Summary and Perspectives
The flexible design of VRFB, with decoupled configuration of power and capacity, makes it a promising technique for large-scale energy storage to integrate with the grid. As a core component, the IEM requires a comprehensive property, such as high proton conductivity, low vanadium ion permeability, good chemical and mechanical stability, and low cost. However, it is still a major challenge to synthesize high-performance and cost-effective membranes toward the VRFB application. In this chapter, the state-of-the-art of the membranes is introduced, including the per- fluorinated, partially fluorinated, non-fluorinated, and porous membranes and their derivatives. The large vanadium ion permeability and high cost are the major focus for the development of the commercial Nation membranes, a typical perfluorinated counterpart. It is effective to modify the Nation membranes by incorporating inorganic and organic additives to tailor the intrinsic channels and reduce the use of raw- materials. As an alternative to the Nation membrane, the non-fluorinated hydrocarbon membranes are developed, with low vanadium ion permeability and competitive cost. Nonetheless, proton conductivity and chemical stability are the challenging issues. The same strategy has been widely used to enhance the membranes with the inorganic and organic species. The porous membranes are further explored based on the size sieving effect. The ion selectivity, a key factor affecting the membrane performance, is improved by adjusting the pore or channel size. This includes filling the matrix, modifying the surface, turning the component of coagulating bath (for porous membrane), and so on.
The hydrocarbon polymer is a promising candidate for VRFB application, in view' of its high ion selectivity and low cost. However, its chemical stability is unsatisfactory. Further development of the membranes should be focused on tailoring the polymers toward high ion selectivity, long-term chemical and mechanical stability, and low cost. First, the hydrocarbon polymers can be improved by introducing the fluorine-containing groups or stable species to enhance the stability and proton conductivity and meanwhile maintaining the low cost. Second, a judicious combination of different polymers, various ion exchange groups, and modification or preparation methods could also be a promising way for membranes of high ion selectivity, good chemical stability, and low cost. Finally, the degradation mechanism in the cell operation process should be further investigated for better understanding.
References
Ahn S., H. Jeong, J. Jang. J. Lee. S. So, Y. Kim. Y. Hong and T. Kim. 2018. Polybenzimidazole/ Nation hybrid membrane with improved chemical stability for vanadium redox flow battery application. RSC Advances 8: 25304-12.
Amjadi M., S. Rowshanzamir, S. Peighambardoust, M. Hosseini and M. Eikani. 2010. Investigation of physical properties and cell performance of Nafion/TiO, nanocomposite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy 35: 9252-60.
Aziz M. and S. Shanmugam. 2017. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery. Journal of Power Sources 337: 36-44.
Bouchet R. and E. Siebert. 1999. Proton conduction in acid doped polybenzimidazole. Solid State Ionics 118: 287-99.
Chang Z., D. Henkensmeier and R. Chen. 2017. One-step cationic grafting of 4-hydroxy- tempo and its application in a hybrid redox flow battery with a crosslinked PBI membrane. ChemSusChem 10: 3193-97.
Chen D., M. Hickner, S. Wang, J. Pan, M. Xiao and Y. Meng. 2012. Directly fluorinated polyaromatic composite membranes for vanadium redox flow batteries. Journal of Membrane Science 415-416: 139-44.
Chen D., D. Li and X. Li. 2017. Hierarchical porous poly (ether sulfone) membranes with excellent capacity retention for vanadium flow battery application. Journal of Power Sources 353: 11-18.
Chen D., H. Qi. T. Sun, C. Yan, Y. He. C. Kang, Z. Yuan and X. Li. 2019. Polybenzimidazole membrane with dual proton transport channels for vanadium flow battery applications. Journal of Membrane Science 586: 202-10.
Chen R., D. Henkensmeier, S. Kim, S. Yoon, T. Zinkevich and S. Indris. 2018. Improved allvanadium redox flow batteries using catholyte additive and a cross-linked methylated polybenzimidazole membrane. ACS Applied Energy Materials 1: 6047-55.
Dai J., Y. Dong. C. Yu, Y. Liu and X. Teng. 2018. A novel Nafion-g-PSBMA membrane prepared by grafting zwitterionic SBMA onto Nation via SI-ATRP for vanadium redox flow battery application. Journal of Membrane Science 554: 324-30.
