum vulgare. Carbohydrate polymers, 69(1), pp. 7-13.

De Zoysa, M., Nikapitiya, C., Jeon, Y. J., Jee, Y., and Lee, J. 2008. Anticoagulant activity of sulfated polysaccharide isolated from fermented brown seaweed Sargassum fulvellum. Journal of Applied Phycology, 20(1). pp. 61-1 A.

Dias, P. F., Siqueira Jr, J. M., Maraschin, M., Ferreira, A. G., Gagliardi, A. R.. and Ribeiro-do-Valle, R. M. 2008. A polysaccharide isolated from the brown seaweed Sargassum steno- phyllum exerts antivasculogenic effects evidenced by modified morphogenesis. Microvascular Research, 75(1), pp. 34-44.

Dfaz-Rubio, M. E., Perez-Jimenez, J., and Saura-Calixto, F. 2009. Dietary fiber and antioxidant capacity in Fucus vesiculo- sus products. International Journal of Food Sciences and Nutrition, 60(suppl2). pp. 23-34.

Dobashi, K., Nishino, T.. Fujihara, M.. and Nagumo, T. 1989. Isolation and preliminary characterization of fucose-contain- ing sulfated polysaccharides with blood-anticoagulant activity from the brown seaweed Hizikiafusiforme. Carbohydrate Research, 194. pp. 315-320.

Dockal, M., Till. S„ Knappe. S., Ehrlich. H. J.. and Scheiflinger, F. 2011. Anticoagulant activity and mechanism of non-anticoagulant sulfated polysaccharides. Blood, 118, p. 1208

Duarte, M. E., Cardoso, M. A., Noseda, M. D., and Cerezo, A. S. 2001. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydrate Research, 333(4), pp. 281-293.

Dufosse, L., Galaup, R, Yaron, A., Arad, S. M., Blanc, P., Murthy,

K. N. C., and Ravishankar, G. A. 2005. Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends in Food Science & Technology, 16(9), pp. 389-406.

El-Shora, H. M.. Abou-El-Wafa. G. S., and Abu-Eftouh. N. M. 2018. Fucoidan and fucoidanase from brown seaweeds and applications. International Journal of Current Microbiology and Applied Science, 7(2): 3707-3715.

Ermakova. S„ Sokolova. R.. Kim. S. M., Um, В. H., Isakov. V., and Zvyagintseva, T. 2011. Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata: Structural characteristics and anticancer activity. Applied Biochemistry and Biotechnology, 164(6), pp. 841-850.

Faggio, C„ Morabito, M., Minicante, S. A.. Piano, G. L„ Pagano, M., and Genovese, G. 2015. Potential use of polysaccharides from the brown alga Undaria pinnatifida as anticoagulants. Brazilian Archives of Biology and Technology, 58(5), pp. 798-804.

Farias, W. R.. Lima. P. C. W., Rodrigues. N. V. F, Siqueira. R. C.

L. , Amorim, R. M., Pereira, M. G., and Assreuy, A. M. S.

2011. A novel antinociceptive sulphated polysaccharide of the brown marine alga Spatoglossum schroederi. Natural Product Communications, 6(6), p. 1934578 x 1100600626.

Fedorov, S., Ermakova, S., Zvyagintseva, T., and Stonik, V. 2013. Anticancer and cancer preventive properties of marine polysaccharides: Some results and prospects. Marine Drugs, 11(12). pp. 4876-4901.

Feldman, S. C., Reynaldi, S., Stortz, C. A., Cerezo, A. S., and Damonte, E. B. 1999. Antiviral properties of fucoidan fractions from Leathesia difformis. Phytomedicine, 6(5), pp. 335-340.

Ferreira. L. G., Noseda, M. D., Goncalves, A. G., Ducatti, D. R., Fujii. M. T., and Duarte, M. E. 2012. Chemical structure of the complex pyruvylated and sulfated agaran from the red seaweed Palisada flagellifera (Ceramiales, Rhodophyta). Carbohydrate Research, 347(1). pp. 83-94.

Foley, S. A., Szegezdi, E., Mulloy, B., Samali, A., and Tuohy, M.

G. 2011. An unfractionated fucoidan from Ascophyllum nodosum: Extraction, characterization, and apoptotic effects in vitro. Journal of Natural Products, 74(9), pp. 1851-1861.

Fujiki, K., Matsuyama, H., and Yano, T. 1994. Protective effect of sodium alginates against bacterial infection in common carp, Cyprinus carpio L. Journal of Fish diseases, 17(4), pp. 349-355.

Fujiki, K., and Yano, T. 1997. Effects of sodium alginate on the nonspecific defence system of the common carp (Cyprinus carpio L.). Fish & Shellfish Immunology, 7(6). pp. 417-427.

Grauffel, V, Kloareg, B., Mabeau, S., Durand, R, and Jozefonvicz, J. 1989. New natural polysaccharides with potent antithrombic activity: Fucans from brown algae. Biomaterials, 10(6), pp. 363-368.

Guinea, M., Franco, V., Araujo-Bazan, L., Rodrfguez-Martm, I., and Gonzalez, S. 2012. In vivo UVB-photoprotective activity of extracts from commercial marine macroalgae. Food and Chemical Toxicology, 50(3-4). pp. 1109-1117.

Guiry. M. D., and Guiry. G. M., 2011. AlgaeBase. World-Wide Electronic Publication. National Institute Ireland, Galway, Ireland.

Gupta, S., and Abu-Ghannam, N. 2011. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innovative Food Science & Emerging Technologies, 12(4), pp. 600-609.

Guru. S. M., Mahesh, K. P., Vasanthi. M., and Anant, A. 2013. Anticoagulant property of sulphated polysaccharides extracted from marine brown algae collected from Mandapam Island, India. African Journal of Biotechnology, 12(16), pp. 1937-1945.

Haneji, K„ Matsuda, T., Tomita, M., Kawakami, H., Ohshiro, K., Uchihara, J. N., Masuda, M., Takasu, N.. Tanaka, Y., Ohta,

T., and Mori, N. 2005. Fucoidan extracted from Cladosiphon okamuranus Tokida induces apoptosis of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. Nutrition and Cancer, 52(2), pp. 189-201.

Hardoko, S. T.. Eveline, Y. M.. and Olivia, S. 2014. An in vitro of antidiabetic activity of Sargassum duplication and Turbinaria decurens seaweed. International Journal of Pharmaceutical Science Invention, 3, pp. 13-18.

Harikrishnan, R., Kim. M. C.. Kim. J. S„ Han. Y. J.. Jang. I. S., Balasundaram, C., and Heo, M. S. 2011. Immunomodulatory effect of sodium alginate enriched diet in kelp grouper Epinephelus bruneus against Streptococcus iniae. Fish & Shellfish Immunology, 30(2). pp. 543-549.

