Acknowledgment

The authors thank UGC-DAE, Mumbai. India, and UGC-CAS (Phase - II), New Delhi, India, programs for their financial support.

References

  • 1. Zhong C, Deng Y, Hu W, Qia J, et al. (2015) A review of electrolyte materials and compositions for electrochemical super capacitors. Chem Soc Rev 44:7484-7539. https://doi .org/10.1039/C5CS00303B
  • 2. Zhang SS (2006) A review on electrolyte additives for lithium-ion batterie.v. J Power Sources 162:1379-1394. https://doi.Org/10.1016/j.jpowsour.2006.07.074
  • 3. Aurbach D, Talyosef Y, Markovsky B, Markevich E, et al. (2004) Design of electrolyte solutions for Li and Li-ion batteries: A review. Electrochim Ada 50:247-254. https://doi. org/10.1016/j.electacta.2004.01.090
  • 4. Alias N, Mohamad AA (2015) Advances of aqueous rechargeable lithium-ion battery: A review. J Power Sources 274:237-251. https://doi.Org/10.1016/j.jpowsour.2014. 10.009
  • 5. Aifantis KE, Hackney SA, et al. (2010) High energy density lithium batteries. Mater EngAppI 81-101. Wiley-VCH. https://doi.org/10.1052/9783527630011
  • 6. Cakan RD, Palacin MR, et al. (2019) Rechargeable aqueous electrolyte batteries: From univalent to multivalent cation chemistry. J Mater Chem A 7:20519-20539. https://doi. org/10.1039/C9TA04735B
  • 7. Li W, Dahn JR, et al. (1994) Rechargeable lithium batteries with aqueous electrolytes science. 264:1115-1118. https://doi.Org/10.l 126/science.264.5162.1115
  • 8. Wang G, Fu L, et al. (2007) An aqueous rechargeable lithium battery with good cycling performance. Angew Chem Int Ed 46:295-297. https://doi.org/10.1002/anie.200603699
  • 9. Kim H, Hong J, Park KY, et al. (2014) Aqueous rechargeable Li and Na ion batteries. Chem Rev 114:11788-11827. https://doi.org/10.1021/cr500232y
  • 10. Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high- performance lithium-ion batteries. Adv Mater 20:2251-2269. https://doi.org/10.1002/ adma.200702242
  • 11. Wang Y, Li H, et al. (2010) Nano active materials for lithium-ion batteries. Nanoscale 2:1294-1305. doi: 10.1039/C0NR00068J
  • 12. Li W, Dahn JR (1995) Lithium-ion cells with aqueous electrolytes. J Electrochem 5ocl42:1742-1746. https://doi.Org/10.l 149/1.2044187
  • 13. Yutao L, Bin X, et al. (2012) Parameter identification and SOC estimation of electric vehicle lithium ion battery pack. J South China Univ Technol (Nat Sci) 40(12):79-85. doi. 10.3969/j.issn.l000-565X.2012.12.014
  • 14. Vujkovic M, Stojkovic I, et al. (2013) Gel-combustion synthesis of LiFeP04/C composite with improved capacity retention in aerated aqueous electrolyte solution. Electrochimica Acta 92:248-256. https://doi.Org/10.1016/j.electacta.2013.01.030
  • 15. Zhao M, Zhang B, Huang G, Zhang H, et al. (2013) Excellent rate capabilities of (LiFeP04/C)//LiV,Os in an optimized aqueous solution electrolyte. J Power Sources 232:181-186. https://doi.Org/10.1016/j.jpowsour.2013.01.026
  • 16. He P, Liu JL, et al. (2011) Investigation on capacity fading of LiFeP04 in aqueous electrolyte. Electrochim Acta 56:2351-2357. https://doi.Org/10.1016/j.electacta.2010.ll.027
  • 17. Liu XH, Saito T, et al. (2009) Electrochemical properties of rechargeable aqueous lithium ion batteries with an olivine-type cathode and a Nasicon-type anode. J Power Sources 189:706-710. https://doi.org/10.1016/jjpowsour.2008.08.050
