Concluding Remarks and Future Perspectives

In the end, the authors would like to conclude that microorganisms are generally able to establish antibiotic resistance due to deprived diagnostics, overdose, and incapability of drugs. Microorganisms caused infections are a grave global healthcare issue. Biogenic metallic NPs were designed to tackle these problems and demonstrated a good efficacy against various pathogens, either individually or in combination with antibiotics. However, there are some significant details, which should be considered to use such NPs for therapeutic applications. NPs are active in targeting and distribution in the body if utilized as a drug carrier for the cure of site-specific infections. Due to the antimicrobial functions of metallic NPs, they can be suitable for textiles, food processing, agriculture (nano-fertilizers and nano-pesticides), cosmetics, water treatment, washing machines, computer keyboards, and self-cleaning coatings on mobile phones. For these purposes, however, the biogenic NPs have not yet been commercialized. The main challenge for biogenic NPs is to strike the right balance among applicability, scalability, and cost of development. Therefore, a lot of work will be needed in this respect to concentrate on economic ways of developing biogenic NPs which will make them easily accessible for all kinds of future applications related to either antimicrobial era or another.

References

Abdel. H.M. Mady. M.M. and Ghannam. M.M. (2012). Physical properties of different gold nanoparticles: Ultraviolet-visible and fluorescence measurements. Journal of Nanomedicine and Nanotechnology. 3, 3.

Abdel-Raouf, N. Al-Enazi, N.M. and Ibraheem, I.B.M. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry. 10, 3029-3039.

Acharyulu. N.P. Dubey. R.S. Swaminadham. V. Kalyani. R.L. Kollu. P. and Pammi. S.V.N. (2014). Green synthesis of CuO nanoparticles using Phyllanthus amarus leaf extract and their antibacterial activity against multidrug resistance bacteria. International Journal of Engineering Research and Technology. 3. 639-641.

Adeniji. F. (2018). Global analysis of strategies to tackle antimicrobial resistance. International Journal of Pharmacy Practice. 26, 85-89.

Agarwal, A.. Pathera. A.K.. Kaushik, R., Kumar, N. Dhull, S. B., Arora. S. and Chawla, P. ((2020)). Succinylation of milk proteins: Influence on micronutrient binding and functional indices. Trends in Food Science and Technology. 97. 254-264.

Ahmad. A. Mukherjee, P. Senapati, S. et al. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B. 28. 313-318.

Ahmad, A. Senapati, S. Khan. M.I. et al. (2003). Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology. 14, 824-828.

Ahmed, S. Annu Chaudhry, S.A. and Ikram. S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. The Journal of Photochemistry and Photobiology B: Biology. 166. 272-284.

Alexander. J.W. (2009). History of the medical use of silver. Surgical Infections 10. 289-292.

Ali, K. Dwivedi, S. Azam, A. Saquib. Q. Al-Said. M.S. Alkhedhairy. A.A. and Musarrat, J.

(2016). Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. Journal Colloid Interface Sciences. 472. 145-156.

Amendola, V. and Meneghetti, M. (2009). Size evaluation of gold nanoparticles by UV-vis spectroscopy. Journal of Physical Chemistry C. 113,4277-4285.

Arias, C.A. and Murray, B.E. (2015). A new antibiotic and the evolution of resistance. New England Journal of Medicine. 372, 1168-1170.

Aromal. S.A. Vidhu. V.K. and Philip. D. (2012). Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 85, 99-104.

Aslam, B. Wang. W. Arshad, M.I. Khurshid. M. Muzammil, S. Rasool, M.H. and Salamat. M.K.F. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance. 11, 1645-1658.

Awwad. A.M. Albiss, B.A. and Salem. N.M. (2015). Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. Sikkim Manipal University Medical Journal. 2, 91-101.

Azam, A. Ahmed. A.S. Oves, M. Khan, M.S. and Memic, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine. 7, 3527-3535.

Baek, Y.W. and An, Y.J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO. ZnO, and Sb,0,) to Escherichia coli, Bacillus subtil is, and Streptococcus aureus. Science of the Total Environment. 409, 1603-1608.

Baluja, Z. Nabi, N. and Ray, A. (2018). Challenges in antimicrobial resistance: An update. EC Pharmacology and Toxicology. 6, 865-877.

Baptista. P. V. Mccusker. M. P. Carvalho, A.. Ferreira, D. A. Mohan, N. M. Martins, M. et al. ((2018)). Nano-strategies to fight multidrug resistant bacteria—“a battle of the titans”. Frontiers in Microbiology 9, 1441. doi: 10.3389/fmicb.2018.01441

Bartlett, J.G. Gilbert, D.N. and Spielberg. B. (2013). Seven ways to preserve the miracle of antibiotics. Public Infectious Diseases Society. 56, 1445-1450.

Betts. J.W. Hornsey, M. and La Ragione, R.M. (2018). Novel antibacterials: Alternatives to traditional antibiotics. Advances in Microbial Physiology. 73, 123-169.