Hayashi, K., Nakano, T., Hashimoto, M., Kanekiyo, K., and Hayashi, T. 2008. Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. International Immunopharmacology, 8(1), pp. 109-116.

Hemmingson, J. A., Falshaw, R„ Furneaux, R. H., and Thompson,

K. 2006. Structure and antiviral activity of the galactofucan sulfates extracted from Undariapinnatifida (Phaeophyta). Journal of Applied Phycology, 18(2), p. 185.

Heo, S. J., and Jeon, Y. J. 2009. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. Journal of Photochemistry and Photobiology IT. Biology, 95(2), pp. 101-107.

Heo. S. J„ Ко, S. C.. Kang, S. M„ Kang, H. S„ Kim. J. R, Kim. S. H., Lee. K. W„ Cho. M. G., and Jeon. Y. J. 2008. Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H 2 О 2-induced cell damage. European Food Research and Technology, 228(1). pp. 145-151.

Heo, S. J., Park. E. J., Lee. K. W„ and Jeon, Y. J. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technology, 96(14). pp. 1613-1623.

Heo, S. J., Yoon. W. J.. Kim. K. N.. Ahn, G. N.. Kang. S. M.. Kang. D.

H.. Oh, C., Jung. W. K., and Jeon. Y. J. 2010. Evaluation of antiinflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and Chemical Toxicology, 48(8-9), pp. 2045-2051.

Hidari, К. I., Takahashi, N.. Arihara, M., Nagaoka, M., Morita, K., and Suzuki, T. 2008. Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochemical and Biophysical Research Communications, 376(1), pp. 91-95.

Hoffman. R.. Donaldson, J., Alban. S.. and Franz, G. 1995. Characterisation of a laminarin sulphate which inhibits basic fibroblast growth factor binding and endothelial cell proliferation. Journal of Cell Science, 108(11), pp. 3591-3598.

Holdt, S. L., and Kraan, S. 2011. Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23(3). pp. 543-597.

Hoshino, T., Hayashi, T., Hayashi, K., Hamada, J., Lee, J. B., and Sankawa, U. 1998. An antivirally active sulfated polysaccharide from Sargassum horneri (TURNER) C. AGARDH. Biological and Pharmaceutical Bulletin, 21(7), pp. 730-734.

Hu, J. F., Geng, M. Y., Zhang, J. T., and Jiang. H. D. 2001. An in vitro study of the structure-activity relationships of sulfated polysaccharide from browm algae to its antioxidant effect. Journal of Asian Natural Products Research, 3(4), pp. 353-358.

Huang, L., Wen, K., Gao. X.. and Liu, Y. 2010. Hypolipidemic effect of fucoidan from Laminaria japonica in hyperlipidemic rats. Pharmaceutical Biology, 48(4), pp. 422-426.

Hwang, P. A.. Chien, S. Y„ Chan. Y. L.. Lu, M. K„ Wu. C. H„ Kong,

Z. L., and Wu, C. J. 2011. Inhibition of lipopolysaccharide (LPS)-induced inflammatory responses by Sargassum hemi- phyllum sulfated polysaccharide extract in RAW 264.7 macrophage cells. Journal of Agricultural and Food Chemistry, 59(5), pp. 2062-2068.

Imbs, T. I., Ermakova, S. P., Malyarenko, O. S., Isakov, V. V., and Zvyagintseva, T.N. 2016. Structural elucidation of polysaccharide fractions from the brown alga Coccophora langs- dorfii and in vitro investigation of their anticancer activity. Carbohydrate Polymers, 135, pp. 162-168.

Immanuel, G., Sivagnanavelmurugan, M., Marudhupandi, T., Radhakrishnan, S., and Palavesam, A. 2012. The effect of fucoidan from brown seaw'eed Sargassum wightii on WSSV resistance and immune activity in shrimp Penaeus monodon (Fab). Fish & Shellfish Immunology, 32(4). pp. 551-564.

Isnansetyo, A., Lutfia, F. N. L., Nursid, M., and Susidarti, R. A. 2017. Cytotoxicity of fucoidan from three tropical brown algae against breast and colon cancer cell lines. Pharmacognosy Journal, 9(1), pp. 14-20.

Jamuna, J. D., Santhosh, S., Hemalatha, V., and Dhandapani, R. 2016. Extraction and purification of sulfated polysaccharide from brown algae and its efficacy in preventing blood clotting. Asian Journal of Biological and Life Sciences. 5(3), ррГ237-244.

Jeong, H. S., Venkatesan, J., and Kim, S. K., 2013. Hydroxyapatite- fucoidan nanocomposites for bone tissue engineering. International Journal of Biological Macromolecules, 57, pp. 138-141.

Jeong, S. C„ Jeong, Y. T., Lee, S. M.. and Kim, J. H. 2015. Immune- modulating activities of polysaccharides extracted from brown algae Hizikia fusiforme. Bioscience, Biotechnology, and Biochemistry, 79(8), pp. 1362-1365.

Jeong, S. I.. Jeon. 0., Krebs, M. D., Hill. M. C.. and Alsberg, E. 2012. Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties, cell adhesivity and grow'th factor release. European Cells & Materials, 24, p. 331.

Jintang, S., Alei, F., Yun, Z., Shanzhen, S., Weixu, H., Meixiang, Y., Fengcai, W„ and Xun, Q. 2010. Fucoidan increases TNF- a-induced MMP-9 secretion in monocytic cell line U937. Inflammation Research, 59(4), pp. 271-276.

Jongaramruong, J., and Kongkam, N. 2007. Novel diterpenes with cytotoxic, anti-malarial and anti-tuberculosis activities from a brown alga Dictyota sp. Journal of Asian Natural Products Research, 9(8). pp. 743-751.

Josephine, A., Veena, С. K., Amudha, G„ Preetha, S. P, and Varalakshmi, P. 2007. Protective role of sulphated polysaccharides in abating the hyperlipidemic nephropathy provoked by cyclosporine A. Archives of Toxicology, 81(5), pp. 371-379.

Jung. H. A., Hyun, S. K., Kim, H. R., and Choi, J. S. 2006. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fisheries Science, 72(6), pp. 1292-1299.

Jung. W. K., Athukorala, Y.. Lee, Y. J.. Cha. S. H., Lee, С. H., Vasanthan. T., Choi, K. S„ Yoo, S. H.. Kim. S. K., and Jeon, Y. J. 2007. Sulfated polysaccharide purified from Ecklonia cava accelerates antithrombin Ill-mediated plasma proteinase inhibition. Journal of Applied Phycology, 19(5), pp. 425-430.