Dai W., Y. Shen. Z. Li, L. Yu, J. Xi and X. Qiu. 2014. SPEEK/graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. Journal of Materials Chemistry A 2: 12423—32.
Decher G., J. Hong and J. Schmitt. 1992. Buildup of ultrathin multilayer films by a self- assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces Thin Solid Films 210-211: 831-35.
Ding L., X. Song, L. Wang and Z. Zhao. 2019. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications. Journal of Membrane Science 578: 126-35.
Ding L., X. Song, L. Wang, Z. Zhao and G. He. 2018. Preparation of dense polybenzimidazole proton exchange membranes with different basicity and flexibility for vanadium redox flow battery applications. Electrochimica Acta 292: 10-19.
Doetsch C. and J. Burfeind. 2016. Chapter 12: Vanadium redox flow batteries. Storing Energy. Elsevier, Amsterdam, pp. 227-46.
Fu Z.. J. Liu and Q. Liu. 2015. SPEEK/PVDF/PES composite as alternative proton exchange membrane for vanadium redox flow batteries. Journal of Electronic Materials 45: 666-71.
Geng K., Y. Li, Y. Xing, L. Wang and N. Li. 2019. A novel polybenzimidazole membrane containing bulky naphthalene group for vanadium flow battery. Journal of Membrane Science 586: 231-39.
Glipa X., B. Bonnet, B. Mula, D.J. Jones and J. Roziere. 1999. Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. Journal of Materials Chemistry 9: 3045-49.
Grot W. 1973. Laminates of support material and fluorinated polymer containing pendant side chains containing sulfonyl groups. US Patent 3770, 1973-11-6.
Guan Y., H. Pu, M. Jin, Z. Chang and A. Modestov. 2012. Proton conducting membranes based on poly(2,2'-imidazole-5,5/-bibenzimidazole). Fuel Cells 12: 124-31.
Guarnieri M., A. Trovo, A. D‘anzi and A. Piergiorgio. 2018. Developing vanadium redox flow technology on a 9-kw 26-kwh industrial scale test facility: Design review and early experiments. Applied Energy 230: 1425-34.
Hietala S., S. Holmberg, M. Karjalainen, J. Nasman, M. Paronen, R. Serimaa, F. Sundholm and S. Vahvaselka. 1997. Structural investigation of radiation grafted and sulfonated polyfvinylidene fluoride), PVDF, membranes. Journal of Materials Chemistry 7: 721-26.
Huang R., P. Shao, C. Burns and X. Feng. 2001. Sulfonation of poly(ether ether ketone)(peek): Kinetic study and characterization. Journal of Applied Polymer Science 82: 2651-60.
Jang J., T. Kim, S. Yoon, J. Lee, J. Lee and Y. Hong. 2016. Highly proton conductive, dense polybenzimidazole membranes with low permeability to vanadium and enhanced H,S04 absorption capability for use in vanadium redox flow batteries. Journal of Materials Chemistry A 4: 14342-55.
Jiang B., L. Yu, L. Wu, D. Mu, L. Liu, J. Xi and X. Qiu. 2016. Insights into the impact of the Nation membrane pretreatment process on vanadium flow battery performance. ACS Applied Materials & Interfaces 8: 12228-38.
Jung M., J. Parrondo, C. Arges and V. Ramani. 2013. Polysulfone-based anion exchange membranes demonstrate excellent chemical stability and performance for the allvanadium redox flow battery. Journal of Materials Chemistry A 1: 10458-64.
Kim J., J. Jeon and S. Kwak. 2014. Nafion-based composite membrane with a permselective layered silicate layer for vanadium redox flow battery. Electrochemistry Communications 38: 68-70.
Kim M., D. Ha and J. Choi. 2019. Nanocellulose-modified Nafion 212 membrane for improving performance of vanadium redox flow batteries. Bulletin of the Korean Chemical Society 40: 533-38.
Kong L., L. Zheng, R. Niu, H. Wang and H. Shi. 2016. A sulfonated polyfether ether ketone)/ amine-functionalized graphene oxide hybrid membrane for vanadium redox flow batteries. RSC Advances 6: 100262-70.