Beyth, N. Houri, Y. Domb, A. Khan. W. and Hazan, R. (2015). Alternative antimicrobial approach: Nanoantimicrobial materials. Evidence-Based Complementary and Alternative Medicine. 24, 60-62.

Bhuyan. T. Mishra. K. Khanuja, M. Prasad, R. and Varma. A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing. 32, 55-61.

Blecher, K. Nasir. A. and Friedman, A. (201 la). The growing role of nanotechnology in combating infectious disease. Virulence. 2. 395-401.

Blecher, K. Nasir, A., and Friedman. A. (201 lb). 1. Virulence. 2(5), 395-401. doi: 10.4161/ viru.2.5.17035.

Bogdanovic, U. Lazic. V. Vodnik. V. Budimir, M. Markovi, C. Z. and Dimitrijevi, C. S. (2014). Copper nanoparticles with high antimicrobial activity. Materials Letters. 128, 75-78.

Borkow, G. and Gabbay. J. (2004). Putting copper into action: Copper-impregnated products with potent biocidal activities. The Society for Experimental Biology. 18. 1728-1730.

Brandelli. A. (2012). Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Reviews in Medicinal Chemistry. 12. 731-741.

Brown. A.N. Smith, K. Samuels. T.A. Lu. J. Obare. S.O. and Scott. M.E. (2012). Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Applied Environmental Microbiology. 78. 2768-2774.

Burdusel. A.C. Gherasim. O. Grumezescu. A.M. Mogoanta. L. Ficai, A. and Andronescu. E. (2018). Biomedical applications of silver nanoparticles: An up-to-date overview'. Nanomaterials. 8. 681.

Camporotondia, D.E. Fogliaa, M.L. Alvareza, G.S. Meberta. A.M. and Diaza, L.E. (2013). Antimicrobial properties of silica modified nanoparticles. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. 2013, 283-290.

Cavassin. E. D. De Figueiredo. L. F. Otoch. J. P. et al. (2015). Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of Nanobiotechnology. 13. 64.

Chatterjee, Arijit and Chakraborty, Ruchira and Basil, Tarakdas. (2014). Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 25, 135101. 10.1088/0957- 4484/25/13/135101.

Chawla, P. Kaushik, R. Shiva Swaraj, V. J. and Kumar, N. (2018). Organophosphorus pesticides residues in food and their colorimetric detection. Environmental Nanotechnology, Monitoring and Management. 10, 292-307.

Chawla, P. Kumar, N. Kaushik. R. and Dhull, S.B. (2019). Synthesis, characterization and cellular mineral absorption of gum arabic stabilized nanoemulsion of Rhododendron arbo- reum flower extract. Journal of Food Science and Technology. 56, 5194-5203.

Chawla, P. Kumar, N. Kumar. M. Kaushik. R. and Punia. S. (2020). Gum Arabic capped copper nanoparticles: Characterization and their utilization. International Journal of Biological Macromolecules. 146, 232-242.

Chen. C. W. Hsu, C. Y. Lai, S. M. Syu. W. J. Wang, T. Y. and Lai. P. S. (2014). Metal nanobullets for multidrug resistant bacteria and biofilms. Advanced Drug Delivery Reviews 78, 88-104. doi: 10.1016/j.addr.2014.08.004

Chen. X. and Mao. S.S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews. 107, 2891-2959.

Cheng. L. Wang, C. and Liu, Z. (2013). Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale. 5, 23-37.

Chiriac. V. Stratulat. D.N. and Calin, G. (2016). Antimicrobial property of zinc-based nanoparticles. IOP Conference Series: Materials Science and Engineering. 133, 012055.

Coates. A.R. Halls, G. and Hu. Y. (2011). Novel classes of antibiotics or more of the same. Brazilian Journal of Pharmacognosy. 163, 184-194.

Correa. J.M. Mori, M. Sanches. H. L. Da Cruz, A. D. Poiate, E. Jr and Poiate, I. A. (2015). Silver nanoparticles in dental biomaterials. International Journal of Biomaterials. 2015, 485-275. 10.1155/2015/485275.

Dakal. T.C. Kumar, A. Majumdar. R.S. and Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology. 7. 1831.

Das, S.K. Das, A.R. and Guha, A.K. (2009). Gold nanoparticles: Microbial synthesis and application in w'ater hygiene management. Langmuir. 25. 8192-8199.

Davis, M. Whittaker, A. Lindgren. M. Djerf-Pierre, M. Manderson, L. and Flowers, P. (2018). Understanding media publics and the antimicrobial resistance crisis. Global Public Health. 13, 1158-1168.

DeAlba-Montero, I. Guajardo-Pacheco. J. Morales-Sanchez, E. et al. (2017). Antimicrobial properties of copper nanoparticles and amino acid chelated copper nanoparticles produced by using a soya extract. Bioinorganic Chemistry Applied. 10. 649-618.

Dhuper. S. Panda. D. and Nayak. P.L. (2012). Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera inclica. Nano Trends Journal of Nanotechnology and Its Applications. 13, 16-22.

Dizaj. SM. Lotfipour. F. Barzegar-Jalali. M. Zarrintan, M.H. and Adibkia. K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering C. 44. 278-284.

