The PTE of metallofullerenes shows elements [Os-Pt] (OS 4 and 2, cf Figure 5.9) [23].

Metallofullerenes with elements of the periodic table of the elements

FIGURE 5.9 Metallofullerenes with elements of the periodic table of the elements.


The PTE of polyoxometallates (POMs) shows elements [В, Al-P, Ga-As] (OS 3, 4 and 5, cf Figure 5.10) [24].

Polyoxometallates with elements of the periodic table of the elements

FIGURE 5.10 Polyoxometallates with elements of the periodic table of the elements.


Fliorov and Illnov proposed questions, A, H, and F and on enigmas in the PL [25].

Ql. How during the last years did scientists discover 26 transuranics in PTE?

Q2. What does the surrounding world consist of?

Q3. Why around people do so many different substances find that are in gaseous/liquid/solid states?

Q4. Is it possible or not to turn some substances into others or obtain new ones, unknown before?

Q5. The chemical properties of elements, are they fortuitous or change according to a certain law?

A5. (Mendeleev). PL: The properties of the elements change periodically vs. atomic weight.

Q6. What are the causes of periodicity with which the properties of the elements change?

H1. (Mendeleev). It is easy to assume, but there is yet no possibility to demonstrate, that simple-bodies atoms are complicated creatures formed by the composition of some still more small parts... The periodic dependence revealed by me between the properties and weight confirms such premonition.

FI. (Rutherford). Atom represents a complicated system in which center a positively charged nucleus is, around which negatively charged electrons rotate in different orbits.

Q7. Where is the limit of the periodic table?

Q8. (Mendeleev). How many elements does the periodic system contain?

A8. Calculations show that when Z = 170-180, the nucleus should capture the inner electrons.

Q9. (Mendeleev). Where does it pass its limit?

A9. Such limit is not determined by electronic layer instability but by that of the proper nucleus.


From the presents results and discussion, the following final remarks can be drawn:

  • 1. Through examples, the contingent and socially constructed character of toxicity was investigated to reveal some of the mechanisms through which the diverse protagonists, under the pressure of strong political, economic, and academic interests, interact to visualize the toxicity of a substance or, on the contrary, to make it invisible, through the active production of ignorance about its effects on health and the environment.
  • 2. The examples also show that toxic risk management is marked by strong imbalances between producers and victims, which foster the development of forms of slow and usually invisible violence against socially disadvantaged groups.
  • 3. Some versions of the periodic table provide a striking reminder that people need to apply Refuse-Reduce-Reuse-Repurpose-Recycle (five Rs) at a fundamental level.
  • 4. During the last years, scientists discovered 26 transuranics in Mendeleev’s periodic table. However, the limit of the periodic system is still far. Physicists assume that superheavy elements should exist with so much lengthy life that they could be discovered in the Universe.


The authors thank the support from Generalitat Valenciana (Project No. PROMETEO/2016/094) and Universidad Catolica de Valencia San Vicente Martir (Project No. 2019-217-001UCV).


  • anthropogenic activity
  • archaeology
  • conductive two-dimensional metal-organic framework
  • critical-element conservation
  • endangered element
  • heavy-element emergence
  • invisible toxic
  • periodic law enigma
  • rare earth
  • superelements way
  • toxic metal
  • visible toxic


