Vibration Problems in Machines: Diagnosis and Resolution


Monitoring and DiagnosisMonitored ParametersFault LocalizationRoot CauseRemaining LifeInstrumentationPiezo-electric AccelerometersAttachment of AccelerometersVelocity SensorsProximity SensorsLinear Voltage Differential Transformer (LVDT)Strain GaugesAcoustic Emission SensorsStorage of DataMathematical ModelsMachine ClassificationBearing TypesThe RotorConsiderations for a Monitoring SchemeOutline of the TextSoftwareReferencesData PresentationIntroductionPresentation FormatsTime and FrequencyWaterfall PlotsScatter Plots (or Carpet Plots)Order Tracking in Transient OperationShort-Term Fourier TransformThe Vold–Kalman MethodSystem ResponseComparison of MethodsShaft OrbitsPolar PlotsSpectragramsComparison with CalculationsDetection and Diagnosis ProcessConcluding RemarksProblemsReferencesModeling and AnalysisIntroductionNeed for ModelsModeling ApproachesBeam ModelsFinite Element MethodElement FormulationMatrix AssemblyModeling ChoicesAnalysis MethodsImbalance ResponseCampbell DiagramAnalysis of Damped SystemsRoot Locus and StabilityOverall ResponseFurther Modeling ConsiderationsMode ShapesPerturbation TechniquesSummaryProblemsReferencesFaults in Machines (1)IntroductionDefinitions: Rigid and Flexible RotorsMass ImbalanceGeneral ObservationsRotor BalancingInfluence Coefficient Approaches–Single PlaneTwo-Plane BalancingModal BalancingA Comparison of ApproachesNonlinear EffectsRecent DevelopmentsRotor BendsConcluding RemarksProblemsReferencesFaults in Machines (2)IntroductionMisalignmentKey PhenomenaFlexible CouplingsSolid CouplingsThe CatenaryMisalignment Excitation – A New ModelMoments due to ImbalanceThe Effect of Bending MomentsInfluence of the BoltsToward an Overall ModelCracked RotorsChange in Natural FrequenciesForced ResponseTorsional ExcitationDynamics of GearboxesTooth Stiffness EffectsMixing of Flexural, Axial, and TorsionalNonlinearityInstabilityOil-Whirl and Oil-WhipRotor AsymmetryRotor DampingInteractions and DiagnosticsSynchronous ExcitationTwice per Revolution ExcitationAsynchronous VibrationClosing RemarksProblemsReferencesRotor–Stator InteractionIntroductionInteraction through BearingsOil Journal BearingsRolling Element BearingsOther Types of BearingInteraction via Working FluidPump Bushes and SealsInfluence of System Pressure DistributionAn Example of an Idealized SystemOther Forms of ExcitationSteam WhirlDirect Stator ContactExtended ContactPhysical EffectsNewkirk EffectCollision and RecoilPhysical EffectsSimulationAcoustic EmissionThe Morton EffectHarmonics of ContactConcluding RemarksProblemsReferencesMachine IdentificationIntroductionCurrent State of ModelingPrimary ComponentsSources of Error/UncertaintyModel ImprovementSystem IdentificationError CriteriaRegularizationSingular Value DecompositionApplication to FoundationsFormulating the ProblemLeast Squares with Physical ParametersFormulation with Shaft Location DataApplying ConstraintsModal Approach with Kalman FiltersEssentials of Kalman FilteringImbalance IdentificationExtension to MisalignmentFuture OptionsImplementationBenefitsConcluding RemarksProblemsReferencesSome Further Analysis MethodsIntroductionStandard ApproachesArtificial Neural NetworksMerging ANNs with Physics-Based ModelsSingular Value DecompositionOther Useful TechniquesThe Hilbert TransformTime–Frequency and Wigner–VilleWavelet AnalysisCepstrumCyclostationary MethodsHigher-Order SpectraEmpirical Mode DecompositionKernel Density EstimationConcluding RemarksProblemsReferencesCase StudiesIntroductionA Crack in a Large Alternator RotorWorkshop Modal Testing of a Cracked RotorGearbox Problems on a Boiler Feed PumpVibration of Large Centrifugal FansLow-Pressure Turbine InstabilitiesConcluding RemarksReferencesOverview and OutlookProgress in InstrumentationProgress in Data Analysis and HandingProgress in ModelingExpert SystemsFuture ProspectsMachine DiagnosticsSelf-Correction (“Smart Machines”)Shaft ModificationSummaryReferencesSolutions to Problems
 
Next >