Lee Y., S. Kim, A. Maljusch, O. Conradi, H. Kim, J. Jang, J. Han, J. Kim and D. Henkensmeier. 2019. Polybenzimidazole membranes functionalised with 1-methyl- 2-mesitylbenzimidazolium ions via a hexyl linker for use in vanadium flow batteries. Polymer 174: 210-17.
Leung P, X. Li, C. De Leon, L. Berlouis, C. Low and F. Walsh. 2012. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Advances 2: 10125-56.
Li J., S. Liu, Z. He and Z. Zhou. 2016. Semi-fluorinated sulfonated polyimide membranes with enhanced proton selectivity and stability for vanadium redox flow batteries. Electrochimica Acta 216: 320-31.
Li J., Y. Zhang and L. Wang. 2013a. Preparation and characterization of sulfonated polyimide/ TiO, composite membrane for vanadium redox flow battery. Journal of Solid State Electrochemistry 18: 729-37.
Li J., Y. Zhang, S. Zhang and X. Huang. 2015. Sulfonated polyimide/s-MoS2 composite membrane with high proton selectivity and good stability for vanadium redox flow battery. Journal of Membrane Science 490: 179-89.
Li J., Y. Zhang, S. Zhang, X. Huang and L. Wang. 2014a. Novel sulfonated polyimide/Zr02 composite membrane as a separator of vanadium redox flow battery. Polymers for Advanced Technologies 25: 1610-15.
Li X.. A. Dos Santos, M. Drache. X. Ke, U. Gohs. T. Turek, M. Becker. U. Kunz and S. Beuermann. 2017. Polymer electrolyte membranes prepared by pre-irradiation induced graft copolymerization on ETFE for vanadium redox flow battery applications. Journal of Membrane Science 524: 419-27.
Li Y., X. Li, J. Cao, W. Xu and H. Zhang. 2014b. Composite porous membranes with an ultrathin selective layer for vanadium flow batteries. Chemical Communications 50: 4596-99.
Li Y., H. Zhang, X. Li, H. Zhang and W. Wei. 2013b. Porous poly (ether sulfone) membranes with tunable morphology: Fabrication and their application for vanadium flow battery. Journal of Power Sources 233: 202-08.
Li Y., H. Zhang, H. Zhang, J. Cao, W. Xu and X. Li. 2014c. Hydrophilic porous poly(sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application. Journal of Membrane Science 454: 478-87.
Li Z., L. Liu, L. Yu, L. Wang, J. Xi, X. Qiu and L. Chen. 2014d. Characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride-co-hexafluoropropylene) composite membrane for vanadium redox flow battery application. Journal of Power Sources 272: 427-35.
Ling L., M. Xiao, D. Han, S. Ren, S. Wang and Y. Meng. 2019. Porous composite membrane of PVDF/sulfonic silica with high ion selectivity for vanadium redox flow battery. Journal of Membrane Science 585: 230-37.
Liu G„ Z. Xia, S. Jin, X. Guo and J. Fang. 2017. Preparation and properties of polybenzimid- azole/quaternized poly(l-vinylimidazole) cross-linked blend membranes for vanadium redox flow battery applications. High Performance Polymers 30: 612-23.
Liu S., L. Wang, Y. Ding, B. Liu, X. Han and Y. Song. 2014b. Novel sulfonated poly (ether ether ketone)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications. Electrochimica Acta 130: 90-96.
Liu S., L. Wang, D. Li, B. Liu, J. Wang and Y. Song. 2015a. Novel amphoteric ion exchange membranes by blending sulfonated polyfether ether ketonej/quaternized poly(ether imide) for vanadium redox flow battery applications. Journal of Materials Chemistry A 3: 17590-97.
Liu S., L. Wang, B. Zhang, B. Liu, J. Wang and Y. Song. 2015b. Novel sulfonated polyimide/ polyvinyl alcohol blend membranes for vanadium redox flow battery applications. Journal of Materials Chemistry A 3: 2072-81.
Liu Y., K. Ai and L. Lu. 2014a. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews 114: 5057-115.
Loeb S. and S. Sourirajan. 1962. Sea Water Demineralization by means of an Osmotic Membrane. Saline Water Conversion—II Chapter, ACS publications, Washington, DC. pp. 117-32.
