HIGH-TECH APPLICATIONS OF DPL INDUCED POLYIMIDE PERIODIC NANOSTRUCTURES

Taking into consideration their attractive thermal, mechanical, and electrical properties, polyimide films patterned at nanoscale using DPL can be employed in various domains, such as microelectronics and optoelectronics, biomedicine, in applications such as micro-fluidics, fabrication of bio- analytical assays, and liquid crystal alignment layers. For optimal orientation of liquid crystals on polyimide surfaces, the dimensions of the well-defined nanochannels can be controlled by the polymer structural organization and adjusting the loading force in DPL process. Therefore, custom nanostructures will be obtained using different polyimide structures depending on the type of the liquid crystal used in desired applications. Recently, Murray et al.31 used AFM on a polyimide-coated substrate in order to create complex patterns consisting of two-dimensional topological defect arrays of arbitrary defect strength to serve as alignment templates for nematic liquid crystals. The atomic force microscope tip-based nanomechanical technique with the unique properties of low-cost with simple, highly accurate, and flexible control has been used to successfiilly fabricate nanodots, nanolines, and two- dimensional or three-dimensional nanostructures on flat or curved surfaces for applications in nanofluids, nanoelectronics, and nanosensors 52_54. This manufacturing technique can be integrated with other conventional micro/ nanofabrication methods including optical lithography, lift-off process, and wet etching. Thus, in order to achieve significant results, more attention is expected in the future to the association of this technique with other micro/ nanofabrication approaches. This definitely will advance AFM-based DPL closer to the industrial application.27

CONCLUSIONS

The chapter presented a short description, advantages, and limitations of the AFM as a method for visualization, measurement, and modification at nanometer scale of the polymer samples by means of the force-assisted lithographic techniques, such as static and dynamic plowing performed in two different modes, namely vector and raster. Among the polymers that can be patterned at nanoscale with AFM, polyimides were chosen due to then attractive mechanical, thermal, and electrical properties. In order to establish the proper conditions to obtain well-defined nanochannels, a preliminary study was made presenting the influence of the DPL and SPL in vector mode on the sharpness, contamination, and degradation of the AFM tip, and on the polyimide surface pattern aspect. The conclusion was that in contradistinction with the SPL, the DPL is more adequate to be used to pattern a surface to result even nanochannels with desired shape without any supplementary polymeric material moved in the direction of the lithography or on each side of it. Furthermore, in the same nanolithography conditions, nanostmctured morphology was obtained on three different polyimide films. By applying a complete characterization through the surface texture and functional parameters, the influence of the dianhydride and diamine moieties (the backbone flexibility and the aliphatic/ aromatic nature of the monomers) on the characteristics of the pattern was revealed. By setting the optimum conditions, this technique can successfully be used to obtain custom nanostructures useful in new applications where the surface anisotropy is necessary, such as the fabrication of bio-analytical assays and liquid crystal alignment layers, or in micro-fluidics and guided cell growth.

KEYWORDS

  • • polyimide
  • • atomic force microscopy
  • • dynamic plowing lithography
  • • patterning
  • • nanostructures high-tech applications

REFERENCES

  • 1. Stoica, I.; Barzic, A. I.; Hulubei, C. The Impact of Rubbing Fabric Type on the Surface Roughness and Tribological Properties of Some Semi-alicyclic Polyimides Evaluated fr om Atomic Force Measurements. Appl. Surf. Sci. 2013, 26S (1), 442-449.
  • 2. Stoica, I.; Barzic, A. I.; Popovici. D.: Mad, S.; Cozau, V.; Hulubei, C. An Insight on the Effect of Rubbing Textile Fiber on Morphology of Some Semi-alicyclic Polyimides for Liquid Ciystal Orientation. Polym. Bull. 2013, 70 (5), 1553-1574.
  • 3. Barzic. A. I.; Rusu. R. D.; Stoica, I.; Damaceanu. M. D. Chain Flexibility Versus Molecular Entanglement Response to Rubbing Deformation in Designing Poly(oxadiazoleuaphthylimide)s as Liquid Crystal Orientation Layers. J. Mater. Sci. 2014, 49, 3080-3098.
  • 4. Barzic. A. I.; Hulubei. C.; Stoica, I.; Albu, R. M. Insights on Light Dispersion in Semi- alicyclic Polyimide Alignment Layers to Reduce Optical Losses in Display Devices. Macromol. Mater. Eng. 2018, 303 (12), 1800235(1-11).
  • 5. Sava, I.; Sacarescu, L.; Stoica, I.; Apostol, I.; Damian. V.; Hurduc, N. Photochromic Properties ofPolyimide and Polysiloxane Azopolymers. Polym. Int. 2009,55, 163-170.
  • 6. Damaceanu, M.-D.: Rusu. R.-D.; Olaru, M.; Stoica, I.; Brama, M. Nanostructured Polyimide Films by UY Excimer Laser Irradiation. Rom. J. Inform. Sci. Techol. 2010, 13 (4), 368-377.
  • 7. Stoica, I.; Ерше, L.; Sava, I.; Damian, V.; Hurduc, N. An Atomic Force Microscopy Statistical Analysis of Laser-induced Azo-polyunide Periodic Tridimensional Nauogrooves. Microsc. Res. Tech. 2013, 76 (9), 914-923.
  • 8. Damian, V.; Resmerita, E.; Stoica, I.: Ibanescu, C.; Sacarescu, L.; Rocha. L.; Hurduc,

