SUMMARY

The generator and converter are main components of an electric drive train in the wind turbine. Therefore, diagnose and monitoring technologies for generators and converters are the focus of this chapter. Since the converter contains voltage and current signals of both converter and generator, converter-based advanced diagnose and monitoring technologies for wind turbines are very promising. For wind pow'er generators, converter-based diagnose and monitoring technologies for winding, bearing, and eccentricity faults are introduced. For converters in w'ind pow'er systems, converter-based diagnose and monitoring technologies for three typical faults, i.e., open-circuit fault, sw'itch device faults, and DC voltage and sensor faults are summarized. Finally, the mainstream converter-based diagnose and monitoring technologies for the whole wind turbine system have also been reviewed in this chapter.

REFERENCES

  • 1. Maekawa, N.. Riahy. G. H., Hosseinian. S. H.. et al. 2011. Wind power optimal capacity allocation to remote areas taking into account transmission connection requirements. IET Renewable Power Generation 5(5): 347-355.
  • 2. Qiao, W. and Lu. D. 2015. A survey on wind turbine condition monitoring and fault diagnosis—part I: components and subsystems. IEEE Transactions on industrial electronics 62(10): 6536-6545.
  • 3. Amirat, Y.. Benbouzid. M. E. H., Bensaker. B„ et al. 2007. Condition monitoring and fault diagnosis in wind energy conversion systems: a review. Proceedings of 2007 Electric Machines & Drives Conference: 1434-1439.
  • 4. Malekpour, M.. Phung, B.T. and Ambikairajah, E. 2017. Online technique for insulation assessment of induction motor stator windings under different load conditions. IEEE Transactions on Dielectrics and Electrical Insulation 24(1): 349-358.
  • 5. Stavrou, A., Sedding, H. G. and Penman, J. 2001. Current monitoring for detecting inter-turn short circuits in induction motors. IEEE Transactions on Energy Conversion 16(1): 32-37.
  • 6. Yang, S„ Hsu, Y„ Chou. P„ et al. 2018. Fault detection and tolerant capability of parallel-connected permanent magnet machines under stator turn fault. IEEE Transactions on Industry Applications 54(5): 4447-4456.
  • 7. Mohammed, O. A., Abed, N. Y. and Ganu, S. 2006. Modeling and characterization of induction motor internal faults using finite-element and discrete wavelet transforms. IEEE Transactions on Magnetics 42(10): 3434-3436.
  • 8. Yagami. Y., Araki. C„ Mizuno. Y„ et al. 2015. Turn-to-turn insulation failure diagnosis of stator winding of low voltage induction motor with the aid of support vector machine. IEEE Transactions on Dielectrics and Electrical Insulation 22(6): 3099-3106.
  • 9. Cruz, S. M. A. and Cardoso, A. J. M. 2005. Multiple reference frames theory: a new method for the diagnosis of stator faults in three-phase induction motors. IEEE Transactions on Energy Conversion 20(3): 611-619.
  • 10. Tallam. R. M., Habetler, T. G. and Harley, R. G. 2002. Self-commissioning training algorithms for neural networks with applications to electric machine fault diagnostics. IEEE Transactions on Power Electronics 17(6): 1089-1095.
  • 11. Lee. S. B.. Younsi, K. and Kliman. G. B. 2005. An online technique for monitoring the insulation condition of AC machine stator windings. IEEE Transactions on Energy Conversion 20. (4): 737-745.
  • 12. Cash, M. A.. Habetler. T. G. and Kliman, G. B. 1998. Insulation failure prediction in AC machines using line-neutral voltages. IEEE Transactions on Industry Applications 34(6): 1234-1239.
  • 13. Zamudio-Ramirez, I., Antonino-Daviu. J. A.. Osornio-Rios, R. A., et al. 2020. Detection of winding asymmetries in wound-rotor induction motors via transient analysis of the external magnetic field. IEEE Transactions on Industrial Electronics 67(6):5050-5059.
  • 14. Sapena-Bano, A., Riera-Guasp, M., Puche-Panadero, R., et al. 2015. Harmonic order tracking analysis: a speed-sensorless method for condition monitoring of wound rotor induction generators. IEEE Transactions on Energy Conversion 30(3):833—841.
  • 15. Vedreno-Santos, F.. Riera-Guasp. M.. Henao H., et al. 2014. Diagnosis of rotor and stator asymmetries in wound-rotor induction machines under nonstationary operation through the instantaneous frequency. IEEE Transactions on Industrial Electronics 61(9):4947—4959.