Dhull, S.B. Anju. M. Punia, S. Kaushik, R. and Chawla. P. (2019). Application of Gum Arabic in nanoemulsion for safe conveyance of bioactive components. In: Prasad R.. Kumar N.. Kumar M.. and Choudhary D. (eds) Nanobioteclmology in Bioformulations. Nanotechnology in the Life Science. Springer. Cham. Chapter 3, pp. 85-98. DOI: 10.1007/978-3-030-17061 -5-3.

Duran. N. Duran, M. De Jesus, M. Seabra. A. Favaro, W. and Nakazato, G. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12,789-799. DOI: 10.1016/j.nano.2015.11.016

Duran, N. Marcato, P. D. Alves, O. L. DeSouza. G. and Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobioteclmology. 3, 1-8.

Duran, N. Marcato, P.D. De. S. et al. (2007). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Biomedical Nanotechnology. 3, 203-208.

Dutta. R.K. Nenavathu, B.P Gangishetty, M.K. and Reddy. A.R. (2012). Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surfaces В Bio Interfaces. 94. 143-150.

Egorova. E.M. and Revina, A. A. (2000). Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids and Surface. A. 168, 87-96.

El-Batal, A.I. Al-Hazmi, N.E. Mosallam. F.M. and El-Sayyad. G.S. (2018). Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microbiology Pathogens. 118. 159-169.

El-Batal, A.I. El-Sayyad, G.S. El-Ghamery, A. and Gobara, M. (2017). Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. Journal of Clusters Science. 28.1083-1112.

Espitia, P.J.P. Soares, N.F.F. Coimbra J.S.R. de Andrade. N.J. and Cruz. R.S. (2012). Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technology. 5, 1447-1464.

Foster. H.A. Ditta, I.B. Varghese. S. and Steele, A. (2011). Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology. 90. 1847-1868.

Franci. G. Falanga. A. and Galdiero, S. (2015). Silver nanoparticles as potential antibacterial agents. Molecules. 20. 8856-8874.

Gade. A.K. Bonde. P. Ingle, A.P Marcato, P.D. Duran, N. and Rai, M.K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased and Material Bioenergy. 2, 243-247.

Gawande, M.B. Goswami. A. Felpin. F.X. et al. (2016). Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chemical Reviews. 116, 3722-3811.

Gopinath, PM. Narchonai, G. Dhanasekaran, D. Ranjani. A. and Thajuddin. N. (2015). Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. Asian Journal Pharmaceutical Sciences. 10. 138-145.

Gopinath, K. Shanmugam. V.K. Gowri. S. Senthil. V. Kumaresan. S. and Arumugam A. (2014). Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. leaf extract. Journal of Nanostructures in Chemistry. 4, 83.

Grass. G. Rensing, C. and Solioz, M. (2011). Metallic copper as an antimicrobial surface. Applied and Environmental Microbiology. 77, 1541-1548.

Gudikandula. K. and Maringanti. S.C. (2016). Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience. 11,714-721.

Gupta. A. Saleh N.M. Das. R. Landis. R. Bigdeli, A. Motamedchaboki, K. et al. ((2017)). Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection. Nano Futures. 1,015004. DOI: 10.1088/2399- 1984/aa69f.

Guzman. M. Dille, J. and Godet. S. (2012a). Synthesis and antibacterial activity of silver nanoparticles against Gram-positive and Gram-negative bacteria. Nanomedicine Nanotechnology, Biology Medicine. 8, 31-45.

Guzman, M. Dille. J. and Godet, S. (2012b). Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine. 8(1), 37-45. DOI: 10.1016/j.nano.2011.05.007.

He, S. Guo. Z. Zhang. Y. Zhang. S. Wang, J. and Gu, N. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Material Letters. 61. 3984-3987.

Hemeg, H.A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicne 12. 8211-8225.

Hindi. K.M. Ditto, A.J. Panzner. M.J. et al. (2009). The antimicrobial efficacy of sustained release silver-carbene complex-loaded L-tyrosine polyphosphate nanoparticles: Characterization, in vitro and in vivo studies. Biomaterials. 30. 3771-3779.

Horie, M. Fujita. K. Kato, H. et al. (2012). Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: Metal ion release, adsorption ability and specific surface area. Metallurgy Integrations and Biomaterials Sciences. 4, 350-360.

Hoseinnejad. M. Jafari. S.M. and Katouzian. I. (2018). Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology. 44. 161-181.

Hoshino. N. Kimura, T. Yamaji. A. and Ando. T. (1999). Damage to the cytoplasmic membrane of Escherichia coli by catechin-copper (II) complexes. Free Radical Biology and Medicine. 27. 1245-1250.

Hossain, F. Perales-Perez, O.J. Hwang. S. and Roman. F. (2014). Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Science Total Environment. 466. 1047-1059.

Hostynek. J.J. and Maibach, H.I. (2003). Copper hypersensitivity: Dermatologic aspects—An overview. Review Environmental Health. 18. 153-183.