N. Surface Relief Gratings Induced by Pulsed Laser Irradiation in Low Glass-transition Temperature Azopolysiloxanes. J. Appl. Polym. Sci. 2014,131 (24), 41015(1-10).

  • 9. Sava, I.: Burescu, A.; Stoica, I.; Musteata, V.; Cristea, M.; Mihaila, I.: Pohoata, V.; Topala, I. Properties of Some Azo-copolyunide Thin Fihns Used in the Formation of Photo induced Surface Relief Gratings. RSCAdv. 2015, 5, 10125-10133.
  • 10. Sava, I.; Stoica. I.; Mihaila, I.; Pohoata, V; Topala. I.; Stoian, G.; Lupu, N. Nanoscale analysis of laser-induced surface relief gratings on azo-copolyimide films before and after gold coating. Polym. Test. 2018, 72, 407-415.
  • 11. Stoica, I.; Barzic, A. I.; Aflori. M.: Hulubei, C.: Harabagiu, V; Yasilescu, D. S. Three- dimensional Nanostructures with Biocidal Activity Created on a Siloxane-contaming Copolyirnide Film. Key Eng. Mat. 2015, 638, 98-103.
  • 12. Stoica, I.; Aflori, M.; Ioarrid, E. G.; Hulubei, C. Effect of Oxygen Plasma Treatment and Gold Sputtering on Topographical and Local Mechanical Properties of Copolyirnide/ Gold Micropattemed Structures. Surf. Interf. Anal. 2018, 50(2), 154-162.
  • 13. Cosutchi, I.; Hulubei, C.; Stoica, I.; loan, S. A New Approach for Patterning Epiclon- based Polyimide Precursor Films Using a Lyotropic Liquid Crystal Template. J. Polym. Res. 2011, IS (6), 2389-2402.
  • 14. Barzic. A. I.; Hulubei, C.; Avadanei, M. I.: Stoica. I.; Popovici. D. Polyimide Pecursor Pattern Induced by Banded Liquid Crystal Matrix: Effect of Dianhydride Moieties Flexibility. J. Mater. Sci. 2015, 50 (3), 1358-1369.
  • 15. Yau, Y. D.: Hu, Z. J.; Liu, W. T.: Zhao. X. S. Effects of Scratching Parameters on Fabrication of Polymer Nanostructures in Atomic Force Microscope Tapping Mode. Procedia CIRP. 2015, 28, 100-105.
  • 16. Binnig, G.; Rohrer, H. Scanning Tunneling Microscopy. IBMJ. Res. Dev. 1986, 30 (4), 355-69.
  • 17. Binnig, G.; Qate, C. F.; Gerber, Ch. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56 (9), 930-933.
  • 18. Nonnenmacher, M.; O'Boyle, M. P.; Wickramasinghe. H. K. Kelvin Probe Force Microscopy. Appl. Phys. Lett. 1991, 58 (25), 2921-2923.
  • 19. Hartmann. U. Magnetic Force Microscopy: Some Remarks from the Micromaguetic Point of View. J. Appl. Phys. 1988, 64(3), 1561-1564.
  • 20. Matey, J. R.: Blanc, J. Scanning Capacitance Microscopy. J. Appl. Phys. 1985, 57(5), 1437-1444.
  • 21. Roelofs, A.; Bottger.U.; Waser, R.; Schlaphof, F.;Trogisch, S.;Eng. L. M. Differentiating 180° and 90° Switching of Ferroelectric Domains with Three-dimensional Piezoresponse Force Microscopy. Appl. Phys. Lett. 2000, 77 (21), 3444-3446.
  • 22. Lai, S. C. S.; Macphersou, J. V.; Unwin, P. R. In Situ Scanning Electrochemical Probe Microscopy for Energy Applications. MRS Bull. 2012, 37 (7), 668-674.