  • 1. Leal, W., & Restrepo, G., (2019). Formal structure of periodic system of elements. Proc. R. Soc. A., 475, Article 20180581, 1-20.
  • 2. Torrens, F., & Castellano, G., (2015). Reflections on the nature of the periodic table of the elements: Implications in chemical education. In: Seijas, J. A., Vazquez, T. M. R. & Lin, S. K.. (eds.), Synthetic Organic Chemistiy (Vol. 18, pp. 1-15). MDPI: Basel, Switzerland.
  • 3. Torrens, F., & Castellano, G., (2018). Nanoscience: From a two-dimensional to a three-dimensional periodic table of the elements. In: Haghi, A. K., Thomas. S„ Palit.
  • 5., & Main, R, (eds.), Methodologies and Applications for Analytical and Physical Chemistty (pp. 3-26). Apple Academic-CRC: Waretown, NJ.
  • 4. Torrens, F., & Castellano. G. (2019). Periodic table. In: Putz, M. V, (ed.). New Frontiers in Nanochemistry: Concepts, Theories, and Trends. Apple Academic-CRC, Waretown. NJ, Vol. 1, 403-425.
  • 5. Torrens, F., & Castellano, G., (2015). Ideas in the history of nano/miniaturization and (Quantum) simulators: Feynman, education and research reorientation in translational science. In: Seijas, J. A., Vazquez. T. M. P., & Lin, S. K., (eds.), Synthetic Organic Chemistry (Vol. 19, pp. 1-16). MDPI: Basel, Switzerland.
  • 6. Torrens, F., & Castellano, G., (2015). Reflections on the cultural history of nanominiaturization and quantum simulators (computers). In: Laguarda. M. N., Masot, P. R.. & Brun, S. E., (eds.), Sensors and Molecular Recognition (Vol. 9, pp. 1-7). Universidad Politecnica de Valencia: Valencia, Spain.
  • 7. Torrens, F., & Castellano, G., (2016). Nanominiaturization and quantum computing. In: Costero, N. A. M., Parra, A. M., Gavina, С. P, & Gil, G. S., (eds.), Sensors and Molecular Recognition (Vol. 10, Chapter 31, pp. 1-5). Universitat de Valencia: Valencia, Spain.
  • 8. Torrens, F., & Castellano, G., (2018). Nanominiaturization, classicaL'quantum computers/simulators, superconductivity and universe. In: Haghi, A. K., Thomas.
  • 5., Palit, S., & Main, P., (eds.), Methodologies and Applications for Analytical and Physical Chemistty (pp. 27-44). Apple Academic-CRC: Waretown, NJ.
  • 9. Torrens, F., & Castellano, G., (2018). Superconductors, superconductivity, BCS theory, and entangled photons for quantum computing. In: Haghi. A. K., Aguilar, C. N., Thomas, S.. & Praveen, К. M., (eds.), Physical Chemistty for Engineering and Applied Sciences: Theoretical and Methodological Implication (pp. 379-387). Apple Academic-CRC: Waretown, NJ.
  • 10. Torrens, F.. & Castellano, G., (2018). EPR paradox, quantum decoherence, qubits, goals and opportunities in quantum simulation. In: Haghi, A. K., (ed.), Theoretical Models and Experimental Approaches in Physical Chemistty: Research Methodology- and Practical Methods (Vol. 5, pp. 317-334). Apple Academic-CRC: Waretown, NJ.
  • 11. Torrens, F., & Castellano, G. (2019). Nanomaterials, molecular ion magnets, ultra-strong and spin-orbit couplings in quantum materials. In: Vakhrushev, А. V, Haghi, R., & de Julian-Ortiz, J. V, (eds.), Physical Chemistty for Chemists and Chemical Engineers: Multidisciplinary Research Perspectives (pp. 181-190). Apple Academic-CRC: Waretown, NJ.
  • 12. Torrens. F., & Castellano. G. (2019). Nanodevices and organization of single-ion magnets and spin qubits. In: Balkose, D., Ribeiro, A. C. F., Haghi. A. K.. Ameta, S. C., & Cliakraborty. T, (eds.), Chemical Science and Engineering Technology-: Perspectives on Interdisciplinary Research (pp. 67-74). Apple Academic-CRC: Waretown, NJ.
  • 13. Torrens, F., & Castellano, G. (2019). Superconductivity and quantum computing via magnetic molecules. In: Haghi. A. K„ (ed.), New Insights in Chemical Engineering and Computational Chemistry (pp. 201-209). Apple Academic-CRC: Waretown, NJ.
  • 14. Torrens, F., & Castellano, G. (2019). Developing sustainability via nanosystems and devices: Science-ethics. In: Balkose, D„ Ribeiro, A. C. F., Haghi, A. K„ Ameta, S. C., &

Cliakraborty, T., (eds.), Chemical Science and Engineering Technology>: Perspectives on Interdisciplinary> Research (pp. 75-84). Apple Academic-CRC: Waretown, NJ.

  • 15. Torrens, F., & Castellano, G. (2020). Green nanotechnology: An approach towards environment safety. In: Vakhrushev. А. V, Ameta, S. C., Susanto, H., & Haglii, A. K„ (eds.), Advances in Nanotechnology> and the Environmental Sciences: Applications, Innovations, and Visions for the Future (pp. 85-91). Apple Academic-CRC: Waretown. NJ.
  • 16. Torrens. F., & Castellano. G. (2020). Molecular devices/machines: Hybrid organic- inorganic structures. In: Pourhashemi, A.. Deka, S. C„ & Haghi. A. K., (eds.), Research Methods and Applications in Chemical and Biological Engineering (pp. 13-24). Apple Academic-CRC: Waretown, NJ.
  • 17. Torrens, F., & Castellano, G. (2020). The periodic table, quantum biting its tail, and sustainable chemistry. In: Torrens, F., Haghi, A. K., & Cliakraborty, T, (eds.), Chemical Nanoscience and Nanotechnology’: New Materials and Modern Techniques (pp. 25-32). Apple Academic-CRC: Waretown. NJ.
  • 18. Spiro, T. G., & Stigliani, W. M., (2003). Chemistty of the Environment. Prentice-Hall: Upper Saddle River, NJ.
  • 19. Ко, M., Mendecki. L., & Mirica. K. A.. (2018). Conductive two-dimensional metal- organic frameworks as multifunctional materials. Chem. С отпит., 54, 7873-7891.
  • 20. Gallello, G. (2019). Personal communication.
  • 21. Supanchaiyamat, N., & Hunt. A. J., (2019). Conservation of critical elements of the periodic table. Chem. Sus. Chem., 12, 1-8.
  • 22. The Analytical Scientist, (2019). Red alert! Anew version of the periodic table shows the elements under threat. Anal. Scientist, 73, 9.
  • 23. Martin, N. (2019). Personal communication.
  • 24. Poblet, J. M. (2019). Personal communication.
  • 25. Fliorov, G. N., & Ilinov, A. S., (1985). En el Camino Hacia Los Superelementosp. Mir: Moscow.
< Prev   CONTENTS   Source   Next >