Huang. J. Li, Q. and Sun. D. (2007). Biosynthesis of silver and gold Nanoparticles by novels sundried Cinnamomum camphora leaf. Nanotechnology. 18, 104.

Huang, X. Zheng. D. and Yan, G. (2008). Toxicological effect of ZnO Nanoparticles based on bacteria. Langmuir. 24. 4140-4144.

Huh, A.J. and Kwon, Y.J. (2011). Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotic’s resistant era. Journal of Controlled Release Society. 156. 128-145.

Hunagund. S.M. Desai. V.R. Kadadevarmath, J.S. Barretto, D.A. Vootla. S. and Sidarai. A.H. (2016). Biogenic and chemogenic synthesis of TiO, NPs via hydrothermal route and their antibacterial activities. Advances. 6, 97438-97444.

Hurst. S.J. Lytton-Jean. A.K.R. and Mirkin, C.A. (2006). Maximizing DNA loading on a range of gold nanoparticle size. Analytical Chemistry. 78. 8313-8318.

Hussain, I. Singh. N.B. Singh. A. Singh. H. and Singh. S.C. (2015). Green synthesis of nanoparticles and its potential application. Biotechnology Letters. 15. 2026-2027.

Ingle. A. Gade. A. Pierrat, S. Sonnichsen. C. and Rai. M.K. (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Current Nanoscience. 4, 141-144.

Iravani. S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry. 13. 2638.

Ivask, A. ElBadawy. A. Kaweeteerawat, C. et al. (2014). Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. American Chemical Society Nano. 8, 374-386.

Jana. S. and Pal. T. (2015). Synthesis, characterization and catalytic application of silver nanoshell coated functionalized polystyrene beads. Journal of Nanoscience Nanotechnology. 7, 2151-2156.

Jayaseelan, C. Rahuman. A.A. Kirthi, A.V. et al. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophily and their activity against pathogenic bacteria and fungi. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy. 90, 78-84.

Jinu, U. Jayalakshmi, N. SujimaAnbu, A. Mahendran, D. Sahi. S. and Venkatachalam, P.

(2017). Biofabrication of cubic phase silver nanoparticles loaded with phytochemicals from Solatium nigrum leaf extracts for potential antibacterial, antibiofilm and antioxidant activities against MDR human pathogens. Journal of Clusters Science. 28, 489-505.

Jones, N. Ray, B. Ranjit. K.T. and Manna, A.C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. Microbiology Letters. 279. 71-76.

Jung, W.K. Koo, H.C. Kim. K.W. Shin. S. Kim. S.H. and Park. Y.H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied of Environmental Microbiology. 74, 2171-2178.

Kailasa, S.K. Park. T.J. Rohit, J.V. and Koduru, J.R. (2019). Antimicrobial activity of silver nanoparticles. Nanoparticles in Pharmacotherapy. 461-484. 10.1016/B978-0-12- 816504-1.00009-0.

Kamaraj. P. Vennila, R. Arthanareeswari. M. and Devikala, S. (2014). Biological activities of tin oxide nanoparticles Synthesized using plant extract. World Journal Pharmacy and Pharmaceutical Sciences. 3, 382-388.

Kami. D. Takeda, S. and Itakura, Y. (2011). Application of magnetic nanoparticles to gene delivery. International Journal of Molecular Science. 12, 3705-3722.

Kargara, H. Ghasemi, F. and Darroudid. M. (2015). Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceramics International. 41, 1589-1594.

Kaweeteerawat, C. Na Ubol. P. Sangmuang, S. Aueviriyavit, S. and Maniratanachote, R. (2017). Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. Journal of Toxicology Environmental Health. 80, 1276-1289.

Kim. J.S. Kuk. E. Yu, K.N. et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine. 3. 95-101.

Kim. T. Braun, G.B. She. Z.G. Hussain, S. Ruoslahti. E. and Sailor. M.J. (2016). Composite porous silicon-silver nanoparticles as theragnostic antibacterial agents. Applied Material and Interfaces. 8, 30449-30457.

Kim. T.H. Kim, M. Park. H.S. Shin, U.S. Gong. M.S. and Kim. H.W. (2012). Size-dependent cellular toxicity of silver nanoparticles. Journal of Biomedical Material Research. 100. 1033-1045.

Kirillin. M. Shirmanova, M. Sirotkina, M. Bugrova. M. Khlebtsov, B. and Zagaynova. E. (2009). Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study. Journal of Biomedicine Optimization. 14, 021017.

Korbekandi, H. Iravani, S. and Abbasi, S. (2009). Production of nanoparticles using organising. Critical Reviews of Biotechnology. 29, 279-306.

Kowshik, M. Ashataputre. S. Kharrazi, S. et al. (2003). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 14, 95-100.

Kumar, S.A. Abyaneh. M.K. Gosavi, S.W. et al. (2007). Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO,. Biotechnology Letters. 29, 439-445.

Kumar, A.S. Ansary. A.A. Ahmad. A. and Khan, M.I. (2007). Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. Journal of Biomedical and Nanotechnology. 3. 190-194.