Jung. W. K.. Choi, I., Oh. S„ Park. S. G.. Seo. S. K.. Lee. S. W„ Lee, D. S„ Heo, S. J.. Jeon. Y. J.. Je. J. Y.. and Ahn. С. B. 2009. Anti-asthmatic effect of marine red alga (Laurencia undulata) polyphenolic extracts in a murine model of asthma. Food and Chemical Toxicology, 47(2). pp. 293-297.

Kang, C„ Jin. Y. B., Lee, H., Cha. M., Sohn. E. T, Moon. J., Park. C., Chun. S„ Jung. E. S„ Hong, J. S.. and Kim. S. B. 2010. Brow n alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways. Food and Chemical Toxicology, 48(2). pp. 509-516.

Kang, K. A., Lee. К. H.. Park. J. W., Lee, N. H., Na. H. K., Surh, Y. J., You, H. J., Chung, M. H.. and Hyun. J. W. 2007. Triphlorethol-A induces heme oxygenase-1 via activation of ERK and NF-E2 related factor 2 transcription factor. FEBS Letters, 581(10), pp. 2000-2008.

Kang, S. M.. Kim, K. N.. Lee, S. H.. Ahn. G„ Cha. S. H„ Kim,

A. D.. Yang, X. D., Kang, M. C„ and Jeon, Y. J. 2011. Antiinflammatory activity of polysaccharide purified from AMG- assistant extract of Ecklonia cava in LPS-stimulated RAW

264.7 macrophages. Carbohydrate Polymers, 85(1), pp. 80-85.

Kanimozhi, S„ Krishnaveni, M., Deivasigmani, B., Rajasekar, T., and Priyadarshni, P. 2013. Immunomostimulation effects of Sargassum whitti on Mugil cephalus against Pseudomonas fluorescence. International Journal of Current Microbiology and Applied Science, 7. pp. 93-103.

Kaw'amoto, H., Miki, Y., Kimura, T., Tanaka, K., Nakagaw'a, T., Kaw'amukai, M., and Matsuda, H. 2006. Effects of fucoidan from Mozuku on human stomach cell lines. Food Science and Technology Research, 12(3), pp. 218-222.

Keyrouz, R., Abasq, M. L., Le Bourvellec, C., Blanc, N.. Audibert,

L., ArGall. E.. and Hauchard, D. 2011. Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany. Food Chemistry, 126(3), pp. 831-836.

Khan, W., Rayirath, U. P, Subramanian, S., Jithesh, M. N.. Rayorath, P, Hodges. D. M.. Critchley, A. T„ Craigie, J. S.. Norrie. J., and Prithiviraj, B. 2009. Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28(4). pp. 386-399.

Kim, E. J., Park. S. Y., Lee, J. Y.. and Park, J. H. Y. 2010. Fucoidan present in browm algae induces apoptosis of human colon cancer cells. BMC Gastroenterology, 10(1), p. 96.

Kim, J. K., Cho, M. L., Karnjanapratum, S., Shin, I. S., and You, S. G. 2011. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. International Journal of Biological Macromolecules, 49(5), pp. 1051-1058.

Kim. K. N.. Heo, S. J., Song. С. B.. Lee. J., Heo. M. S„ Yeo, I. K., Kang. K. A.. Hyun, J. W„ and Jeon, Y. J. 2006. Protective effect of Ecklonia cava enzymatic extracts on hydrogen peroxide-induced cell damage. Process Biochemistry, 41(12), pp. 2393-2401.

Kim, M. H., and Joo, H. G. 2008. Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. Immunology Letters, 115(2), pp. 138-143.

Kim, T. H., and Bae, J. S. 2010. Ecklonia cava extracts inhibit lipo- polysaccharide induced inflammatory responses in human endothelial cells. Food and Chemical Toxicology, 48(6), pp. 1682-1687.

Kitamura, K., Matsuo, M., and Tsuneo, Y. 1992. Enzymic degradation of fucoidan by fucoidanase from the hepatopancreas of Patinopecten yessoensis. Bioscience, Biotechnology, and Biochemistry, 56(3). pp. 490-494.

Klarzynski, O., Descamps, V., Plesse, B., Yvin, J. C., Kloareg, B., and Fritig, B. 2003. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Molecular Plant-Microbe Interactions, 16(2), pp. 115-122.

Kong. C. S„ Kim, J. A.. Yoon, N. Y.. and Kim, S. K. 2009. Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food and Chemical Toxicology, 47(7), pp. 1653-1658.

Koyanagi, S., Tanigawa, N., Nakagawa, H., Soeda, S., and Shimeno,

H. 2003. Oversulfation of fucoidan enhances its anti-angio- genic and antitumor activities. Biochemical Pharmacology, 65(2), pp. 173-179.

Kuda, T., and Ikemori, T. 2009. Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from mac- roalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chemistry, 112(3). pp. 575-581.

Kudus, K., Grasian, I., Madasamy, S., and John, A. 2017. Immunomodulatory effect of alginic acid from brown seaweed Sargassum wightii on disease resistance in Penaeus monodon. Journal Clean WAS, 1(1). pp. 26-29.

Kumar, K. S., Ganesan, K., and Rao, P. S. 2008. Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty-An edible seaweed. Food Chemistry, 107(1), pp. 289-295.

Kumar, M.. Kumari. P.. Trivedi, N., Shukla, M. K., Gupta, V., Reddy. C. R. K., and Jha, B. 2011. Minerals. PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. Journal of Applied Phycology, 23(5), pp. 797-810.

Kuznetsova, T. A., Besednova, N. N., Mamaev, A. N., Momot, A. R, Shevchenko, N. M., and Zvyagintseva, T. N. 2003. Anticoagulant activity of fucoidan from brown algae Fucus evanescens of the Okhotsk Sea. Bulletin of Experimental Biology and Medicine, 136(5). pp. 471-473.

Lahaye, M., and Robic, A. 2007. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8(6), pp. 1765-1774.

Lee, N. Y., Ermakova, S. P., Zvyagintseva, T. N.. Kang, K. W., Dong, Z.. and Choi, H. S. 2008. Inhibitory effects of fucoidan on activation of epidermal growth factor receptor and cell transformation in JB6 C141 cells. Food and Chemical Toxicology, 46(5), pp. 1793-1800.

Lee, S. H., Karadeniz. F.. Kim, M. M., and Kim, S. K. 2009. cx- Glucosidase and a-amylase inhibitory activities of phloro- glucinal derivatives from edible marine brown alga, Ecklonia cava. Journal of the Science of Food and Agriculture, 89(9), pp. 1552-1558.

