Table of Contents:

The engineering of imidic polymers is a research area in continuous development that still leads to the progress of current technologies. Aromatic-alicyclic Pis have emerged as a solution to solve classical issues of wholly aromatic ones. The advantages of this categoiy of imidic polymers arise from their improved processability, optical, and dielectric properties. All these allow manufacturing a larger assortment of products for many industries. Depending on the used processing approach one may obtain materials with adapted properties for specific applications ranging from electronics to biomedicine.

Worldwide research activities are directed toward Pis with an optimized balance between stiffness, free volume, and polarity enabling to upgrade the functionality of the devices, like light emitting diode, organic transistors, displays, or solar cells. The future of this domain relies not only on structural optimization but also on perspective of interface engineering to achieve devices with better reliability.

Despite remarkable progress in the design of Pis, there still remain certain challenges concerning the synthesis by less polluting procedures to attain “green” products. This should be seriously taken into account by researchers considering the alarming amount of wastes produced by the electronic industry. Therefore, green chemistry concepts should be more often applied in production of Pi-based products.

The relatively recent found biocompatibility of Pis must be explored more deeply when designing biomedical devices, like epidermal electronics, cardiac electrophysiological monitoring, or organic digital mechanoreceptor. Advanced procedures of physical/chemical modifications of PI surface should be researched to achieve a more stable surface functionality, which is a key factor in numerous applications.


  • • PI
  • alicyclic
  • synthesis
  • processability
  • green chemistry
  • applications


  • 1. Lu, F. Some Heterocyclic Polymers and Polysiloxaues. J. Macromol. Sci. Part C. 1998, 38, 143-205.
  • 2. Ghosh. M. K.: Mittal, K. L. Polyimides: Fundamental and Applications-, Marcel Dekker: New York. 1996.
  • 3. Fawas, E. P.; Katsaros, F. K.: Papageorgiou, S. K.; Sapalidis, A. A.; Mitropoulos, A. Ch. A Review of the Latest Development of Polyimide Based Membranes for CO, Separations. React. Funct. Polym. 2017,120, 104-130.
  • 4. Thompson, L. F.; Wilson, C. G.; Tagawa, S. Polymers for Microelectronics: Resists and Dielectrics. ACS Symposium Series: Washington, DC. 1994.
  • 5. Perichaud. A. A.; Iskakov. R. M.; Kurbatov, A.; Akhmetov, T. Z.; Prokohdko, O. Y.; Razumovskaya, I. Y.; Bazhenov, S. L.; Apel. P. Y.; Yoytekunas, V.Yu.; Abadie. M. J. M. Auto-reparation of Polyimide Film Coatings for Aerospace Applications Challenges & Perspectives. In High Perfonnance Polymers - Polyimides Based - from Chemistiy to Applications, Abadie. M.. Ed.; IuTech: Croatia, 2012.
  • 6. Ma. X.-H.; Yang, S.-Y. Polyimide Gas Separation Membrane. In Advanced Polyimide Materials Synthesis, Characterization and Applications', Yang, S.-Y., Ed.; Elsevier: Amsterdam, 2018: pp 257-322.
  • 7. Lee, D.; Lim, Y. W.; Im, H. G.; Jeong, S.; Ji, S.; Kim, Y. H.: Choi, G. M.; Park, J. U.; Lee, J. Y.; Jin. J. et al. Bioinspired transparent laminated composite film for flexible green optoelectronics. ACSAppl. Mater. Interfaces 2017, 9, 24161-24168.
  • 8. Kim, M.; Park. J.; Ji, S.; Shin, S. H.; Kim, S. Y.; Kim, Y. C.; Kim. J. Y.; Park, J. U. Fully-integrated, Bezel-less Transistor Arrays Using Reversibly Foldable Interconnects and Stretchable Origami Substrates. Nanoscale 2016, 5, 9504-9510.
  • 9. Richardson, R. R. Jr.; Miller, J. A.; Reichert, W. M. Polyimides as Biomaterials: Preliminary Biocompatibility Testing. Biomaterials 1993,14, 627-635.
  • 10. Teo. A. J. T. Mishra, A.; Park. I.; Kim, Y.-J.; Park. W.-T.; Yoon, Y.-J. Polymeric Biomaterials for Medical Implants and Devices. .ICS Biomater. Sci. Eng. 2016, 2, 454-472.