Kumar, A. Pandey, A.K. Singh, S.S. Shanker, R. and Dhawan. A. (2011). Engineered ZnO and TiO (2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radicals Biology Medicine. 51. 1872-1881.

Kunoh. T. Takeda, M. Matsumoto. S. Suzuki, I. Takano. M. Kunoh. H. and Takada. J. (2017). Green synthesis of gold nanoparticles coupled with nucleic acid oxidation. ACS Sustainable Chemistry and Engineering. 6. 364-373.

Lara, H.H. Ayala-Nunez. N.V. IxtepanTurrent. L.D.C. and Rodriguez Padilla. C. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology. 26, 615-621.

Laurent, S. Forge, D. Port, M. Roch, A. Robic, C. Vander Elst. L. and Muller, R.N. (2010). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Review. 110. 2574.

Lee, S.H. and Jun, B.H. (2019). Silver nanoparticles: Synthesis and application for nanomedicine. International of Journal of Molecular Science. 20, 865.

Leid, J.G. Ditto, A.J. and Knapp. A. (2012). In vitro antimicrobial studies of silver carbene complexes: Activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. Journal of Antimicrobial Chemotherapy. 67, 138-148.

Lemire, J.A. Harrison. J.J. and Turner, R.J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology. 11, 371-384.

Leon-Silva, S. Fernandez-Luqueno, F. and Lopez-Valdez, F. (2016). Silver nanoparticles (AgNP) in the environment: A review of potential risks on human and environmental health. Water Air Soil Pollution. 227, 306.

Leung, Y.H. Shen, Z. and Gethings. L.A. (2014). Mechanisms of antibacterial activity of MgO: Non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small. 10, 1171-1183.

Li. J. Li. Q. Ma. X. et al. (2016). Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. International Journal of Nanomedicine. 11, 5931.

Li. M. Zhu, L. and Lin. D. (2011). Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environmental Science and Technology. 45, 1977-1983.

Li. Y. Zhang, W. Niu. J. and Chen. Y. (2012). Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. Nano. 6, 5164-5173.

Lipovsky, A. Gesanken, A. Nitzan, Y. and Lubart. R. (2011). Enhanced inactivation of bacteria by metal-oxide nanoparticles combined with visible light irradiation. Lasers in Surgery and Medicine. 43. 236-240.

Liu, H.L. Dai, S.A. Fu, K.Y. and Hsu, S.H. (2010). Antibacterial properties of silver: Nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. International Journal of Nanomedicine. 5. 1017-1028.

Liu, R Duan, W. Wang. Q. and Li, X. (2010). The damage of outer membrane of Escherichia coli in the presence of TiO, combined with UV light. Colloids Surface В Biointerfaces. 78, 171-176.

Liu, Y. He. L. Mustapha. A. Li. H. Hu. Z.Q. and Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli 0157: H7. Journal of Applied Microbiology. 107,1193-1201.

Ma, H. Williams, P.L. and Diamond SA. (2013). Ecotoxicity of manufactured ZnO nanoparticles - a review. Environmental Pollution. 172, 76-85.

Madhumitha, G. Elango. G. and Roopan, S.M. (2016). Biotechnological aspects of ZnO nanoparticles: Overview on synthesis and its applications. Applied Microbiology and Biotechnology. 100, 571 -581.

Maiti. S. Krishnan. D. Barman, G. Ghosh, S.K. and Laha. J.K. (2014). Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. Journal of Analytical Science and Technology. 5, 40.

Mali. S.S. Betty, C.A. Bhosale. RN. and Patil. P.S. (2011). Hydrothermal synthesis of rutile ТЮ, with hierarchical microspheres and their characterization. Crystal Engineering Communication. 13. 6349-6351.

Mao. R.Y.C. Gao. X. Burt. J.L. Belcher. A.M. Georgiou, G. and Lverson. B.L. (2004). Bacterial biosynthesis of cadmium sulfide nanocrystals. Chemical Biology. 11, 1553-1559.

McDevitt. C.A. Ogunniyi, A.D. Valkov, E. et al. (2011). A molecular mechanism for bacterial susceptibility to zinc. Pathology. 1 el002357.

Mirzajani, F. Ghassempour. A. Aliahmadi, A. and Esmaeili. M.A. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Research in Microbiology. 162. 542-549.

Mittal, J. Batra, A. Singh, A., and Sharma, M.M. (2014). Phytofabrication of nanoparticles through plant as nanofactories. Advanced Natural Sciences Nanosciences and Nanotechnology. 5, 10.

Mohammadinejad. R. Shavandi, A. Raie, D.S. et al. (2019). Plant molecular farming: Production of metallic nanoparticles and therapeutic proteins using green factories. Green Chemistry. 21. 1845-1865.

Mukherjee. P. Ahmad, A. Mandal. D. et al. (2001a). Bioreduction of AuC14 ions by them fungus Verticillium sp and surface trapping of the gold nanoparticles formed. Angewante Chemie International Edition. 40, 3585-3588.

Mukherjee. P. Ahmad. A.. Mandal. D.S. et al. (2001b). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Letters. 1, 515-519.