Lee, S. H., Park, M. H., Fleo, S. J., Kang, S. M., Ко, S. C., Han, J.

5., and Jeon, Y. J. 2010. Dieckol isolated from Ecklonia cava inhibits a-glucosidase and a-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food and Chemical Toxicology, 48(10), pp. 2633-2637.

Lee. Y. S„ Shin, К. H.. Kim, В. K.. and Lee. S. 2004. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Archives of Pharmacal Research, 27(11). pp. 1120-1122.

Leonard. S. G„ Sweeney, T.. Pierce, К. M.. Bahar. B., Lynch, B. R, and O’Doherty, J.V. 2010. The effects of supplementing the diet of the sow with seaweed extracts and fish oil on aspects of gastrointestinal health and performance of the weaned piglet. Livestock Science, 134(1-3). pp. 135-138.

Li, B.. Lu. F., Wei, X., and Zhao. R. 2008. Fucoidan: Structure and bioactivity. Molecules, 13(8). pp. 1671-1695.

Li. Y.. Qian, Z. J., Ryu, B., Lee, S. H.. Kim. M. M., and Kim. S.

K. 2009. Chemical components and its antioxidant properties in vitro: An edible marine brown alga, Ecklonia cava. Bioorganic & Medicinal Chemistry, 17(5), pp. 1963-1973.

Li, Y. X., and Kim, S. K. 2011. Utilization of seaweed derived ingredients as potential antioxidants and functional ingredients in the food industry: An overview. Food Science and Biotechnology, 20(6), pp. 1461-1466.

Li, Y. X., Wijesekara. I.. Li, Y.. and Kim. S. K. 2011. Phlorotannins as bioactive agents from brown algae. Process Biochemistry, 46(12). pp. 2219-2224.

Liaua. В. C., Shena, С. T.. and Lianga. F. P. 2010. Supercritical fluids extraction and antisolvent purification of carotenoids from microalgae and associated bioactivity. Journal of Supercritical Fluids, 55, pp. 169-175.

Lowe. B.. Venkatesan, J.. Anil, S., Shim. M. S.. and Kim. S. K. 2016. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. International Journal of Biological Macromolecules, 93. pp. 1479-1487.

Luyt, С. E.. Meddahi-Pelle, A.. Ho-Tin-Noe, B., Colliec-Jouault,

5., Guezennec, J., Louedec, L., Prats, H., Jacob, M. R, Osborne-Pellegrin, M., Letourneur, D., and Michel, J. B. 2003. Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia. Journal of Pharmacology and Experimental Therapeutics, 305(1). pp. 24-30.

MacKinnon, S. L., Hiltz, D„ Ugarte, R., and Craft, C. A. 2010. Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. Journal of Applied Phycology, 22(4), pp. 489-494.

Magalhaes. K. D.. Costa. L. S.. Fidelis. G. P., Oliveira. R. M.. Nobre,

L. T. D. B., Dantas-Santos, N., Camara. R. B. G., Albuquerque,

I. R. L., Cordeiro, S. L., Sabry, D. A., and Costa, M. S. S. P. 2011. Anticoagulant, antioxidant and antitumor activities of heterofu- cans from the seaweed Dictyopteris delicatula. International Journal of Molecular Sciences, 12(5), pp. 3352-3365.

Manilal. A., Sujith, S., Kiran, G. S., Selvin. J., Shakir. C., Gandhimathi. R., and Panikkar, M. V. N. 2009. Biopotentials of seaweeds collected from southwest coast of India. Journal of Marine Science and Technology, 17(1), pp. 67-73. Maruyama, H., and Yamamoto, I. 1984. An antitumor fucoidan fraction from an edible brown seaweed, Laminaria religiosa. In Eleventh International Seaweed Symposium (pp. 534-536). Springer, Dordrecht, the Netherlands.

Maruyama, H., Tamauchi, H., Hashimoto, M., and Nakano, T. 2003. Antitumor activity and immune response of Mekabu fucoidan extracted from Sporophyll of Undaria pinnatifida. In Vivo, 17(3). pp. 245-249.

Maruyama, H., Tamauchi, H., Hashimoto, M., and Nakano, T. 2005. Suppression of Th2 immune responses by mekabu fucoidan from Undaria pinnatifida sporophylls. International Archives of Allergy and Immunology, 137(4). pp. 289-294.

Matou, S., Helley, D., Chabut, D., Bros, A., and Fischer, A. M. 2002. Effect of fucoidan on fibroblast growth factory-induced angiogenesis in vitro. Thrombosis Research, 106(4-5), pp. 213-221.

Medeiros, V. P., Queiroz, К. C. S., Cardoso, M. L., Monteiro, G. R.

G. , Oliveira, F. W., Chavante, S. F., Guimaraes, L. A., Rocha,

H. A. O., and Leite, E. L. 2008. Sulfated galactofucan from Lobophora variegata: Anticoagulant and anti-inflammatory properties. Biochemistry (Moscow), 73(9), pp. 1018-1024.

Menshova, R. V., Shevchenko, N. M., Imbs, T. I., Zvyagintseva, T. N„ Malyarenko, O. S., Zaporoshets, T. S., Besednova, N. N. and Ermakova, S. P. 2016. Fucoidans from brown alga Fucus evanescens: Structure and biological activity. Frontiers in Marine Science, 3, p. 129.

Miao, H. Q., Elkin, M., Aingorn, E., Ishai-Michaeli, R., Stein, C. A., and Vlodavsky, I. 1999. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phos- phorothioate oligodeoxynucleotides. International Journal of Cancer, 83(3), pp. 424-431.

Mihova, S. G., Georgiev, D. I., Minkova, К. M„ and Tchernov, A. A. 1996. Phycobiliproteins in Rhodella reticulata and photo- regulatory effects on their content. Journal of Biotechnology, 48(3), pp. 251-257.

Mohamed, S. F., and Agili, F. A. 2013. Antiviral sulphated polysaccharide from brown algae Padina pavonia characterization and structure elucidation. International Journal of ChemTech Research, 5(4), pp. 1469-1476.

Moreau, D., Tomasoni, C., Jacquot, C., Kaas, R., Le Guedes, R., Cadoret, J. P., Muller-Feuga, A., Kontiza, I., Vagias, C., Roussis, V., and Roussakis, C. 2006. Cultivated microalgae and the carotenoid fucoxanthin from Odontella aurita as potent anti-proliferative agents in bronchopulmonary and epithelial cell lines. Environmental Toxicology and Pharmacology, 22(1). pp. 97-103.

Mourao, P. A., and Pereira, M. S. 1999. Searching for alternatives to heparin: Sulfated fucans from marine invertebrates. Trends in Cardiovascular Medicine, 9(8), pp. 225-232.