  • 18. Sharma L, Nakamoto K, et al. (2019) Tavorite LiFeP04OH hydroxyphosphate as an anode for aqueous lithium-ionbatteries. J Power Sources 429:17-21. https://doi.org/10.1 016/j.jpowsour.2019.04.110
  • 19. Yang C, Ji X, Fan X, Gao T, et al. (2017) Flexible aqueous Li-ion battery with high energy and power densities. Adv Mater 29:1701972. https://doi.org/10.1002/adma. 201701972
  • 20. Wang H, Huang K, Zeng Y, et al. (2007) Electrochemical properties of TiP,07 and LiTi2(P04)(3) as anode material for lithium ion battery with aqueous solution electrolyte. Electrochimica Acta 52:3280-3285. https://doi.Org/10.l016/j.electacta.2006.10.010
  • 21. Ramanujapuram A, Yushin G (2018) Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv Energy Mater 8:1802624. https://doi.org/10.1002/aenm.201802624
  • 22. Ко S, Yamada Y. Miyazaki K, et al. (2019) Lithium-salt monohydrate melt: A stable electrolyte for aqueous lithium-ion batteries. Electrochem Commun 104:106488. https:// doi.org/10.1016/j.elecom.2019.106488
  • 23. Jiang P. Yan X, Chen L, Liang X, et al. (2019) Methylsulfonylmethane-based deep eutectic solvent as a new type of green electrolyte for a high-energy-density aqueous lithium-ion battery. ACS Energy Lett 4:1419-1426. doi:10.1021/acsenergylett.9b00968
  • 24. Luo JY, Xia YY. et al. (2007) Aqueous lithium-ion battery LiTi2(P04),/LiMn204 with high pow'er and energy densities as well as superior cycling stability. Adv Fund Mater 17:3877-3884.https://doi.org/10.1002/adfm.200700638
  • 25. Wang H, Huang K, Zeng Y, et al. (2007) Stabilizing cyclability of an aqueous lithium-ion battery LiNi/jMn/jCo/jOj/LijVjOj by polyaniline coating on the anode. Eledrochem Solid State Lett 10:A199-A203. https://doi.org/10.1149/L2748637
  • 26. Qin H, Song ZP. et al. (2014) Aqueous rechargeable alkali-ion batteries with polyimide anode. J Power Sources 249:367-372. https://doi.org/10.1016/j.jpow'sour.2013.10.091
  • 27. He P, Wang Y, et al. (2011) The effect of alkalinity and temperature on the performance of lithium-air fuel cell w'ith hybrid electrolytes. J Power Sources 196:5611-5616. https:// doi .org / 10.1016/j .jpow'sou r.2011.02.071
  • 28. Stojkovic IB, Cvjeticanin ND, et al. (2010) The improvement of the Li-ion insertion behaviour of Li105Cr010Mn, 8504 in an aqueous medium upon addition of vinylene carbonate. Electrochem Commun 12:371—373. DOI10.1016/j.elecom.2009.12.037
  • 29. Tian L, Yuan A, et al. (2009) Electrochemical performance of nanostructured spinel LiMn,04 in different aqueous electrolytes. J Power Sources 192:693-697. https://doi .org /16.1016/j .jpow'sour.2009.03.002
  • 30. Ruffo RF, Mantia FL, et al. (2011) Electrochemical characterization of LiCoO, as rechargeable electrode in aqueous LiNO, electrolyte. Solid State Ionics 192:289-292. https://doi.Org/10.1016/j.ssi.2010.05.043
  • 31. Suo L, Borodin O, Gao T, et al. (2015) “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350:938-943. doi:10.1126/science.aabl595
  • 32. Lux SF, Terborg L. Hachmoller O. et al. (2013) LiTFSI stability in w'ater and its possible use in aqueous lithium-ion batteries: pH dependency, electrochemical window and temperature stability. J Electrochem Soc 160:A1694-A1700. https://doi.Org/10.1149/2. 039310jes
  • 33. Suo L, Han F, Fan X, et al. (2016) “Water-in-salt” electrolytes enable green and safe Li-ion batteries for large-scale electric energy storage applications. J Mater Chem 4:6639-6644. https://doi.org/10.1039/C6TA00451В