Mukherjee. P. Roy. M. Mandal, B.P. et al. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology. 19. 103-110.

Mukunthan. K.S. and Balaji, S. (2012). Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. International Journal of Green Nanotechnology. 4, 71-79.

Mulvey, M. R. and Simor, A. E. (2009). Antimicrobial resistance in hospitals: How concerned should we be? CMAJ 180.408-415. DOl: 10.1503/cmaj.080239.

Murphy, M. Ting. K. Zhang. X. Soo, C. and Zheng. Z. (2015). Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. Journal of Nanomaterial. (2015). 1-12. 10.1155/2015/696918.

Murugan. A. and Kumara, K. (2014). Biosynthesis and characterization of silver nanoparticles using the aqueous extract of vitex negundo. linn. World Journal of Pharmaceutical Science. 3, 1385-1393.

Naika, H R. Lingaraju, K. Manjunath, K.D. et al. (2015). Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. Journal ofTaibalt University Sciences. 9. 7-12.

Nair. B. and Pradeep. T. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth Design. 2, 293-298.

Nam, K.T. Lee, Y.J. Krauland, E.M. Kottmann, S.T. and Belcher, A.M. (2008). Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano. 2, 1480-1486.

Nangia. Y. Wangoo, N. Goyal. N. Shekhawat. G. and Suri C.R. (2009). A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microbial Cell Factories. 8. 39. 10.1186/1475-2859-8-39.

Navalakhe R.M. and Nandedkar, T.D. (2007). Application of nanotechnology in biomedicine. Indian Journal of Experimental Biology. 45, 160-165.

Nel, A. Xia, T. Madler, L. and Li, N. (2006). Toxic potential of materials at the nano level. Science. 311,622-627.

Norman, R.S. Stone, J.W. Gole, A. Murphy, C.J. and Sabo-Attwood. T.L. (2008). Targeted photothermal lysis of the pathogenic bacteria. Pseudomonas aeruginosa, with gold nanorods. Nano Letters. 8, 302-306.

Othman, S.H. Salam. N.R.A. Zainal, N. Basha, R.K. and Talib, R.A. (2014). Antimicrobial activity of TiO, nanoparticle-coated film for potential food packaging applications. International Journal of Photoenergy. (2014) 1-6 10.1155/2014/945930.

Patel, P. Agarwal. P. Kanawaria, S. Kachhwaha, S. and Kothari. S.L. (2015). Plant-based synthesis of silver nanoparticles and their characterization. Nanotechnol. Plant Science. pp. 271-288. Springer, Berlin.

Pathania, R. Khan. H. Kaushik, R. and Khan. M.A. (2018). Essential oil nanoemulsions and their antimicrobial and food applications. Current Research Nutrition and Food Science. 6. 1-16.

Payne. J. Waghwani, H. Connor. M. Hamilton. W. Dowling, S. Moolani, H. Chavda, F. Badwaik, V. Lawrenz, M. and Dakshinamurthy. R. (2016). Novel synthesis of kanamy- cin conjugated gold nanoparticles with potent antibeacterial activity. Frontiers in Microbiology. 7. 10.3389/fmicb.2016.00607.

Pelgrift, R.Y. and Friedman, A.J. (2013a). Nanotechnology as a therapeutic tool to combat microbial resistance. Advances in Drug Delivery Review. 65. 1803-1815.

Pelgrift, R. and Friedman, A. J (2013b). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews. 65, 1803-1815. doi: 10.1016/j. addr.2013.07.011

Periasamy, S. Joo. H.S. Duong. A.C. et al. (2012). How Staphylococcus aureus biofilms develop their characteristic structure. Proceedings of the National Academy of Sciences. 109. 1281-1286.

Philip. D. (2009). Biosynthesis of Au. Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochimica Acta A. 73. 374-381.

Poole. K. (2002). Mechanisms of bacterial biocide and antibiotic resistance. Journal of Applied Microbiology. 92. 55S-64S.

Popa. M.. Pradell. T, Crespo. D.. and Calder, J.M. (2007). Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 303. 184-190.

Prabhu, S. and Poulose, E.K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters. 2, 32.

Raffi. M. Hussain, F. Bhatti, T.M. Akhter, J.I. Hameed. A. and Hasan, M.M. (2008). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Material Science and Technology. 24, 192-196.

Raghupathi, K.R. Koodali. R.T. and Manna. A.C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 27.4020-4028.

Rai, M. Yadav, A and Gade. A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances. 27. 76-83.

Rai, M.K., Deshmukh, S.D., Ingle. A.P., and Gade, A.K. (2012). Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology. 112, 841-852. DOI: 10.111 l7j. 1365-2672.2012.05253.x.

Rai, M. Ingle, A.R Gupta, I. and Brandelli. A. (2015). Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. International Journal of Pharmacy. 496, 159-172.

Rajakumar. G. Rahuman, A.A. Rooan. S.M. Khanna, V.G. Elango, G. Kamaraj. C. Zahir. A.A. and Velayutham, K. (2012). Fungus-mediated biosynthesis and characterization of TiO, nanoparticles and their activity against pathogenic bacteria. Spectrochimica Acta A: Molecular Biomolecules Spectroscopy. 91.23-29.