Mourao, P. A. 2004. Use of sulfated fucans as anticoagulant and antithrombotic agents: Future perspectives. Current Pharmaceutical Design, 10(9), pp. 967-981.

Nagaoka, M., Shibata, H., Kimura-Takagi, I., Hashimoto, S., Kimura,

K., Makino, T., Aiyama, R., Ueyama, S„ and Yokokura, T. 1999. Structural study of fucoidan from Cladosiphon okamu- ranus Tokida. Glycoconjugate Journal, 16(1), pp. 19-26.

Nakamura, T„ Suzuki, H., Wada, Y., Kodama, T, and Doi, T. 2006. Fucoidan induces nitric oxide production via p38 mitogen-activated protein kinase and NF-KB-dependent signaling pathways through macrophage scavenger receptors. Biochemical and Biophysical Research Communications, 343(1), pp. 286-294.

Namvar, F., Mohamad, R., Baharara, J., Zafar-Balanejad, S., Fargahi, F., and Rahman, H. S. 2013. Antioxidant, antiproliferative, and antiangiogenesis effects of polyphenol-rich seaweed (Sargassum muticum). BioMed Research International, 2013. pp. 604787.

Namvar, F., Mohamed, S., Fard, S. G., Behravan, J., Mustapha, N. M„ Alitheen. N. В. M„ and Othman. F. 2012. Polyphenolrich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chemistry, 130(2), pp. 376-382.

Nishino, T., Kiyohara, H., Yamada, H., and Nagumo, T. 1991. An anticoagulant fucoidan from the brown seaweed Ecklonia kurome. Phytochemistry, 30(2), pp. 535-539.

Nishino, T., Yokoyama, G., Dobashi, K., Fujihara, M., and Nagumo, T. 1989. Isolation, purification, and characterization of fucose- containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities. Carbohydrate Research, 186(1). pp. 119-129.

Nwosu, F., Morris, J., Lund, V. A., Stewart, D., Ross, H. A., and McDougall, G. J. 2011. Anti-proliferative and potential antidiabetic effects of phenolic-rich extracts from edible marine algae. Food Chemistry, 126(3), pp. 1006-1012.

O'Doherty, J. V.. McDonnell. P, and Figat, S. 2011. The effect of dietary laminarin and fucoidan in the diet of the weanling piglet on performance and selected faecal microbial populations. Livestock Science, 134. pp. 208-210.

O'Sullivan. A. M., O’Callaghan, Y. C., O'Grady. M. N.. Queguineur,

B.. Hanniffy, D.. Troy, D. J.. Kerry, J. P, and O'Brien. N. M. 2011. In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chemistry, 126(3), pp. 1064-1070.

Okada. Y., Ishimaru. A., Suzuki. R., and Okuyama. T. 2004. A new phloroglucinol derivative from the brown alga Eisenia bicyclis: Potential for the effective treatment of diabetic complications. Journal of Natural Products, 67(1), pp. 103-105.

Paiva, A. A., Castro, A. J., Nascimento, M. S., Will, L. S., Santos, N. D., Araujo, R. M., Xavier, C. A., Rocha, F. A., and Leite, E. L. 2011. Antioxidant and anti-inflammatory effect of polysaccharides from Lobophora variegata on zymosan-induced arthritis in rats. International Immunopharmacology, 11, pp. 1241-1250.

Palanisamy, S., Vinosha, M., Marudhupandi, T., Rajasekar, P, and Prabhu, N. M. 2017. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. International Journal of Biological Macromolecules, 102, pp. 405-412.

Pangestuti, R., and Kim, S. K. 2011. Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods, 3(4), pp. 255-266.

Park. E„ Ahn. G. N.. Lee. N. H.. Kim. J. M„ Yun. J. S., Hyun. J. W„ Jeon. Y. J.. Wie. M. B„ Lee, Y. J.. Park, J. W.. and Jee, Y. 2008. Radioprotective properties of eckol against ionizing radiation in mice. FEBS Letters, 582(6), pp. 925-930.

Park. H. S„ Hwang, H. J., Kim. G. Y., Cha, H. J.. Kim. W. J.. Kim,

N. D.. Yoo. Y. H., and Choi, Y. H. 2013. Induction of apoptosis by fucoidan in human leukemia U937 cells through activation of p38 МАРК and modulation of Bcl-2 family. Marine Drugs, 11(7), pp. 2347-2364.

Park, H. S., Kim, G. Y., Nam, T. J., Deuk Kim, N.. and Hyun Choi, Y. 2011. Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells. Journal of Food Science, 76(3), pp. T77-T83.

Park, H. Y.. Han, M. H., Park. C„ Jin, C. Y.. Kim. G. Y„ Choi. I. W„ Kim, N. D., Nam.T. J.. Kwon.T. K., and Choi.Y. H. 2011. Antiinflammatory effects of fucoidan through inhibition of NF-kB, МАРК and Akt activation in lipopolysaccharide-induced BV2 microglia cells. Food and Chemical Toxicology, 49(8), pp. 1745-1752.

Park, S. B.. Chun. K. R„ Kim, J. K., Suk. K.. Jung, Y. M.. and Lee, W. H. 2010. The differential effect of high and low molecular weight fucoidans on the severity of collagen-induced arthritis in mice. Phytotherapy Research, 24(9), pp. 1384-1391.

Park, S. J., Lee, K. W., Lim, D. S., and Lee, S. 2012. The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells. Stem Cells and Development, 21(12), pp. 2204-2211.

Percival, E. 1968. Glucuronoxylofucan, a cell-wall component of Ascophyllum nodosum. Part I. Carbohydrate Research, 7(3), pp. 272-283.

Pereira, H., Leao-Ferreira, L. R., Moussatche, N.. Teixeira, V. L., Cavalcanti, D. N., Costa, L. J., Diaz, R., and Frugulhetti, I. C.

P. P. 2004. Antiviral activity of diterpenes isolated from the Brazilian marine alga Dictyota menstrualis against human immunodeficiency virus type 1 (HIV-1). Antiviral Research, 64(1), pp. 69-76.

Pereira, M. S., Mulloy, B., and Mourao, P. A. 1999. Structure and anticoagulant activity of sulfated fucans comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. Journal of Biological Chemistry, 274(12), pp. 7656-7667.

Ponce, N. M., Pujol, C. A., Damonte, E. B., Flores, M. L., and Stortz,

C. A. 2003. Fucoidans from the brown seaweed Adenocystis utricularis: Extraction methods, antiviral activity and structural studies. Carbohydrate Research, 338(2), pp. 153-165.

