Perspectives and Future Scopes

In all the electronic devices this liquid ciystal thermistor can be experimented. Performance-wise, chemical stability and operating range are the important improvisationmade. Further, this thermistor can be encapsulated in any desired shape, design to suit the specific device applications. The power consumption of the device is negligibly less, the weight of the device is also comparatively superior to the conventional thermistors.

Acknowledgements

The authors acknowledge the infrastructural support provided by the Bannari Amman Institute of Technology and financial support provided by SERB, New Delhi, India, vide file no.: EMR/2017/001075.

References

99

References

  • 1. S. Chandrasekhar, Liquid Crystals, Cambridge University Press, Cambridge, United Kingdom, 2010.
  • 2. C. Baristiran Kaynak, et al., High performance thermistor based on Sii_tGeA /Si multi quantum wells, IEEE Electron Device Letters, 2018,39, 753-756.
  • 3. K. Pal, et al., Functionalized graphene oxide dispersedhydrogen bonded liquid crystals efficient electro-optical switching, Journal of Display Technology, 2016,12(3), 281-287.
  • 4. P. A. Kumar and V. G. К. M. Pisipati, Ambient monocomponent ferroelectric liquid crystals with a wide Smectic-C* range (<-20 to < 65 C), Advanced Materials, 2000,12(21), 1617-1619.
  • 5. D.-Y. Kim, K.-U. Jeong, Light responsive liquid crystal soft matters: structures, properties, and applications, Liquid Crystals Today, 2019, 28(2), 34-45.
  • 6. K. L. Woon, et al., Electronic charge transport in extended nematic liquid crystals, Chemistry of Materials, 2006,18(9), 2311-2317.
  • 7. E. Raynes, Nematic Liquid Crystals: Applications, University of Oxford, Oxford, UK, 2016.
  • 8. P. J. Wright, Encyclopedia of Materials: Science and Technology, University of Kent, Canterbury, UK, 2001.
  • 9. ). ). Licari and D. W. Swanson, Adhesives Technology for Electronic Applications, Elsevier, CA, USA, 2005.
  • 10. N. Madhusudana, Nematic liquid crystals: molecular statistical theories and their applications, in Reference Materials Science and Materials Engineering, 2016.
  • 11. D. A. Mosley, Liquid crystal displays: an overview, Displays, 1993,14(2), 67-73.
  • 12. T. Elze and T. G. Tanner, Temporal properties of liquid crystal displays: implications for vision science experiments, PLoS One, 2012, 7(9), 1-20.
  • 13. T. Elze and T. G. Tanner, Liquid crystal display response time estimation for medical applications, Medical Physics, 2009, 36, 4984-4990.
  • 14. M. E. Becker, LCD response time evaluation in the presence of backlight modulations, SID Symposium Digest of Technical Papers, 2008, 39, 24- 27.
  • 15. Badano, Principles of cathode-ray tube and liquid crystal display devices, in Advances in Digital Radiography Categorical Course in Diagnostic Radiology Physics, RSNA, Oak Brook, IL, 2003, pp. 91-102.
  • 16. J. Someya and H. Sugiura, Evaluation of liquid-crystal-display motion blur with moving-picture response time and human perception, Journal of the Society for Information Display, 2007,15(1), 79-86.
  • 17. ).-H. Lee, D. N. Liu and S.-T. Wu, Introduction to Flat Panel Displays, Wiley, West Sussex, UK, 2008.
  • 18. J.-K. Song, DCC11: novel method for fast response time in PVA mode, SID Symposium Digest of Technical Papers, 2004, 35,1344-1347.
  • 19. D. ). R. Cristaldi, S. Pennisi and R Pulvirenti, Liquid Crystal Display Drivers, Springer, Berlin, Germany, 2009.