Lu S., C. Wu, D. Liang, Q. Tan and Y. Xiang. 2014. Layer-by-layer self-assembly of Nafion- [CS-PWA] composite membranes with suppressed vanadium ion crossover for vanadium redox flow battery applications. RSC Advances 4: 24831-37.
Lu W.. Z. Yuan. Y. Zhao. X. Li. H. Zhang and I.F.J. Vankelecom. 2016. High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces. Energy & Environmental Science 9: 2319-25.
Luo Q., H. Zhang, J. Chen, P. Qian and Y. Zhai. 2008a. Modification of Nation membrane using interfacial polymerization for vanadium redox flow battery applications. Journal of Membrane Science 311: 98-103.
Luo Q., H. Zhang, J. Chen, D. You, C. Sun and Y. Zhang. 2008b. Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery. Journal of Membrane Science 325: 553-58.
Luo T., O. David, Y. Gendel and M. Wessling. 2016. Porous poly(benzimidazole) membrane for all vanadium redox flow battery. Journal of Power Sources 312: 45-54.
Luo X., Z. Lu, J. Xi. Z. Wu. W. Zhu, L. Chen and X. Qiu. 2005. Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries. The Journal of Physical Chemistry В 109: 20310-14.
Ma J., S. Wang, J. Peng, J. Yuan, C. Yu, J. Li, X. Ju and M. Zhai. 2013. Covalently incorporating a cationic charged layer onto Nation membrane by radiation-induced graft copolymerization to reduce vanadium ion crossover. European Polymer Journal 49: 1832-40.
Ma Y., N. Qaisrani. L. Ma, P. Li, L. Li, S. Gong, F. Zhang and G. He. 2018. Side chain hydrolysis method to prepare nanoporous membranes for vanadium flow battery application. Journal of Membrane Science 560: 67-76.
Mai Z., H. Zhang, X. Li, S. Xiao and H. Zhang. 2011. Nafkm/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application. Journal of Power Sources 196: 5737-41.
Mauritz K. and R. Moore. 2004. State of understanding of Nation. Chemical Reviews 104: 4535-85.
Mauritz K. and R. Warren. 1989. Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction. 1. Infrared spectroscopic studies. Macromolecules 22: 1730-34.
Maurya S., S. Shin, J. Lee, Y. Kim and S. Moon. 2016. Amphoteric nanoporous polybenzimidazole membrane with extremely low crossover for a vanadium redox flow battery. RSC Advances 6: 5198-204.
Mohammadi T. and M. Skyllas-Kazacos. 1995. Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications. Journal of Power Sources 56: 91-96.
Park S. and H. Kim. 2016. Preparation of a sulfonated poly(ether ether ketone)-based composite membrane with phenyl isocyanate treated sulfonated graphene oxide for a vanadium redox flow battery. Journal of the Electrochemical Society 163: A2293-98.
Peng S., X. Yan. D. Zhang. X. Wu. Y. Luo and G. He. 2016. A H,P04 preswelling strategy to enhance the proton conductivity of a H2S04-doped polybenzimidazole membrane for vanadium flow batteries. RSC Advances 6: 23479-88.
Pohl H. and R. Chartoff. 1964. Carriers and unpaired spins in some organic semiconductors. Journal of Polymer Science Part A: General Papers 2: 2787-806.
Pu Y.. S. Zhu. P. Wang, Y. Zhou, P. Yang. S. Xuan. Y. Zhang and H. Zhang. 2018. Novel branched sulfonated polyimide/molybdenum disulfide nanosheets composite membrane for vanadium redox flow battery application. Applied Surface Science 448: 186-202.
Qiao L., H. Zhang, W. Lu, Q. Dai and X. Li. 2019. Advanced porous membranes with tunable morphology regulated by ionic strength of nonsolvent for flow battery. ACS Applied Materials & Interfaces 11: 24107-13.
Qiu J., M. Li. J. Ni, M. Zhai. J. Peng. L. Xu, H. Zhou, J. Li and G. Wei. 2007. Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery. Journal of Membrane Science 297: 174-80.