Prabu, D. L., Sahu, N. R, Pal, A. K., Dasgupta, S., and Narendra, A. 2016. Immunomodulation and interferon gamma gene expression in sutchi cat fish, Pangasianodon hypophthalmus: Effect of dietary fucoidan rich seaweed extract (FRSE) on pre and post challenge period. Aquaculture Research, 47(1), pp. 199-218.

Preobrazhenskaya, M. E., Berman, A. E., Mikhailov, V. I., Ushakova, N. A., Mazurov, A. V., Semenov, A. V., Usov, A.

I., Nifant'Ev. N. E., and Bovin, N. V. 1997. Fucoidan inhibits leukocyte recruitment in a model peritonial inflammation in rat and blocks interaction of P-selectin with its carbohydrate ligand. IUBMB Life, 43(2), pp. 443-451.

Pulz, O., and Gross, W. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), pp. 635-648.

Queiroz, К. C. S„ Medeiros, V. P, Queiroz, L. S.. Abreu. L. R. D., Rocha, H. A. O., Ferreira, С. V, Juca, M. B., Aoyama, H., and Leite, E. L. 2008. Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomedicine & Pharmacotherapy, 62, pp. 303-307.

Raghavendran, H. R. B., Sathivel, A., and Devaki, T. 2005. Antioxidant effect of Sargassum polycystum (Phaeophyceae) against acetaminophen induced changes in hepatic mitochondrial enzymes during toxic hepatitis. Chemosphere, 61(2), pp. 276-281.

Rani, V, Jawahar, P, Shakila, R. J., and Srinivasan, A. 2017. Antibacterial activity of some brown seaweeds of gulf of Mannar, south east coast of India. Journal of Pharmaceutical and BioSciences, 4, pp. 14-21.

Rathore. S. S„ Chaudhary, D. R., Boricha, G. N., Ghosh, A., Bhatt, В. P, Zodape. S. T„ and Patolia, J. S. 2009. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South African Journal of Botany, 75(2), pp. 351-355.

Ren, D., Noda, H., Amano, H., and Nisizawa, K. 1994. Antihypertensive and antihyperlipidemic effects of funoran. Fisheries Science, 60(4), pp. 423-427.

Rioux, L.-E., and Turgeon, S. L. 2015. Seaweed carbohydrates. In: Tiwari, B.K., Troy, D. (Eds.), Seaweed Sustainability. Elsevier, San Diego, CA. pp. 141-192.

Rioux, L. E., Turgeon, S. L., and Beaulieu, M. 2007. Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers, 69(3), pp. 530-537.

Rioux, L. E., Turgeon, S. L., and Beaulieu, M. 2010. Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry, 71(13). pp. 1586-1595.

Rocha. H. A.. Moraes. F. A., Trindade. E. S.. Franco, C. R., Torquato, R. J., Veiga, S. S., Valente, A. P, Mourao, P. A., Leite. E. L.. Nader. H. B., and Dietrich. С. P. 2005. Structural and hemostatic activities of a sulfated galactofucan from the brown alga Spatoglossum schroederi an ideal antithrombotic agent? Journal of Biological Chemistry, 280(50), pp. 41278-41288.

Roy, M. C., Anguenot, R., Fillion, C., Beaulieu, M., Berube, J., and Richard, D. 2011. Effect of a commercially-available algal phlorotannins extract on digestive enzymes and carbohydrate absorption in vivo. Food Research International, 44(9), pp. 3026-3029.

Ryu. B„ Li, Y.. Qian. Z. J.. Kim. M. M„ and Kim. S. K. 2008. October. Exhibitory effects of compounds from brown alga Ecklonia cava on the human osteoblasts. In 13th International Biotechnology Symposium and Exhibition (Ш 13 Ла IUPAC (pp- 588).

Ryu. B.. Qian. Z. J., Kim, M. M., Nam, K. W.. and Kim, S. K. 2009. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiation Physics and Chemistry, 78(2), pp. 98-105.

Shen, Y. R., and Kuo. M. I. 2017. Effects of different carrageenan types on the rheological and water-holding properties of tofu. LWT-Food Science and Technology, 78,

pp. 122-128.

Shibata, H., Iimuro, M., Uchiya, N., Kawamori, T, Nagaoka, M., Ueyama, S., Hashimoto, S., Yokokura, T, Sugimura, T, and Wakabayashi, K. 2003. Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils. Helicobacter, 8(1), pp. 59-65.

Shibata, H., Kimura-Takagi, I., Nagaoka, M., Hashimoto, S., Aiyama, R.. Iha, M., Ueyama, S., and Yokokura, T. 2000. Properties of fucoidan from Cladosiphon okamuranus tokida in gastric mucosal protection. Biofactors, 11(4), pp. 235-245.

Shibata, T, Ishimaru, K., Kawaguchi, S., Yoshikawa, H., and Hama, Y. 2008. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. Journal of Applied Phycology , 20, pp. 705-711.

Shimizu, J., Wada-Funada, U., Mano, H., Matahira, Y., Kawaguchi,

M., and Wada, M. 2005. Proportion of murine cytotoxic T cells is increased by high molecular-weight fucoidan extracted from Okinawa mozuku (Cladosiphon okamuranus). Journal of Health Science, 51(3), pp. 394-397.

Shui-Chun, M. A. O., and Yue-Wei, G. U. O. 2010. Sesquiterpenes from Chinese red alga Laurencia okamurai. Chinese Journal of Natural Medicines, 8(5), pp. 321-325.

Silva, T. M. A.. Alves, L. G.. De Queiroz. К. C. S„ Santos. M. G. L., Marques, С. T, Chavante, S. F., Rocha, H. A. O., and Leite, E.

L. 2005. Partial characterization and anticoagulant activity of a heterofucan from the brown seaweed Padina gymnospora. Brazilian Journal of Medical and Biological Research, 38(4), pp. 523-533.

Smit, A. J. 2004. Medicinal and pharmaceutical uses of seaweed natural products: A review. Journal of Applied Phycology, 16(4), pp. 245-262.

Smyrniotopoulos, V, Merten, C., Kaiser, M., and Tasdemir, D. 2017. Bifurcatriol, a new antiprotozoal acyclic diterpene from the brown alga Bifurcaria bifurcata. Marine Drugs, 15(8), p. 245.

Sokolova, R. V., Ermakova, S. P., Awada, S. M, Zvyagintseva, T. N., and Kanaan, H. M. 2011. Composition, structural characteristics, and antitumor properties of polysaccharides from the brown algae Dictyopteris polypodioides and Sargassum sp. Chemistry of Natural Compounds, 47(3), p. 329.