  • 20. W. den Boer, Active Matrix Liquid Crystal Displays, Elsevier, Burlington, 2005.
  • 21. P. Wang and D. Nikolic, An LCD monitor with sufficiently precise timing for research in vision, Frontiers in Human Neuroscience, 2011, 5, 85.
  • 22. M. Schadt, How we made the liquid crystal display, Nature Electronics, 2018,1, 481-481.
  • 23. G. Brown, Liquid crystals and some of their applications in chemistry, Analytical Chemistry, 1969,41, 26A-39A.
  • 24. Saupe, Recent results in the field of liquid crystals, Angewandte Chemie International Edition, 1968, 7,97-112.
  • 25. E. Stepke, Liquid crystals: perspectives, prospects and products, Electro- Optical Systems Design, 1972,4, 20-31.
  • 26. O. S. Selawry, H. S. Selawry and J. F. Holland, The use of liquid cholesteric crystals for thermographic measurement of skin temperature in man, Molecular Crystals and Liquid Crystals, 1969,1,495-502.
  • 27. W. Woodmansee, Aerospace thermal mapping applications of liquid crystals, Applied Optics, 1968, 7,1721-1728.
  • 28. G. Gottarelli and B. Samori, Some applications of liquid crystals in organic chemistry, Inorganica Chimica Acta, 1980,40, X10-X11.
  • 29. N. Kasch, Liquid crystals: applications and industry, Liquid Crystal Today, 2013,22(3), 70-71.
  • 30. G. H. Brown, Structure, properties, and some applications of liquid crystals, Journal of the Optical Society of America, 1973, 63,1505-1514.
  • 31. ). L. Fergason, Liquid crystals in nondestructive testing, Applied Optics, 1968, 7(9), 1729-1737.
  • 32. Bregar, M. Stimulak and M. Ravnik, Photonic properties of heliconical liquid crystals, Optics Express, 2018, 26(18), 23265-23277.
  • 33. M. H. Kishor and M. L. N. Madhu Mohan, Realization of memory effect in smectic X* phase,Journal of Molecular Structure, 2018,1168, 302-308.
  • 34. V. N. Vijayakumar and M. L. N. Madhu Mohan, Double hydrogen bonded liquid crystals: a study of light modulation and field induced transition (FiT), Molecular Crystals and Liquid Crystals, 2010, 517(1), 113-126.
  • 35. M. H. Kishor and M. L. N. Madhu Mohan, An innovative technique to achieve tunable filtering action by ferroelectric material in infrared region Journal of Electronic Materials, 2020,49, 2311-2316.
  • 36. H. B. Lu, J. Xing, C. Wei, J. Q. Sha, G. В Zhang, G. Q. Lv, J. Zhu and L. Z. Qiu, Near-infrared light directed reflection in a cholesteric liquid crystal, Optical Materials Express, 2017, 7(11), 4163-4170.
  • 37. ). E. Stockley, G. D. Sharp and К. M. Johnson, Fabry-Perot etalon with polymer cholesteric liquid-crystal mirrors, Optics Letters, 1999, 24(1), 55-57.
  • 38. L. Vicari, Optical Applications of Liquid Crystals, CRC Press, Boca Raton, 2019.
  • 39. M. L. N. Madhu Mohan, Light filtering Journal of Molecular Liquids, 2020, 4(20), 378-385.
  • 40. V. N. Vijayakumar and M. L. N. Madhu Mohan, Experimental evidence of an optical shuttering action in cholesteric phase of a double hydrogen bonded ferroelectric liquid crystal, Journal of Optoelectronics and Advanced Materials, 2009,11,1139-1146.
  • 41. M. Hari Kishor and M. L. N. Madhu Mohan, Investigations on smectic X* and re-entrant smectic C* orderings in hydrogen bonded ferroelectric liquid crystals Journal of Molecular Liquids, 2019, 273, 504-524.
  • 42. Y.-G. Fuh, S.-J. Ho, S.-T. Wu and M.-S. Li, Optical filter with tunable wavelength and bandwidth based on phototunable cholesteric liquid crystals, Applied Optics, 2014, 53,1658-1662.
 
Source
< Prev   CONTENTS   Source   Next >