  • 11. Mathews, A. S.; Kim, I.; Ha; C.-S. Synthesis, Characterization, and Properties of Fully Aliphatic Polyimide and their Derivatives for Microelectronics and Optoelectronics Applications. Macromol. Res. 2007,15, 114-128.
  • 12. Khan, M. U.; McGrath, J.; Corbett, B.: Pemble, M. Air-clad Broadband Waveguide Using Micro-molded Polyimide Combined with a Robust, Silica-based Inverted Opal Substrate. Opt. Mater. Express. 2017, 7, 3155-3161.
  • 13. loan, S.; Hulubei, C.; Popovici, D.; Musteata, V. E. Origin of Dielectric Response and Conductivity of Some Alicyclic Polyimides. Polym Eng. Sci. 2013, 53, 1430-1447.
  • 14. Ando, S.; Matsuura, T; Sasaki, S. Coloration of Aromatic Polyimides and Electronic Properties of then- Source Materials. Polym. J. 1997, 29, 69-76.
  • 15. Ando, S.; Harada. M.: Okada, T.; Ishige, R. Effective Reduction of Volumetric Thermal Expansion of Aromatic Polyimide Films by Incorporating Interchain Crosslinking. Polymers (Basel). 2018,10, 761.
  • 16. Simone, C. D.: Yaccaro, E.: Scola, D. A. The Synthesis and Characterization of Highly Fluorinated Aromatic Polyimides. J. Fluor. Chent. 2019,224, 100-112.
  • 17. Butnaru, I.; Hamciuc, E.; Bruma. M.; Szesztay, M. Modified Aromatic Polyimides with Flexible Groups. Rev. Roum. Chilli., 2009, 54, 1023-1029.
  • 18. Wang, X.; Li, Y.; Gong, C.; Zhang, S.; Ma, T. Synthesis and Characterization of Novel Soluble Pyridine-Containing Polyimides Based on4-pheuyl-2,6-bis4-(4-aminophenoxy) phenyl-pyridine and Various Aromatic Dianhydrides. J. Appl. Polym. Sci. 2007, 104, 212-219.
  • 19. Chou, С. H.; Reddy D. S.; Shu, C. F. Synthesis and Characterization of Spirobifluorene- based Polyimides. J. Polym. Sci. Part A. 2002, 40, 3615-3621.
  • 20. Chung. I. S.; Kim. S. Y. Soluble Polyimides from Unsymmetrical Diamine with Trifluoromethyl Pendent Group. Macromolecules. 2000,33, 3190-3193.
  • 21. Hwang, H. J.; Li, С. H.: Wang, C. S. Dielectric and Thermal Properties of Dicyclopeutadieue Containing Bismaleimide and Cyanate Ester. Part IV Polymer. 2006, 47, 1291-1299.
  • 22. Hulubei, C.; Popovici, D. Novel Polyimides Containing Alicyclic Units. Synthesis and Characterization. Rev. Roitm. Chim. 2011, 56, 209-215.
  • 23. Eichstadt, A. E.; Ward, T. C.; Bagwell, M. D.; Fan4,1. V; Dunson, D. L.; McGrath, J. E. Synthesis and Characterization of Amorphous Partially Aliphatic Polyimide Copolymers Based on Bisphenol-A dianhydride. Macromolecules. 2002, 35, 7561-7568.
  • 24. Hasegawa. M. Development of Solutiou-processable, Optically Transparent Polyimides with Ultra-low Linear Coefficients of Thermal Expansion. Polymers. 2017, 9, 520.
  • 25. Hasegawa. M.; Horie. K. Photophysics, Photochemistry, and Optical Properties of Polyimides. Prog. Polym. Sci. 2001, 26, 259-335.
  • 26. St. Clan, A. K.; Slemp, W. S. Evaluation of Colorless Polyimide Film for Thermal Control Coating Applications. SAMPE J. 1985, 21, 28-33.
  • 27. Mathews, A. S.; Kim. D.; Kim. Y.; Kim. I.; Ha, C.-S. Synthesis and Characterization of Soluble Polyimides Functionalized with Carbazole Moieties. J. Polym. Sci. Part A. 2008, 46, 8117-8130.
  • 28. Bessonov, M. I.; Zubkov, V A. Pofyamic Acid and Polyimides: Synthesis, Transformation and Structure', CRC Press: Boca Raton, FL, 1993.