Suganthy, N.. Pandian, S. K., and Devi, К. P. 2010. Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar Marine Biosphere Reserve): Cholinesterase inhibitory effect of Hypnea valentiae and Ulva reticulata. Neuroscience letters, 468(3), pp. 216-219.

Sugiura, Y., Matsuda, K., Yamada, Y., Nishikawa, M., Shioya, K., Katsuzaki, H., Imai, K., and Amano, H. 2006. Isolation of a new anti-allergic phlorotannin, phlorofucofuroeckol- B, from an edible brown alga, Eisenia arborea. Bioscience, Biotechnology, and Biochemistry, 70( 11). pp. 2807-2811.

Sugiura, Y., Matsuda, K., Yamada, Y., Nishikawa, M., Shioya, K., Katsuzaki, H., Imai, K., and Amano, H. 2007. Anti-allergic phlorotannins from the edible brown alga, Eisenia arborea. Food Science and Technology Research, 13(1), pp. 54-60.

Swanson, A. K., and Druehl, L. D. 2002. Induction, exudation and the UV protective role of kelp phlorotannins. Aquatic Botany, 73(3), pp. 241-253.

Synytsya. A., Kim. W. J.. Kim, S. M.. Pohl, R.. Synytsya. A., Kvasnicka, F., Copt'kova, J., and Park, Y. I. 2010. Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydrate Polymers, 81(1), pp. 41-48.

Takahashi, M. 1983. Studies on the mechanism of host mediated antitumor action of crude fucoidan from a brown marine alga Eisenia bicyclis. Journal-Japanese Society for Horticultural Science, 22. pp. 269-283.

Takahashi, T.. Kuniyasu, Y.. Toda. M., Sakaguchi, N.. Itoh. M., Iwata, M., Shimizu, J., and Sakaguchi, S. 1998. Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: Induction of autoimmune disease by breaking their anergic/suppressive state. International Immunology, 10(12), pp. 1969-1980.

Tarakhovskaya, E. R., Maslov, Y. I., and Shishova. M. F. 2007. Phytohormones in algae. Russian Journal of Plant Physiology, 54(2), pp. 163-170.

Teruya, T., Konishi. T., Uechi, S.. Tamaki, H., and Тако. M. 2007. Anti-proliferative activity of oversulfated fucoidan from commercially cultured Cladosiphon okamuranus TOKIDA in U937 cells. International Journal of Biological Macromolecules, 41(3). pp. 221-226.

Thornes, P, Rajendran, M., Pasanban, B., and Rengasamy, R. 2010. Cardioprotective activity of Cladosiphon okamuranus fucoidan against isoproterenol induced myocardial infarction in rats. Phytomedicine, 18(1), pp. 52-57.

Thompson, K. D., and Dragar, C. 2004. Antiviral activity of Undaria pinnatifida against herpes simplex virus. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(7), pp. 551-555.

Thuy, T. T. T.. Ly. В. M., Van. T. T. T.. Van Quang. N.. Tu. H. C„ Zheng, Y.. Seguin-Devaux, C.. Mi, B., and Ai, U. 2015. Anti- HIV activity of fucoidans from three brown seaweed species. Carbohydrate Polymers, 115, pp. 122-128.

Trinchero, J., Ponce, N. M., Cordoba, O. L., Flores, M. L., Pampuro, S., Stortz, C. A., Salomon, H., and Turk, G. 2009. Antiretroviral activity of fucoidans extracted from the brown seaweed Adenocystis utricularis. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(5), pp. 707-712.

Ushakova, N. A., Morozevich, G. E., Ustyuzhanina, N. E., Bilan, M.

I., Usov, A. I., Nifantiev, N. E., and Preobrazhenskaya, M. E. 2009. Anticoagulant activity of fucoidans from brown algae. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 3(1). pp. 77-83.

Usoltseva, R. V., Anastyuk, S. D., Ishina, I. A., Isakov, V. V, Zvyagintseva, T. N., Thinh, P. D., Zadorozhny, P. A., Dmitrenok, P. S., and Ermakova, S. P. 2018. Structural characteristics and anticancer activity in vitro of fucoidan from brown alga Padina boryana. Carbohydrate Polymers, 184,

pp. 260-268.

Usoltseva, R. V., Anastyuk, S. D., Shevchenko, N. M., Surits, V. V., Silchenko, A. S., Isakov. V. V., Zvyagintseva, T. N., Thinh. P. D., and Ermakova, S.P 2017. Polysaccharides from brown algae Sargassum duplicatum: The structure and anticancer activity in vitro. Carbohydrate Polymers, 175, pp. 547-556.

Usoltseva, R. V., Anastyuk, S. D., Shevchenko, N. M., Zvyagintseva,

T. N., and Ermakova, S. P. 2016. The comparison of structure and anticancer activity in vitro of polysaccharides from brown algae Atom marginata and A. angusta. Carbohydrate Polymers, 153, pp. 258-265.

Usov. A. I., Smirnova, G. P. Bilan, M. I., and Shashkov, A.S. 1998. Polysaccharides of algae. 53. brown alga Laminaria sac- charina (1.) lam. asa source of fucoidan. Russian Journal of Bioorganic Chemistry, 24, pp. 437-445.

Ustyuzhanina, N. E., Bilan, M. I., Gerbst, A. G., Ushakova, N. A., Tsvetkova, E. A., Dmitrenok, A. S., Usov, A. I., and Nifantiev, N. E. 2016. Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea. Carbohydrate Polymers, 136, pp. 826-833.

Usui, T., Asari, K., and Mizuno, T. 1980. Isolation of highly purified “fucoidan” from Eisenia bicyclis and its anticoagulant and antitumor activities. Agricultural and Biological Chemistry, 44(8), pp. 1965-1966.

Venkatesan, J., Bhatnagar, I., Manivasagan, P, Kang, К. H., and Kim, S. K. 2015a. Alginate composites for bone tissue engineering: A review. International Journal of Biological Macromolecules, 72, pp. 269-281.

Venkatesan, J., Lowe, B., Anil, S., Manivasagan, P, Kheraif, A.

A. A.. Kang. К. H.. and Kim. S. K. 2015b. Seaweed polysaccharides and their potential biomedical applications. Starch- Stdrke, 67(5-6). pp. 381-390.

Venkateswaran, P. S., Millman, I., and Blumberg, B. S. 1989. Interaction of fucoidan from Pelvetia fastigiata with surface antigens of hepatitis В and woodchuck hepatitis viruses. Planta Medico, 55(03), pp. 265-270.

Vidanarachchi, J. K., Iji, P. A., Mikkelsen, L. L., Sims, I., and Choct,

M. 2009. Isolation and characterization of water-soluble pre- biotic compounds from Australian and New Zealand plants. Carbohydrate Polymers, 77(3). pp. 670-676.