Rana. B. Kaushik, R. Kaushal. K. Kaushal. A. Gupta, S. Upadhay, N. Rani, P. and Sharma. P.

(2018). Application of biosensors for determination of physicochemical properties of zinc fortified milk. Food Bioscience. 21.117-124.

Ravishankar. R.V. and Jamuna, B.A. (2011). Nanoparticles and their potential application as antimicrobials. Science against microbial pathogens, communicating current research and technological advances. Badajoz: Formatex. 197-209.

Raza. M.A. Kanwal. Z. Rauf, A. Sabri, A.N. Riaz. S. and Naseem. S. (2016). Size- and shape- dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials. 6, 74.

Riddin, T. Gericke. M. and Whiteley, C. (2006). Analysis of the inter-and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. 1ycopersici using response surface methodology. Nanotechnology. 17, 3482.

Rudramurthy. G.R. Swamy, M.K. Sinniah, U.R. and Ghasemzadeh, A. (2016). Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules. 21, 836. 10.3390/ molecules21070836.

Ruparelia. J.P Chatterjee, A.K. Duttagupta, S.P. and Mukherji, S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterials. 4, 707-716.

Saha. B. Bhattacharya, J. Mukherjee, A. Ghosh, A. Santra. C. Dasgupta, A. K. et al. (2007). In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Research Letters. 2. 614-622. doi: 10.1007/ si 1671-007-9104-2

Samavati, A. and Ismail, A.F. (2017). Antibacterial properties of copper substituted cobalt ferrite nanoparticles synthesized by coprecipitation method. Particuology. 30. 158-163.

Sanghi, R. and Verma. P. (2009). Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresources Technology. 100, 501-504.

Sankar. R. Rizwana. K. Shivashangari. K.S. and Ravikumar. V. (2015). Ultra-rapid photocata- lytic activity of Azadirachtaindica engineered colloidal titanium dioxide nanoparticles. Applied Nanoscience. 5, 731-736.

Shahverdi, A.R. Fakhimi, A. Shahverdi, H R. and Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine. 3, 168-171.

Shankar. S.S. Ahmad. A. Pasricha. R. and Sastry, M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry. 13. 1822-1826.

Shankar. S.S. Rai, A. Ahmad, A. and Sastry. M. (2004). Rapid synthesis of Au, Ag. and bimetallic Au core-Ag shell nanoparticles using Neem (Az.adirachta indica) leaf broth. Journal of Colloid Interface Sciences. 275, 496-502.

Sharma, S. Kaushik, R. Sharma. P Sharma, R. Thapa A. and Indumathi, K.P. (2016). Antimicrobial activity of herbs against Yersinia enterocolitica. The Annals of the University Dunarea de Jos of Galati - Food Technology. 40. 119-134.

Sheny. D.S. Mathew, J and Philip. D. (2012). Synthesis characterization and catalytic action of hexagonal gold nanoparticles using essential oils extracted from Anacardium occiden- tale. Sp. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 97, 306-310.

Shobha, G. Vinutha. M and Ananda. S. (2014). Biological synthesis of copper nanoparticles and its impact. International Journal of Pharmaceutical Sciences and Research Invention, 3(8), 6, 28, 38.

Singh. A. Singh. N.B. Hussain. I. Singh. H. and Singh. S.C. (2015). Plant nanoparticle interaction: An approach to improve agricultural practices and plant productivity. International Journal of Pharmaceuticals Sciences. 4. 25-40.

Singh. B.P. Jena. B.K. Bhattacharjee, S. and Besra. L. (2013). Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper. Surface Coating Technology. 232, 475-481.

Singh. P. Kim, Y.J. Zhang, D. and Yang. D.C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology. 34, 588-599.

Singh. R. Thakur, P. Thakur. A. Kumar. H. Chawla, P. Jigneshkumar V.R. Kaushik. R. and Kumar, N. (2020). Colorimetric sensing approaches of surface modified gold and silver nanoparticles for detection of residual pesticides: A Review. International Journal of Environmental Analytical Chemistry. DOI: 10.1080/03067319.2020.1715382

Sintubin. L. Windt. W.E. Dick. J. Mast. J. Ha. D.V. Verstarete. W. and Boon, N. (2009). Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology. 87. 741-749.

Slavin. Y.N. Asnis, J. Hafeli. U.O. and Bach, H. (2017). Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology. 15. 1-20.

Stiufiuc, R. Iacovita. C. and Lucaciu. C.M. et al. (2013). SERS- active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol. Nanoscale Research Letters. 8,47.

Subbaiya, R. Shiyamala, M. Revathi, K. Pushpalatha. R. and Masilamani Selvam, M. (2014). Biological synthesis of silver nanoparticles from Nerium oleander and its antibacterial and antioxidant property. International Journal of Current Microbiology and Applied Science. 3, 83-87.

Suman, T.Y. Rajasree, S.R. Ramkumar, R. Rajthilak. C. and Perumal. P. (2014). The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 118, 11-16.