Qiu J.. J. Zhang, J. Chen, J. Peng, L. Xu, M. Zhai. J. Li and G. Wei. 2009. Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications. Journal of Membrane Science 334: 9-15.
Qiu J., L. Zhao, M. Zhai, J. Ni, H. Zhou, J. Peng, J. Li and G. Wei. 2008. Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries. Journal of Power Sources 177: 617-23.
Schwenzer B., S. Kim, M. Vijayakumar, Z. Yang and J. Liu. 2011. Correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties. Journal of Membrane Science 372: 11-19.
Sum E., M. Rychcik and M. Skyllas-Kazacos. 1985. Investigation of the v(v)/v(iv) system for use in the positive half-cell of a redox battery. Journal of Power Sources 16: 85-95.
Sum E. and M. Skyllas-Kazacos. 1985. A study of the v(II)/v(III) redox couple for redox flow cell applications. Journal of Power Sources 15: 179-90.
Sun C., A. Zlotorowicz, G. Nawn, E. Negro, F. Bertasi, G. Pagot, K. Vezzii, G. Pace, M. Guarnieri and V. Di Noto. 2018. [Nafion/(WO,)x] hybrid membranes for vanadium redox flow batteries. Solid Stale Ionics 319: 110-16.
Teng X., J. Dai and J. Su. 2014. Effects of different kinds of surfactants on Nation membranes for all vanadium redox flow battery. Journal of Solid State Electrochemistry 19: 1091-101.
Teng X., J. Dai, J. Su, Y. Zhu, H. Liu and Z. Song. 2013a. A high performance polytetra- fluoroethene/Nafion composite membrane for vanadium redox flow battery application. Journal of Power Sources 240: 131-39.
Teng X., C. Sun, J. Dai, H. Liu, J. Su and F. Li. 2013b. Solution casting Nafion/polytetra- fluoroethylene membrane for vanadium redox flow battery application. Electrochimica Acta 88: 725-34.
Teng X., Y. Zhao, J. Xi, Z. Wu, X. Qiu and L. Chen. 2009. Nafion/organic silica modified TiO, composite membrane for vanadium redox flow battery via in situ sol-gel reactions. Journal of Membrane Science 341: 149-54.
Vandezande P, L. Gevers and I. Vankelecom. 2008. Solvent resistant nanofiltration: Separating on a molecular level. Chemical Society Reviews 37: 365-405.
Wainright J., J. Wang, D. Weng, R. Savinell and Litt M. 1995. Acid-doped polybenzimidazoles: A new polymer electrolyte. Journal of the Electrochemical Society 142: L121-L23.
Wang Y., S. Wang, M. Xiao, D. Han and Y. Meng. 2014. Preparation and characterization of a novel layer-by-layer porous composite membrane for vanadium redox flow battery (VRB) applications. International Journal of Hydrogen Energy 39: 16088-95.
Wei W., H. Zhang, X. Li, H. Zhang, Y. Li and I. Vankelecom. 2013. Hydrophobic asymmetric ultrafiltration PVDF membranes: An alternative separator for VFB with excellent stability. Physical Chemistry Chemical Physics 15: 1766-71.
Xi J., W. Dai and L. Yu. 2015a. Polydopamine coated SPEEK membrane for a vanadium redox flow battery. RSC Advances 5: 33400-06.
Xi J., Z. Wu, X. Qiu and L. Chen. 2007. Nafion/Si02 hybrid membrane for vanadium redox flow battery. Journal of Power Sources 166: 531-36.
Xi J., Z. Wu, X. Teng, Y. Zhao, L. Chen and X. Qiu. 2008. Self-assembled polyelectrolyte multilayer modified Nation membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. Journal of Materials Chemistry 18: 1232-38.
Xi X., C. Ding, H. Zhang, X. Li, Y. Cheng and H. Zhang. 2015b. Solvent responsive silica composite nanofiltration membrane with controlled pores and improved ion selectivity for vanadium flow battery application. Journal of Power Sources 274: 1126-34.
Xia Z., L. Ying, J. Fang. Y.-Y. Du, W.-M. Zhang, X. Guo and J. Yin. 2017. Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications. Journal of Membrane Science 525: 229-39.