  • 23. Meister, A.; Gabi. M.; Behr. P.: Studer. P.; Voros, J.; Niedennaxm, P.; Bitterli, J.; Polesel- Maris, J.; Liley, M.; Heinzelmann, H.; Zambelli, T. FluidFM: Combining Atomic Force Microscopy and Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications and Beyond. Nano Lett. 2009, 9(6): 2501-2507.
  • 24. Majumdar, A. Scanning Thermal Microscopy. Amu. Rev. Mater. Sci. 1999, 29(1), 505-585.
  • 25. Heinzelmann. H.: Pohl, D. W. Scanning Near-field Optical Microscopy. Appl. Phys. A 1994,59 (2), 89-101.
  • 26. Xie, X. N.; Chung, H. J.; Sow, С. H.; Wee, A. T. S. Nanoscale Materials Patterning and Engineering by Atomic Force Microscopy Nanolithography. Mater Sci. Eng. 2006, R54, 1—48.
  • 27. Yau, Y.; Geng, Y.; Hu, Z. Recent Advances in AFM Tip-based Nanomechanical Machining. Int. J. Mach. Tool. Manu. 2015, 99, 1-18.
  • 28. Carpick, R. W.; Salmeron, M. Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy. Cliem. Rev 1997, 97(4), 1163-1194.
  • 29. Stoica, I.; Barzic, A. I.; Hulubei, C. Fabrication of Nanocharmels on Polyimide Films Using Dynamic Plowing Lithography. App. Surf. Sci. 2017, 426, 307-314.
  • 30. Cappella, B., Sturnr, H. Comparison between Dynamic Plowing Lithography and Nanoindentation Methods. J. Appl. Phys. 2002, 92, 506-512.
  • 31. Klehn. B.; Kurrze. U. Nauolithography with an Atomic Force Microscope by Means of Vector-scan Controlled Dynamic Plowing. J. Appl. Phys. 1999, 85, 3897-3903.
  • 32. Napolitano, S.; D'Acunto, M; Baschieri, P.; Gnecco. E.: Pingue. P. Ordered Rippling of Polymer Surfaces by Nauolithography: Influence of Scan Pattern and Boundary Effects. Nanoteclmol. 2012, 23 (47), 475301(1-6).
  • 33. YUlarmbia, J. S. Morphological Estimation of Tip Geometry for Scatmed Probe Microscopy. Surf. Sci. 1994, 321, 287-300.
  • 34. Williams. P. M.; Shakesheff, К. M.: Davies, M. C.; Jackson, D. E.; Roberts, C. J. Blind Reconstruction of Scanning Probe Image Data. J. Vacuum Sci. Technol. В 1996, 14, 1557-1562.
  • 35. Yillamrbia, J. S. Algorithms for Scatmed Probe Microscope Image Simulation, Surface Reconstruction and Tip Estimation. J. Nat. Inst. Stand. Technol. 1997,102, 435-454.
  • 36. Villarrubia, J. S. Strategy for Faster Blind Reconstruction of Tip Geometry for Scanned Probe Microscopy. Proceedings of SPIE, Metrology. Inspection, and Process Control for Microlithography XII, Volume 3332, 1998: pp 10-18.
  • 37. Heyde. M.; Rademaim, K.: Cappella, B.; Geuss, M.; Strum, H.; Spangenberg. T.; Nielius, H. Dynamic Plowing Nanolithography on Polymethylmethacrylate Using an Atomic Force Microscope. Rev. Sci. Instrum. 2001, 72,136-141.
  • 38. Cappella, B.; Sturm, H.; Weiduer. S. M. Breaking Polymer Chains by Dynamic Plowing Lithography. Polymer. 2002, 43, 4461-4466.
  • 39. He. Y.: Geng, Y.; Yan, Y.: Luo. X. Fabrication of Nanoscale Pits with High Throughput on Polymer Thin Film Using AFM Tip-based Dynamic Plowing Lithography. Nanoscale Res. Lett. 2017, 12, 544(1-11).