  • 16. Zaggout, M., Tavner, P., Crabtree, C., et al. 2014. Detection of rotor electrical asymmetry in wind turbine doubly-fed induction generators. IET Renewable Power Generation 8(8):878-886.
  • 17. Djurovic, S., Crabtree. C. J„ Tavner, P. J., et al. 2012. Condition monitoring of wind turbine induction generators with rotor electrical asymmetry. IET Renewable Power Generation 6(4):207—216.
  • 18. Ibrahim. R. K.. Watson. S. J„ Djurovic, S„ et al. 2018. An effective approach for rotor electrical asymmetry detection in wind turbine DFIGs. IEEE Transactions on Industrial Electronics 65(11):8872—8881.
  • 19. Wu, Y. C. and Li. Y. G. 2015. Diagnosis of rotor winding interturn short-circuit in turbine generators using virtual power. IEEE Transactions on Energy Conversion. 30(11:183-188.
  • 20. Bellini, A.. Filippetti, F., Tassoni. C., et al. 2008. Advances in diagnostic techniques for induction machines. IEEE Transactions on Industry Electronics 55(12): 4109-4126.
  • 21. Plazenet, T., Boileau, T., Caironi, C., et al. 2018. A comprehensive study on shaft voltages and bearing currents in rotating machines. IEEE Transactions on Industry Applications 54(4): 3749-3759.
  • 22. Immovilli. F.. Bianchini, C„ Cocconcelli, M.. et al. 2013. Bearing fault model for induction motor with externally induced vibration. IEEE Transactions on Industry Electronics 60(8): 3408-3418.
  • 23. Ojaghi. M.. Sabouri, M. and Faiz. J. 2017. Analytic model for induction motors under localized bearing faults. IEEE Transactions on energy conversion 33(2): 617-626.
  • 24. Zika, T., Gebeshuber, I. C.. Buschbeck. F„ et al. 2009. Surface analysis on rolling bearings after exposure to defined electric stress. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 223(5): 787-797.
  • 25. Chen, S., Lipo. T. A. and Fitzgerald. D. 1996. Modeling of motor bearing currents in PWM inverter drives. IEEE Transactions on Industry Applications 32(6): 1365-1370.
  • 26. К Kalaiselvi. J. and Srinivas, S. 2014. Bearing currents and shaft voltage reduction in dual-inverter-fed open-end winding induction motor with reduced CMV PWM methods. IEEE Transactions on Industrial Electronics 62(1): 144-152.
  • 27. Zitzelsberger. J.. Hofmann. W.. Wiese. A., et al. 2005. Bearing currents in doubly-fed induction generators. Proceeding of 2005 European Conference on Power Electronics and Applications: 9.
  • 28. Muetze. A. and Binder. A. 2007. Practical rules for assessment of inverter-induced bearing currents in inverter-fed AC motors up to 500 kW. IEEE Transactions on Industrial Electronics 54(3): 1614-1622.
  • 29. Buckley, G. W., Corkins, R. J. and Stephens, R. N. 1988. The importance of grounding brushes to the safe operation of large turbine generators. IEEE Transactions on Energy Conversion 3(3): 607-612.
  • 30. Bo, L., M. C.. Y, T., et al. 2000. Neural-network-based motor rolling bearing fault diagnosis. IEEE Transactions Industrial Electronics, 2000,47(5): 1060-1069.
  • 31. Gong, X. and Qiao, W. 2013. Bearing fault diagnosis for direct-drive wind turbines via current-demodulated signals. IEEE Transactions on Industry Electronics 60(8): 3419-3428.
  • 32. Blodt, M., Regnier. J. and Faucher. J. 2009. Distinguishing load torque oscillations and eccentricity faults in induction motors using stator current wigner distributions. IEEE Transactions on Industry Applications 45(6): 1991-2000.
  • 33. Qiao, W. and Lu, D. 2015. A survey on wind turbine condition monitoring and fault diagnosis—part II: signals and signal processing methods. IEEE Transactions on Industry Electronics 62(10): 6546-6557.
  • 34. Zhang, P. and Neti, P. 2015. Detection of gearbox bearing defects using electrical signature analysis for doubly fed wind generators. IEEE Transactions on Industry Applications 51(3): 2195-2200.