  • 29. Ando, S.; Ueda, M.; Kakimoto, M.: Kochi, M.; Takeichi, T.; Hasegawa, M.; Yokota, R. (Eds.) The Latest Polyimides: Fundamentals and Applications', 2nd ed.; NTS: Tokyo, Japan, 2010.
  • 30. Sroog, С. E. Polyimide. Prog. Polym. Sci. 1991,16, 561-694.
  • 31. Sroog, С. E. Polyimides. J. Polymer Sci. Macromol. Rev., 1976,11, 161-208.
  • 32. Popovici, D.; Barzic, A. I.; Barzic. R. F.: Vasilescu, D. S.; Hulubei, C. Semi-alicyclic Polyimide Precursors: Structural, Optical and Biointerface Evaluations. Polym. Bull. 2016, 73, 331-344.
  • 33. Park, S. K.; Fanis, R. J. Dry-jet Wet Spuming of Aromatic Polyamic Acid Fiber Using Chemical Imidization. Polymer. 2001, 42,10087-10093.
  • 34. Cano, C. I.; Clark, M. L.; Kyu, T.; Pipes, B. Modeling Particle Inflation from Poly(amic acid) Powdered Precursors. III. Experimental Determination of Kinetic Parameters. Polym. Eng. Sci. 2008, 48 (3), 617-626.
  • 35. Gaw, K.; Jikei, M.; Kakimoto, M.-A.; Imai, Y.; Moclrjizuki. A. Adhesion Behaviour of Polyamic Acid Cured Epoxy. Polymer. 1997, 38, 4413-4415.
  • 36. Harito, C.; Porras, R.; Barykin. D. V; Walsh, F. C. Electrospinning of In Situ and Ex Situ Synthesized Polyimide Composites Reinforced by Titarrate Nanotubes. J. Appl. Polym. Sci. 2017,134, 44641.
  • 37. Hulubei, C.; Mad, C. D.; Stoica. I.; Popovici, D.; Lisa, G.; Nica, S. L.; Barzic. A. I. New Polyimide-based Porous Crosslinked Beads by Suspension Polymerization: Physical and Chemical Factors Affecting their Morphology. J. Polym. Res. 2014, 21, 514.
  • 38. Chen, W.; Chen, W.; Zhang, B.; Yang, S.; Liu, C.-Y. Thermal Imidizatiou Process of Polyimide Film: Interplay Between Solvent Evaporation and Imidization. Polymer. 2017, 109, 205-215.
  • 39. Ayala. D.; Lozano, A. E.; de Abajo, J.; de la Campa, J. G. Synthesis and Characterization of Novel Polyimides with Bulky Pendant Groups. J. Polym. Sci. A. 1999, 37, 805-814.
  • 40. Bower, G. M.; Frost, L. W. Aromatic Polyimides. J. Polym. Sci.: Part A. 1963, 1, 3135-3150.
  • 41. Dine-Hait. R. A.; Wright, W. W. Preparation and Fabrication of Aromatic Polyimides. J. Appl. Polym. Sci. 1967,11, 609-627.
  • 42. Bessonov, M. I.; Koton, M. M.: Kudryavtsev, Y. Y.; Laius, L. A. Polyimides. Thermally Stable Polymers-, Consultants Bureau: New York, 1987.
  • 43. Ha, Y.; Choi, M.-C. Jo, N.: Kim, I.; Ha, С.-S.; Han, D.; Han, S.; Han, M. Polyimide Multilayer Thin Films Prepared Yia Spin Coating from Poly(amic acid) and Poly(amic acid) Ammonium Salt. Macromol. Res. 2008, 16, 725-733.
  • 44. Liu, F.; Liu, Z.: Gao, S.; You, Q.: Zoua. L.; Chena, J.; Liu, J.; Liu. X. Polyimide Film with Low Thermal Expansion and High Transparency by Self-enhancement of Polyimide/ SiC Nanofibers Net. RSCAdv. 2018, S, 19034-19040.
  • 45. Method for Preparing Polyimide Film, U.S. 0292873 Al, 2013
  • 46. Iwamoto, M.; Kubota. T; Sekine, M. Electrical Properties of Polyimide Langmuir- Blodgett Films Deposited on Noble Metal Electrodes. J. Phys D: Appl. Phys. 1990, 23, 575.