Suresh, A.K. Pelletier. D.A. Wang. W. Morrell-Falvey. J.L. Gu, B. and Doktycz, M.J. (2012). Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Journal ofSuifaces and Colloids. 28, 2727-2735.

Tan. Y. Wang, Y. Jiang, L. and Zhu. D. (2002). Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system. Journal of Colloid Interface and Science. 249, 336-345.

Tang. S. and Zheng, J. (2018). Antibacterial activity of silver nanoparticles: Structural effects. Advanced Healthcare Materials. 7, 1701503. 10.1002/adhm.201701503.

Tang. Z.X. and Lv, B.F. (2014). MgO nanoparticles as antibacterial agent: Preparation and activity. Brazilian Journal of Chemical Engineering. 31. 591-601.

Thakkar. K.N. Mhatre, S.S. and Parikh, R.Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine. 6, 257-262.

Tiwari. V. Mishra. N. Gadani. K. Solanki. PS. Shah. N.A. and Tiwari, M. (2018). Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Frontiers Microbiology. 9, 1218.

Tiwari. J.N. Tiwari. R.N. and Kim. K.S. (2012). Zero-dimensional, one dimensional, two- dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress Material Science. 57, 24-803.

Torres, L.A. Gmez, T.J.R. Padron. G.H. Santana. F.B. Hernandez, J.F. and Castano, V.M. (2013). Silver nanoprisms and nanospheres for prosthetic biomaterials. Agricultural waste mango peel extract and it’s in vitro cytotoxic effect on two normal cells. Materials Letters. 134. 67-70.

Umer, A. Naveed, S. and Ramzan, N. (2012). Selection of a suitable method for the synthesis of copper nanoparticles. Nano. 7, 18.

Vamathevan, V. Amal. R. Beydoun, D. Low, G. and McEvoy, S. (2002). Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. Journal of Photochemistry and Photobiology A: Chemistry. 148, 233-245.

Varghese, O.K. Gong. D. Paulose, M. Ong. K.G. and Grimes. C.A. (2003). Hydrogen sensing using titania nanotubes. Sensors Actuators B. 93, 338-344.

Vimala, K. Sundarraj, S. Paulpandi. M. Vengatesan, S. and Kannan. S. (2014). Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochemistry. 49, 160-172.

Vimbela. G.V. Ngo, S.M. Fraze. C. Yang. L. and Stout. D.A. (2017). Antibacterial properties and toxicity from metallic nanomaterials. International Journal of Nanomedicine. 12, 3941-3965.

Wang. Y. and Xia. Y. (2004). Bottom-up and top-down approaches to the synthesis of mono- dispersed spherical colloids of low melting-point metals. Nano Letters. 4, 2047-2050.

Wang. Z. Lee. Y.H. Wu. B. et al. (2010). Antimicrobial activities of aerosolized transition metal oxide Nanoparticles. Chemosphere. 80, 525-528.

Warnes. S.L. Caves. V. and Keevil, C.W. (2012). Mechanism of copper surface toxicity in Escherichia coli 0157: H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environmental Microbiology. 14, 1730-1743.

WHO. (2017). Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline. Including Tuberculosis; Organ. GWH (Ed.) WHO/ EMP/IAU/2017.122017; WHO: Geneva. Switzerland.

Wim, H. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal Nanomedicine. 3. 133-149.

World Health Organization. (2014). Antimicrobial Resistance: Global Report on Surveillance, World Health Organization.

Yang, N. WeiHong. L. and Hao, L. (2014). Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and it’s in vitro cytotoxic effect on two normal cells. Material Letters. 134, 67-70.

YelilArasi. A. Hema, M. Tamilselvi, P. and Anbarasan, R. (2012). Synthesis and characterization of SiO, nanoparticles by sol-gel process. Indian Journal of Science. 1,6-10.

You, C. Han, C. Wang, X. et al. (2012). The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Molecular Biology Reports. 39, 9193-9201.

Zaidi, S. Misba, L. and Khan. A.U. (2017). Nano-therapeutics: A revolution in infection control in post antibiotic era. Nanomedicine. 13, 2281 s—22301.

Zhai. T. Fang. X. Liao, M. Xu X. Zeng, H. Yoshio. B. and Golberg, D. (2009). A Comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors, 9(8), 6504.

Zhang, J. Li. S. Ding. H. et al. (2014). Transfer and assembly of large area TiO, nanotube arrays onto conductive glass for dye sensitized solar cells. Journal of Power Sources. 247, 807-812.

Zhang, L. Jiang. Y. Ding. Y. Daskalakis, N. Jeuken, L. and Povey, A.J. (2010). Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research. 12, 1625-1636.

Zhang, X. (2015). Gold nanoparticles: Recent advances in the biomedical applications. Cell Biochemistry' and Biophysics. 72. 771-775.

Zhou. H. Gan, X. Wang, J. Zhu. X. and Li. G. (2005). Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide. Analytical Chemistry. 77, 6102-6104.

 
Source
< Prev   CONTENTS   Source   Next >