  • 35. Blodt, M.. Granjon. P. Raison, B.. et al. 2008. Models for bearing damage detection in induction motors using stator current monitoring. IEEE Transactions on Industry Electronics 55(4): 1813—1822.eite, V. С. M. N„ Borges, D. S. J. G.. Veloso. G. F. C..

et al. 2015. Detection of Localized Bearing Faults in Induction Machines by Spectral Kurtosis and Envelope Analysis of Stator Current. IEEE Transactions on Industrial Electronics 62(3): 1855-1865.

  • 36. An. X., Jiang. D.. Li. S., et al. 2011. Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine. Energy 36(9): 5508-5520.
  • 37. Immovilli, F., Bellini, A., Rubini, R.. et al. 2010. Diagnosis of bearing faults in induction machines by vibration or current signals: a critical comparison. IEEE Transactions on Industry Applications 46(4): 1350-1359.
  • 38. Elbouchikhi, E.. Choqueuse, V., Amirat, Y.. et al. 2017. An efficient Hilbert-Huang transform-based bearing faults detection in induction machines. IEEE Transactions on Energy Conversion 32(2): 01-413.
  • 39. Pandarakone, S. E., Mizuno, Y. and Nakamura. H. 2017. Distinct fault analysis of induction motor bearing using frequency spectrum determination and support vector machine. IEEE Transactions on Industry Applications 53(3): 3049-3056.
  • 40. Silva. J. L. H. and Cardoso. A. J. M. 2005. Bearing failures diagnosis in three-phase induction motors by extended Park's vector approach. Proceedings of 31st Annual Conference of IEEE Industrial Electronics Society: 6.
  • 41. Ahmadi, H. and Moosavian, A. 2011. Fault diagnosis of journal-bearing of generator using power spectral density and fault probability distribution function. Proceedings of International Conference on Innovative Computing Technology: 30-36.
  • 42. Mbo’o, С. P. and Hameyer. K. 2016. Fault diagnosis of bearing damage by means of the linear discriminant analysis of stator current features from the frequency selection. IEEE Transactions on Industry Applications 52(5): 3861-3868.
  • 43. Boudinar. A. H., Benouzza, N.. Bendiabdellah, A., et al. 2016. Induction motor bearing fault analysis using a Root-MUSIC method. IEEE Transactions on Industry Applications 52(5): 3851-3860.
  • 44. Dalvand, F., Kang. M., Dalvand. S„ et al. 2018. Detection of generalized-roughness and single-point bearing faults using linear prediction-based current noise cancellation. IEEE Transactions on Industrial Electronics 65(12): 9728-9738.
  • 45. Tao. R.. Li, Y. L. and Wang. Y. 2009. Short-time fractional fourier transform and its applications. IEEE Transactions on Signal Processing 58(5): 2568-2580.
  • 46. Singh, S. and Kumar. N. 2016. Detection of bearing faults in mechanical systems using stator current monitoring. IEEE Transactions on Industrial Informatics 13(3): 1341-1349.
  • 47. Abid. F. B„ Zgarni, S. and Braham. A. 2018. Distinct bearing faults detection in induction motor by a hybrid optimized SWPT and aiNet-DAG SVM. IEEE Transactions on Energy Conversion 33(4): 1692-1699.
  • 48. Schlechtingen, M.. Santos, I. F. and Achiche, S. 2013. Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: System description. Applied Soft Computing Journal 13(1): 259-270.
  • 49. Li. G. and Shi. J. 2012. Applications of Bayesian methods in wind energy conversion systems. Renewable Energy 43: 1-8.
  • 50. Refaat, S. S.. Abu-Rub, H.. Saad. M. S„ et al. 2013. ANN-based for detection, diagnosis the bearing fault for three phase induction motors using current signal. Proceedings of 2013 IEEE International Conference on Industrial Technology: 253-258.
  • 51. Liu, T. I.. Singonahalli, J. H. and Iyer. N. R. 1996. Detection of roller bearing defects using expert system and fuzzy logic. Mechanical systems and signal processing 10(5): 595-614.
  • 52. Stack, J. R.. Habetler, T. G. and Harley. R. G. 2003. Fault classification and fault signature production for rolling element bearings in electric machines. IEEE Transactions on Industry Applications 40(3): 735-739.
  • 53. Nikias, C. L. and Mendel. J. M. 1993. Signal processing with higher-order spectra. IEEE Signal processing magazine 10(3): 10-37.
  • 54. Stack. J. R. Harley. R.G. and Habetler. T. G. 2004. An amplitude modulation detector for fault diagnosis in rolling element bearings. IEEE Transactions on Industry Electronics 51(5): 1097-1102.