  • 47. Konkin, A. A. Thermally Stable and Noncombustible Fibers; Kliimiya: Moscow, 1978.
  • 48. Jacobs, Y: Anaudjiwala, R. D.; Maaza, M. The Influence of Electrospinning Parameters on the Structural Morphology and Diameter of Electrospun Nanofibers. J. Appl. Polym. Sci. 2010,115, 3130-3136.
  • 49. Chisca, S.; Barzic, A. I.; Sava, I.; Olaru, N.; Bruma, M. Morphological and Rheological Insights on Polyimide Cham Entanglements for Electrospinning Produced Fibers. J. Phys. Client. B. 2012,116, 9082-9088.
  • 50. Wright, W. W.; Hallden-Abberton, M. Polyimides in Ullmann'S Encyclopedia of Industrial Chemistiy. 2000, D01:10.1002/14356007.a21_253.
  • 51. Nagata, Y.; Olmishi, Y.; Kajiyama. T. Highly Crystalline Polyimide Particles. Polym. J. 1996,28, 980-985.
  • 52. Lin. T.: Stickney, K. W.; Rogers, M.; Riffle, J. S.; McGrath, J. E.; Maraud, H.; Yu, T. H.; Davis, R. M. Polymer. 1993, 34, 772-777.
  • 53. Chai, Z.; Zheng, X.; Sun, X. Preparation of Polymer Microspheres from Solutions. J. Polym. Sci. Part В. 2003, 41, 159-165.
  • 54. Suzuki, M.; Kasai, H.; Ishizaka, T; Miura, H.; Okada. S.; Oikawa, H.; Nikira, T.; Fukuro H.; Nakanishi, H. Fabrication of Size-controlled Polyimide Nanoparticles. J. Nanosci. Nanotechnol. 2007, 7, 2748-2752.
  • 55. Hulubei, C.; Mad, C. D.; Popovici, D.; Stoica, I.; Barzic. A. I.; Rusu, D. Polyimide Micro- and Nanoparticles via the Reprecipitation Method. Rev. Roum. Chim. 2016, 61, 797-804.
  • 56. Katagi. H.: Kasai. H.: Okada, S.; Oikawa, H.; Matsuda, H.; Nakaiiiski. H. Preparation and Characterization of Poly-diacetylene Microcrystals. J. Macromol. Sci Part A. 1997, A34, 2013-2024.
  • 57. Luo, J.; Haller. M.; Li, H.; Tang, H.-Z.; Jen, A. К.-Y; Jakka. K.: Chou. C.-H.: Shu, C.-F. A Side-chain Deudrouized Nonlinear Optical Polyimide with Large and Thermally Stable Electrooptic Activity. Macromolecules. 2004, 37, 248-250.
  • 58. Baumgartner, B.: Bojdys, M. J.; Unterlass, M. M. Geomimetics for Green Polymer Synthesis: Highly Ordered Polyimides via Hydrothermal Techniques. Polym. Chem. 2014, 5, 3771.
  • 59. Leimliofer, L.; Baumgartner, B.; Puchberger, M.; Prochaska, T.: Konegger, T; Unterlass, M. M. Green One-pot Synthesis and Processing of Polyimide-silica Hybrid Materials.

J. Mater. Chem. A. 2017, 5, 16326-16335.

  • 60. Doddamaui, R. V.; Tasaganva, R. G.; Inamdar, S. R.: Kariduraganavar, M. Y. Synthesis of Chromophores and Polyimides with a Green Chemistry Approach for Second-order Nonlinear Optical Applications. Polym. Adv. TechnoI. 2018, 29, 2091-2102.
  • 61. Zhang. Q.; Tsai, С.-Y; Li, L.-J.; Liaw, D.-J. Switching Electrochromic Polyimides with Very High Contrast Ratio. Nat. Commun. 2019, 10, 1239.
  • 62. Kim, E.-H.: Moon, I. K.; Kim, H. K.: Lee, M.-H.; Han, S.-G.; Yi, M. H.; Choi, K.-Y. Synthesis and Characterization of Novel Polyimide-based NLO Materials from Poly(hydroxy-imide)s Containing Alicyclic Units (II). Polymer. 1999, 40, 6157-6167.