  • 34. Dubouis N, Lemaire P, Mirvaux В et al. (2018) The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for “water-in-salt” electrolytes. Energy Environ Sci 11:3491-3499. https://doi.org/10.1039/C8EE02456A
  • 35. Baskoro F, Wong HQ, Yen HJ (2019) Strategic structural design of a gel polymer electrolyte tou'ard a high efficiency lithium-ion battery. ACS Appl Energy Mater 26:3937— 3971. https://doi.org/10.1021/acsaem.9b00295
  • 36. Song JY, Wang YY, Wan CC (1999) Review' of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183-197. https://doi.org/10.1016/S0378-7753(98) 00193-1
  • 37. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: A critical study. Ionics 23:497-540. https://doi.org/10.1007/sll581-016-1908-6
  • 38. Chen YH, Freunberger SA, Peng, Z, et al. (2012) Li-O, battery with a dimethylfor- mamide electrolyte. У Am Chem Soc134:7952-7957. https://doi.org/10.1021/ja302178w
  • 39. Long L, Wang S, Xiao M, Meng Y (2016) Polymer electrolytes for lithium polymer batteries. J Mater Chem A 4:10038-10069. https://doi.org/10.1039/C6TA02621D
  • 40. Dias FB, Plomp L, Veldhuis JB (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169-191. https://doi.org/10.1016/S0378-7753(99)00529-7
  • 41. Zhu YS, Wang XJ, Hou YY, et al. (2013) A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochim Acta 87:113-118. https://doi. org/10.1016/j.electacta.2012.08.114
  • 42. Zhao Y, Zhang Y, Sun H, et al. (2016) A self-healing aqueous lithium-ion battery. Angew Chem hit Ed 35:14384-14388. https://doi.org/10.1002/anie.201607951
  • 43. Bin D, Wang F, Tamirat AG, et al. (2018) Progress in aqueous rechargeable sodium-ion batteries. Adv Energy Mater 8:1703008. https://doi.org/10.1002/aenm.201703008
  • 44. Tevar AD, Whitacre JF (2010) Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na4Mn9Om in aqueous electrolyte. J Electrochem Soc 157:A870-A875. https://doi.Org/10.1149/l.3428667
  • 45. Li Z. Young D, Xia K, Carter WC, Chiang YM (2013) Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na044MnO2 system. Adv Energy Mater 3:290-294. https://doi.org/10.1002/aenm.201200598
  • 46. Kim H, Hong J, Park KY, Kim H, et al. (2014) Aqueous rechargeable Li and Na ion batteries. Chem Rev 14:11788-11827. https://doi.org/10.1021/cr500232y
  • 47. Wang Y, Mu L, Liu J, Yang Z, et al. (2015) A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv Energy Mater 5:1501005. https://doi.org/10.1002/aenm.201501005
  • 48. Hou Z, Li X, Liang J, et al. (2015) An aqueous rechargeable sodium ion battery based on a NaMn02-NaTi,(P04)3 hybrid system for stationary energy storage. J Mater Chem A 3:1400-1404. https://doi.org/10.1039/C4TA06018K
  • 49. Liu Y, Qiao Y, Zhang W, Xu H, et al. (2014) High-performance aqueous sodium-ion batteries with K„ „Mn02 cathode and their sodium storage mechanism. Nano Energy 5:97-104. https://doi.Org/10.1016/j.nanoen.2014.02.010
  • 50. Zhang Q, Liao C, Zha T, Li H (2016) A high rate 1.2V aqueous sodium-ion battery based on all NASICON structured NaTi2(P04)3 and Na3V,(P04)3. Electrochim Acta 196:470-478. https://doi.Org/10.1016/j.electacta.2016.03.007’
  • 51. Wang H, Zhang T, Chen C, et al. (2018) High-performance aqueous symmetric sodium- ion battery using NASICON-structured Na2VTi(P04)3. Nano Res 11:490-498. https:// doi.org/10.1007/sl2274-017-1657-5