Vischuk. O. S., Ermakova, S. P. Tin, F. D.. Shevchenko. N. M., Li,

B. M., and Zvyagintseva, T.N. 2009. Anticancer activity of brown algae-derived fucoidans. Pacific Medical Journal, 3, pp. 86-89.

Vishchuk. O. S., Ermakova, S. P. and Zvyagintseva. T. N. 2011. Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: Isolation, structural characteristics, and antitumor activity. Carbohydrate Research, 346(17), pp. 2769-2776.

Vo, T. S„ Ngo. D. H., and Kim. S. K.. 2012. Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Process Biochemistry, 47(3), pp. 386-394.

Wijesekara, I., and Karunarathna, W. K. D. S. 2017. Chapter 18 -Usage of seaweed polysaccharides as nutraceuticals. In Seaweed Polysaccharides (pp. 341-348). Elsevier, Saint Louis.

Wijesekara, I., Pangestuti, R., and Kirn, S. K. 2011. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 84(1), pp. 14-21.

Wijesinghe, W. A. J. P., and Jeon, Y. J. 2012. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydrate Polymers, 88(1), pp. 13-20.

Wijesinghe, W. A. J. R, and Jeon, Y. J. 2012. Enzyme-assistant extraction (EAE) of bioactive components: A useful approach for recovery of industrially important metabolites from seaweeds: A review. Fitoterapia, 83(1), pp. 6-12.

Wozniak. M., Bell, T., Denes, A.. Falshaw, R.. and Itzhaki, R. 2015. Anti-HSVl activity of brown algal polysaccharides and possible relevance to the treatment of Alzheimer’s disease. International Journal of Biological Macromolecules, 74, pp. 530-540.

Wu. X., Song. M., Rakariyatham, K.. Zheng, J., Guo, S.. Tang, Z., Zhou, S., and Xiao, H. 2015. Anti-inflammatory effects of 4'-demethylnobiletin, a major metabolite of nobiletin. Journal of Functional Foods, 19. pp. 278-287.

Xiaolin, Y., Juyun, S., Hannian, X., Xiaohui, L., Yishen, Z., and Shaolun, Z. 1995. An experimental study on immunoregulatory effect of fucoidan [j], Chinese Journal of Marine Drugs, 3, p. 002.

Xue, C.. Chen, L. E. I.. Li. Z., Cai, Y.. Lin. H., and Fang, Y. 2004. Antioxidative activities of low molecular fucoidans from kelp Laminaria japonica. In Developments in Food Science, 42, pp. 139-145.

Xue. M., Ge. Y„ Zhang. J.. Wang, Q.. Hou. L.. Liu, Y.. Sun, L., and Li, Q. 2012. Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo. PLoS One, 7(8), p. e43483.

Yamamoto, I., Nagumo, T., Takahashi, M., Fujihara, M., Suzuki, Y., and Iizima, N. 1981. Antitumor effect of seaweeds. III. Antitumor effect of an extract from Sargassum kjellmania- num. The Japanese Journal of Experimental Medicine, 51(3), pp. 187-189.

Yamamoto, I., Takahashi. M., Tamura, E., Maruyama, H., and Mori, H. 1984. Antitumor activity of edible marine algae: Effect of crude fucoidan fractions prepared from edible brown seaweeds against L-1210 leukemia. Hydrobiologia, 116, pp. 145-148.

Yang. C.. Chung. D.. Shin. I. S.. Lee, H.. Kim. J., Lee, Y.. and You, S. 2008. Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. International Journal of Biological Macromolecules, 43(5), pp. 433-437.

Yang. J. W.. Yoon, S. Y.. Oh, S. J., Kim. S. K.. and Kang, K. W. 2006. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase. Biochemical and Biophysical Research Communications, 346(1), pp. 345-350.

Yang, L., and Zhang, L.M. 2009. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydrate Polymers, 76(3), pp. 349-361.

Yoo. Y. C„ Kim. W. J., Kim. S. Y.. Kim. S. M„ Chung, M. K., Park. J. W.. Suh. H. H., Lee. К. B„ and Park. Y. I. 2007. Immunomodulating activity of a fucoidan isolated from Korean Undaria pinnatifida sporophyll. Algae, 22(4), pp. 333-338.

Yoon, S. J., Pyun, Y. R., Hwang, J. K., and Mourao. P A. 2007. A sulfated fucan from the brown alga Laminaria cichorioides has mainly heparin cofactor Il-dependent anticoagulant activity. Carbohydrate Research, 342(15). pp. 2326-2330.

You. S., Yang, C.. Lee. H., and Lee. B. Y. 2010. Molecular characteristics of partially hydrolyzed fucoidans from sporophyll of Undaria Pinnatifida and their in vitro anticancer activity. Food Chemistry, 119(2), pp. 554-559.

Yuan, Y. V., and Walsh, N. A. 2006. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food and Chemical Toxicology, 44(7). pp. 1144-1150.

Yvin, J. C., Levasseur, F., and Hud’Homme, F., Laboratoires Goemar SA. 1999. Use of laminarin and oligosaccharides derived therefrom in cosmetics and for preparing a skin treatment drug. U.S. Patent 5,980,916.

Zha. X. Q.. Xiao. J. J., Zhang. H. N.. Wang, J. H.. Pan, L. H.. Yang, X. F., and Luo, J. P. 2012. Polysaccharides in Laminaria japonica (LP): Extraction, physicochemical properties and their hypolipidemic activities in diet-induced mouse model of atherosclerosis. Food Chemistry, 134(1). pp. 244-252.

Zhang, X., Wang, K., and Ervin, E. H. 2010. Optimizing dosages of seaweed extract-based cytokinins and zeatin riboside for improving creeping bentgrass heat tolerance. Crop Science, 50(1), pp. 316-320.

Zhang, Z„ Teruya. K., Eto, H.. and Shirahata, S. 2011. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochon- dria-mediated pathways. PloS one, 6(11), p. e27441.

Zhao, X.. Xue, С. H., Li, B. F. 2008. Study of antioxidant activities of sulfated polysaccharides from Laminaria japonica. Journal of Applied Pltycology, 20, pp. 431-436.

Zhu, W„ Ooi, V. E. C„ Chan. P. K. S.. and Ang Jr, P O. 2003. Inhibitory effect of extracts of marine algae from Hong Kong against Herpes simplex viruses. In Chapman ARO, Anderson RJ, Vreeland VJ, Davison IR (eds), In Proceedings of the 17th International Seaweed Symposium, Oxford University Press, Oxford (pp. 159-164).

25 Fisher Folks Usage of Medicinal Plants

< Prev   CONTENTS   Source   Next >