  • 55. Hamomd, O., Alabied. S„ Xu. Y„ et al. 2017. Vibration based centrifugal pump fault diagnosis based on modulation signal bispectrum analysis. Proceedings of 2017 23rd International Conference on Automation and Computing: 1-5.
  • 56. Alwodai. A.. Yuan. X., Shao. Y„ et al. 2012. Modulation signal bispectrum analysis of motor current signals for stator fault diagnosis. Proceedings of 18th International Conference on Automation and Computing: 1-6.
  • 57. Chen. X.. Xu. W„ Liu, Y., et al. 2020. Bearing corrosion failure diagnosis of doubly fed induction generator in wind turbines based on stator current analysis. IEEE Transactions on Industry Electronics 67(5): 3419-3430.
  • 58. Cardoso, A. J. M., Cruz. S. M. A. and Fonseca, D. S. B. 1999. Inter-turn stator winding fault diagnosis in three-phase induction motors, by Park's vector approach. IEEE Transactions on Energy Conversion 14(3): 595-598.
  • 59. Cruz, S. M. A. and Cardoso. A. J. M. 2001. Stator winding fault diagnosis in three- phase synchronous and asynchronous motors, by the extended Park's vector approach. IEEE Transactions on industry applications 37(5): 1227-1233.
  • 60. Blodt. M.. Granjon. P.. Raison, B.. et al. 2008. Models for bearing damage detection in induction motors using stator current monitoring. IEEE Transactions on Industry Electronics 55(4): 1813-1822.
  • 61. Salah, A. A.. Dorrell, D.G. and Guo, Y. 2019. A review of the monitoring and damping unbalanced magnetic pull in induction machines due to rotor eccentricity. IEEE Transactions on Industry Applications 55(3): 2569-2580.
  • 62. Nandi, S. Ilamparithi, T. C„ Lee, S. B., et al. 2011. Detection of eccentricity faults in induction machines based on nameplate parameters. IEEE Transactions on Industry Electronics 58(5): 1673-1683.
  • 63. Ebrahimi. В. M.. Faiz. J. and Roshtkhari. M. J. 2009. Static-, dynamic-, and mixed- eccentricity fault diagnoses in permanent-magnet synchronous motors. IEEE Transactions on Industry Electronics 56( 11): 4727-4739.
  • 64. Thomson, W. T., Fenger, M. 2001. Current signature analysis to detect induction motor faults. IEEE Industry Applications Magazine 7(4): 26-34.
  • 65. Thomson, W. T. 2001. On-line MCSA to diagnose shorted turns in low voltage stator windings of 3-phase induction motors prior to failure. Proceedings of 2001 IEEE International Electric Machines and Drives Conference: 891-898.
  • 66. Gyftakis. K. N. and Kappatou. J.C. 2013. A novel and effective method of static eccentricity diagnosis in three-phase PSH induction motors. IEEE Transactions on Energy Conversion 28(2): 405-412.
  • 67. Thomson, W. T. and Barbour. A. 1998. On-line current monitoring and application of a finite element method to predict the level of static airgap eccentricity in three-phase induction motors. IEEE Transactions on Energy Conversion 13(4): 347-357.
  • 68. Cardoso, A. J. M. and Saraiva, E. S. 1991. Computeraided detection of airgap eccentricity in operating three-phase induction motors, by Park’s vector approach. Proceedings of 1991 IEEE Industry Applications Society Annual Meeting: 94-98.
  • 69. Gritli. Y.. Bellini. A., Rossi, C„ et al. 2017. Condition monitoring of mechanical faults in induction machines from electrical signatures: Review of different technique. Proceedings of 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and drives: 77-84.
  • 70. Blodt, M.. Regnier, J. and Faucher, J. 2009. Distinguishing load torque oscillations and eccentricity faults in induction motors using stator current Wigner distributions. IEEE Transactions on Industry Applications 45(6): 1991-2000.
  • 71. Yahia. K. Sahraoui, M., Cardoso. A. J. M., et al. 2016. The use of a modified pro- ny’s method to detect the airgap-eccentricity occurrence in induction motors. IEEE Transactions on Industry Applications 52(5): 3869-3877.
  • 72. Freire, N. M. A., Estima. J. O. and Cardoso. A. J. M. 2013. Open-circuit fault diagnosis in PMSG drives for wind turbine applications. IEEE Transactions on Industrial Electronics 60(9): 3957-3967.