  • 40. He. Y.; Yan, Y.: Geng, Y.; Hu, Z. Fabrication of None-ridge Nano grooves with Large- radius Probe on PMMA Thin-film Using AFM Tip-based Dynamic Plowing Lithography Approach. J. Manuf Pr ocess. 2017, 29, 204-210.
  • 41. Geng, Y.; Li. H.: Yan, Y.: He, Y.; Zhao, X. Study on Material Removal for Nano channels Fabrication Using Atomic Force Microscopy Tip-based Nano Milling Approach. Proc. IMechE Part B: J. Eng. Manuf 2017, 233 (2), 095440541774818 (1-9).
  • 42. Geng, Y.; Brousseau, E. B.: Zhao. X.: Gensheimer, M.; Bowen. C. R. AFM Tip-based Nanomachining with Increased Cutting Speed at the Tool Work Piece Interface. Free. Eng. 2018, 51, 536-544.
  • 43. He. Y.; Yan, Y.; Geng, Fang, Z. Energy Dissipation Contributed on the Machined Depth Via Dynamic Plowing Lithography of Atomic Force Microscopy. J. Vac. Sci. Technol. В 2018, 36 (4), 041802(1-6).
  • 44. He. Y.; Yan, Y.; Wang, J.; Geng, Y.; Xue, B.; Zhao, X. Study on the Effects of the Machining Parameters on the Fabrication ofNauoscale Pits Usmg the Dynamic Plowing Lithography Approach.. IEEE Trans. Nanotechnol. 2019,18, 351-357.
  • 45. Iwata, F.; Yamaguchi, M.; Sasaki. A. Nanometer-scale Layer Modification of Polycarbonate Surface by Scratching with Tip Oscillation Usmg an Atomic Force Microscope. Wear 2003, 254, 1050-1055.
  • 46. Kassavetis, S.; Mitsakakis, K.; Logothetidis. S. Nanoscale Patterning and Deformation of Soft Matter by Scanning Probe Microscopy. Mater. Sci. Eng. C 2007, 27 (5-8), 1456-1460.
  • 47. Wang, Y.; Hong, X. D.: Zeng, J.; Liu. B. Q.; Guo. B.; Yan, H. AFM Tip Hammering Nanolithography. Small 2009, 5, 477-483.
  • 48. Hulubei, C.; Hamciuc, E.; Bntma, M. New Polyimides Based on Epiclou. Rev. Roum. Chint. 2007, 52, 1063-1069.
  • 49. Song, Y. J.; Meug, S. H.; Wang, F. D.; Sun, С. X.; Tan, Z. C. A Study on the Thermodynamic properties of Polyimide BTDA-ODA by Adiabatic Calorimetry and Thermal Analysis. J. Therm. Anal. Calorim. 2002, 69, 617-625.
  • 50. Cameiroa, K.: Jeusena, С. P.; Jorgensena, J. F.; Gamoesa, J.; McKeown, P.A. Roughness Parameters of Surfaces by Atomic Force Microscopy. CIRP, Ann. Manufact. Technol. 1995,44,517-522.
  • 51. Murray, B. S.; Pelcovits, R. A.; Rosenblatt, C. Creating Arbitrary Arrays of Two-dimensional Topological Defects. Phys. Rev E. Stat. Nonlin. Soft Mater: Phys. 2014, 90, 052501(1-6).
  • 52. Kurize. U. Nanoscale Devices Fabricated by Dynamic Ploughing with an Atomic Force Microscope. Superlattices Microstruct. 2002, 31, 3-17.
  • 53. Wang, Z.; Wang, D.; Jiao, N.; Timg. S.; Doug, Z. Nanochannel System Fabricated by MEMS Microfabricatiou and Atomic Force Microscopy. IET Nanobiotechnol. 2011, 5, 108-113.
  • 54. Hu. H.; Zhuo, Y.: Omc, M. E.; Cunningham, В. T.; King, W. P. Nanofluidic Charnels of Arbitrary Shapes Fabricated by Tip-based Nanofabricatiou. Nanotechnology- 2014, 25, 055301(1-8).
 
Source
< Prev   CONTENTS   Source   Next >