  • 63. Park, С.-Y; Kim, E.-H.; Kim, J. H.: Lee, Y. M.: Kim, J.-H. Novel Semi-alicyclic Polyimide Membranes: Synthesis, Characterization, and Gas Separation Properties. Polymer. 2018, 151, 325-333.
  • 64. Hulubei, C.; Albu. R. M.; Lisa, G.; Nicolescu, A.; Hamciuc. E.; Hamciuc, C.: Barzic, A. I. Antagonistic Effects in Structural Design of Sulfur-based Polyimides as Shielding Layers for Solar Cells. Sol. Energ. Mater. Sol. Cells 2019,193, 219-230.
  • 65. loan, S.; Filimon, A.; Hulubei, C.; Stoica, I.; Dunca. S. Origin of Rheological Behavior and Surface Interfacial Properties of Some Semi-alicyclic Polyimides for Biomedical Applications. Polym. Bull. 2013, 70, 2873-2893.
  • 66. Stoica. I.; Barzic, A. I.; Butnaru, M.; Doroftei, F.; Hulubei, C. Surface Topography Effect on Fibroblasts Population on Epiclou-based Polyimide Films. J. Adhesion Sci. Technol. 2015, 29, 2190-2207.
  • 67. Popovici, D.: Barzic, A. I.; Stoica, I.; Butnaru, M.; Ioauid. G. E.; Mad, S.; Hulubei, C.; Bruma. M. Plasma Modification of Surface Wettability and Morphology for Optimization of the Interactions Involved in Blood Constituents Spreading on Some Novel Copolyimide Fihns. Plasma Chem. Plasma Process. 2012, 32, 781-799.
  • 68. Albu, R. M.: Hulubei, C.; Stoica. I.; Barzic, A. I. Semi-alicyclic Polyimides as Potential Membrane Oxygenators: Rheological Implications on Film Processing, Morphology and Blood Compatibility. eXPRESSPolym. Lett. 2019,13, 349-364.
  • 69. Chung. I. S.; Park. С. E.; Ree. M.: Kim, S. Y. Soluble Polyimides Containing Benzimidazole Rings for Interlevel Dielectrics. Chem. Mater. 2001,139, 2801-2806.
  • 70. Kim, T; Lee, T; Lee, G.; Choi, Y. W.; Kim. S. M.; Kang, D.: Choi, M. Polyimide Encapsulation of Spider-inspired Crack-based Sensors for Durability Improvement. Appl. Sci. 2018, 8, 367.
  • 71. Tsai, C.-L.; Yen, H.-J.; Liou, G.-Sh. Highly Transparent Polyimide Hybrids for Optoelectronic Applications. React. Fund. Polym. 2016,108, 2-30.
  • 72. Barzic. A. I.: Hulubei, C.; Stoica, I.; Albu, R. M. Insights on Light Dispersion in Semi- alicyclic Polyimide Alignment Layers to Reduce Optical Losses in Display Devices. Macromol. Mater. Eng. 2018, 303, 1800235.
  • 73. Nica, S.-L.; Hulubei, C.; Stoica. I.; Ioauid. E. G.; Nica, V.; loan. S. Electrical Resistivity Under Different Humidity Conditions for Plasma-treated and Gold-sputtered Polyimide Films. Polym. Bull. 2016, 73, 1531-1544.
  • 74. Stoica. I.; Barzic. A. I.; Hulubei, C. The Impact of Rubbing Fabric Type on Surface Roughness and Tribological Properties of Some Semi-alicyclic Polyimides Evaluated fr om Atomic Force Measurements. Appl. Surf. Sci. 2013, 268, 442-449.
  • 75. Song, Y.; Yuan, L.; Wang, Z.; Yang, S. Photo-aligning of Polyimide Layers for Liquid Crystals. Polym. Adv. Technol. 2019, 30, 1243-1250.
  • 76. Chandramohan, A.; Nagendiran, S.; Alagar, M. Synthesis and Characterization of Polyhedral Oligomeric Silsesquioxane-siloxaue-modified Polyimide Hybrid Nauocomposites. J. Compos. Mater. 2012, 46, 773-781.
  • 77. Oktay, B.; Toker. R. D.; Kayamau-Apohan. N. Superhydrophobic Behavior of Polyimide-siloxane Mats Produced by Electrospiiming. Polym. Bull. 2015, 72, 2831-2842.
< Prev   CONTENTS   Source   Next >