  • 52. Wu E, Sun M, Shen Y, et al. (2014) Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(P04)3 intercalation chemistry. ChemSusChem 7:407- 411. https://doi.org/10.1002/cssc.201301036
  • 53. Kumar PR. Jung YH. Wang JE. Kim DK (2016) Na3V202(P04)2F-MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous sodium-ion batteries. J Power Sources 324:421-427. https://doi.org/10.1016/jjpowsour.2016.05.096
  • 54. Wu X, Cao Y, Ai X, Qian J, Yang H (2013) A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi, (P04)3Na2NiFe (CN)6 intercalation chemistry. Electrochem Commun 31:145-148. https://doi.Org/10.1016/j.elecom. 2013.03.013
  • 55. Gu T, Zhou M. Liu W, Cheng MK, et al. (2016) A polyimide-MWCNTs composite as high performance anode for aqueous Na-ion batteries. RSC Adv 6:53319-53323. https:// doi.org/10.1039/C6RA09075C
  • 56. Deng C, ZhangS, Dong Z.Shang Y (2014) lDnanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries. Nano Energy 4:49-55. https:// doi.org/10.1016/j.nanoen.2013.12.014
  • 57. Ke L, Dong J, Lin B, Yu T, et al. (2017) A NaV,(P04),@C hierarchical nanofiber in high alignment: Exploring a novel high-performance anode for aqueous rechargeable sodium batteries. Nanoscale 9:4183-4190. https://doi.org/10.1039/C7NR00793K
  • 58. Liu Y, Zhang BH, Xiao SY, Liu LL, et al. (2014) A nanocomposite of MoO, coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim Acta 116:512-517. https://doi.Org/10.1016/j. electacta.2013.11.077
  • 59. Pasta M, Wessells CD, Liu N, Nelson J, et al. (2014) Full open-framework batteries for stationary energy storage. Nat Commun 5:3007. https://doi.org/10.1038/ncomrns4007
  • 60. Lee MH, Kim SJ, Chang D, et al. (2019) Toward a low-cost high-voltage sodium aqueous rechargeable battery. Mater Today 29:26-36. https://doi.Org/10.1016/j.mattod.2019.
  • 02.004
  • 61. Kuhnel RS, Reber OD, Battaglia C (2017) A high-voltage aqueous electrolyte for sodium-ion batteries. ACS Energy Lett 2:2005-2006. https://doi.org/10.1021/acsene rgylett.7b00623
  • 62. Feuillade G, Perche PJ (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. Appl Electrochem 5:63-69. https://doi.org/10.1007/BF00625960
  • 63. Zhang Y, Tan ZT, Huang J (2018) Polyacrylonitrile-nanofiber based gel polymer electrolyte for novel aqueous sodium-ion battery based on a Na4Mn,,Ols cathode and Zn metal anode. Polymers 10(853):1—10. https://doi.org/10.3390/polyml0080853
  • 64. Zhong L, Lu Y, Li H, Tao Z, Chen J (2018) High-performance aqueous sodium-ion batteries with hydrogel electrolyte and alloxazine/CMK-3 anode. ACS Sustainable Chem Eng 6:7761-7768. https://doi.org/10.1021/acssuschemeng.8b00663
  • 65. Manickam M, Singh P, Thurgate S, Prince KJ (2006) Redox behavior and surface characterization of LiFePO., in lithium hydroxide electrolyte. J Power Sources 158:646- 649. https://doi.org/10.1016/jjpowsour.2005.08.059
  • 66. Wessells CD, Peddada SV, Matthew T, et al. (2011) The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J Electrochem Soc 159:A98-A103. https://doi.Org/10.1149/2.060202jes
  • 67. Gu X, Liu JL, Yang JH, Xiang HJ, et al. (2011) First-principles study of H+ intercalation in layer structured LiCoO,. J Phys Chem С 115:12672—12676. doi:10.1021/jp202846p

10 Transparent Electrolytes

 
Source
< Prev   CONTENTS   Source   Next >