  • 73. Jlassi. I.. Estima, J. O., El Khil, S. K., Bellaaj. N. M. and Cardoso. A. J. M. 2015. Multiple open-circuit faults diagnosis in back-to-back converters of PMSG drives for w'ind turbine systems. IEEE Transactions on Power Electronics 30(5): 2689-2702.
  • 74. Zhao. H. and Cheng, L. 2017. Open-circuit faults diagnosis in back-to-back converters of DF w'ind turbine. IET Renew. Power Generation 11(4): 417-424.
  • 75. Zhao, H. and Cheng, L. 2018. Open-swatch fault-diagnostic method for back-to-back converters of a doubly fed wind power generation system. IEEE Transactions on Power Electronics 33(4): 3452-3461.
  • 76. Rannestad, B.. Maarbjerg, A. E., Frederiksen. K., Munk-Nielsen, S. and Gadgaard, K. 2018. Converter monitoring unit for retrofit of wind power converters IEEE Transactions on Power Electronics, 33(5): 4342-4351.
  • 77. Ко. Y.-J.. Lee, K.-B., Lee, D.-C., Kim. J.-M. 2012. Fault diagnosis of three-parallel voltage-source converter for a high-power wind turbine. IET Power Electronics, 5(7): 1058-1067.
  • 78. Wang, Z. and Chang. L. 2008. A DC voltage monitoring and control method for three- phase grid-connected w'ind turbine inverters. IEEE Transactions on Power Electronics 23(3): 1118-1125.
  • 79. Saha. S., Haque, M. E. and Mahmud, M. A. 2018. Diagnosis and mitigation of sensor malfunctioning in a permanent magnet synchronous generator based wind energy conversion system. IEEE Transactions on Energy Conversion 33(3): 938-948.
  • 80. Schlechtingen, M„ Santos, I. F. and Achiche, S. 2013. Using data-mining approaches for wind turbine pow'er curve monitoring: a comparative study. IEEE Transactions on Sustainable Energy 4(3): 671-679.
  • 81. Park, J., Lee, J., Oh. K.. et al. 2014. Development of a novel pow'er curve monitoring method for wind turbines and its field tests. IEEE Transactions on Energy Conversion 29(1): 119-128.
  • 82. Guo, P. and Infield. D. 2020. Wind turbine power curve modelling and monitoring with gaussian process and SPRT. IEEE Transactions on Sustainable Energy 11(1): 107-115.
  • 83. Long. H.. Wang, L., Zhang. Z„ et al. 2015. Data-driven wind turbine power generation performance monitoring. IEEE Transactions on Industrial Electronics 62(10): 6627-6635.
  • 84. Ouyang. T„ He. Y. and Huang, H. 2019. Monitoring w'ind turbines’ unhealthy status: a data-driven approach. IEEE Transactions on Emerging Topics in Computational Intelligence 3(2): 163-172.
  • 85. Qian. P., Ma. X., Zhang. D.. et al. 2019. Data-driven condition monitoring approaches to improving pow'er output of w'ind turbines. IEEE Transactions on Industrial Electronics
  • 66(8): 60Г2-6020.
  • 86. Li, J.. Li. Q. and Zhu, J. 2019. Health condition assessment of w'ind turbine generators based on supervisory control and data acquisition data. IET Renewable Power Generation 13(8): 1343-1350.
  • 87. Gu, Y. and Xing, Y. 2019. Online monitoring of wind turbine operation efficiency and optimization based on benchmark values. IEEE Access 7: 132193-132204.
  • 88. Kusiak, A. and Verma. A. 2012. A data-mining approach to monitoring wind turbines. IEEE Transactions on Sustainable Energy 3(1): 150-157.
  • 89. Zhao. L„ Zhou. Y.. Matsuo. I. В. M.. et al. 2020. The design of a remote online holistic monitoring system for a wind turbine. IEEE Transactions on Industry Applications 56(1): 14-21.
  • 90. Yang, W.. Tavner. P. J., Crabtree, C. J.. et al. 2010. Cost-effective condition monitoring for wind turbines. IEEE Transactions on Industrial Electronics 57(1): 263-271.
  • 91. Li. R. Song, Y., Li, D., et al. 2015. Control and monitoring for grid-friendly wind turbines: research overview and suggested approach. IEEE Transactions on Power Electronics 30(4): 1979-1986.
 
Source
< Prev   CONTENTS   Source   Next >