Xie W„ R. Darling and M. Perry. 2015. Processing and pretreatment effects on vanadium transport in Nation membranes. Journal of the Electrochemical Society 163: A5084-89.
Yang M., C. Lin, J. Kuo and H. Wei. 2017. Effect of grafting of poly(styrenesulfonate) onto Nation membrane on the performance of vanadium redox flow battery. Journal of Electroanalytical Chemistry 807: 88-96.
Yang P., S. Xuan, J. Long, Y. Wang, Y. Zhang and H. Zhang. 2018. Fluorine-containing branched sulfonated polyimide membrane for vanadium redox flow battery applications. ChemEIectroChem 5: 3695-707.
Yang R., Z. Cao, S. Yang, I. Michos, Z. Xu and J. Dong. 2015. Colloidal silicalite-Nafion composite ion exchange membrane for vanadium redox-flow battery. Journal of Membrane Science 484: 1-9.
Ye J., Y. Cheng, L. Sun, M. Ding. C. Wu, D. Yuan, X. Zhao, C. Xiang and C. Jia. 2019a. A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery. Journal of Membrane Science 572: 110-18.
Ye J., L. Xia, C. Wu, M. Ding, C. Jia and Q. Wang. 2019b. Redox targeting-based flow batteries. Journal of Physics D: Applied Physics 52: 443001.
Yu L., L. Wang, L. Yu, D. Mu, L. Wang and J. Xi. 2019. Aliphatic/aromatic sulfonated polyimide membranes with cross-linked structures for vanadium flow batteries. Journal of Membrane Science 572: 119-27.
Yuan Z., Q. Dai, Y. Zhao, W. Lu, X. Li and H. Zhang. 2016a. Polypyrrole modified porous polyfether sulfone) membranes with high performance for vanadium flow batteries. Journal of Materials Chemistry A 4: 12955-62.
Yuan Z., Y. Duan, H. Zhang, X. Li, H. Zhang and I. Vankelecom. 2016b. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy & Environmental Science 9: 441-47.
Yuan Z., X. Zhu, M. Li, W. Lu, X. Li and H. Zhang. 2016c. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications. Angewandte Chemie International Edition 55: 3058-62.
Yue M., Y. Zhang and Y. Chen. 2011. Preparation and properties of sulfonated polyimide proton conductive membrane for vanadium redox flow battery. Advanced Materials Research 239: 2779-84.
Yue M., Y. Zhang and L. Wang. 2012. Sulfonated polyimide/chitosan composite membrane for vanadium redox flow battery: Influence of the infiltration time with chitosan solution. Solid State Ionics 217: 6-12.
Zeng J.. C. Jiang, Y. Wang, J. Chen. S. Zhu, B. Zhao and R. Wang. 2008. Studies on polypyrrole modified Nation membrane for vanadium redox flow battery. Electrochemistry Communications 10: 372-75.
Zhang В.. E. Zhang, G. Wang, P. Yu, Q. Zhao and F. Yao. 2015. Poly (phenyl sulfone) anion exchange membranes with pyridinium groups for vanadium redox flow battery applications. Journal of Power Sources 282: 328-34.
Zhang D., Q. Wang, S. Peng, X. Yan, X. Wu and G. He. 2019. An interface-strengthened cross-linked graphene oxide/Nafion 212 composite membrane for vanadium flow batteries. Journal of Membrane Science 587: 117189.
Zhang H.. H. Zhang. X. Li, Z. Mai and J. Zhang. 2011. Nanofiltration (NF) membranes: The next generation separators for all vanadium redox flow batteries (VRBS)? Energy & Environmental Science 4: 1676-79.
Zhang H., H. Zhang, F. Zhang, X. Li, Y. Li and I. Vankelecom. 2013a. Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application. Energy & Environmental Science 6: 776-81.
Zhang L., L. Ling, M. Xiao, D. Han, S. Wang and Y. Meng. 2017. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nation membrane with nacre-like nanoarchitectures. Journal of Power Sources 352: 111-17.
Zhang S., B. Zhang, D. Xing and X. Jian. 2013b. Polyfphthalazinone ether ketone ketone) anion exchange membranes with pyridinium as ion exchange groups for vanadium redox flow battery applications. Journal of Materials Chemistry A 1: 12246-54.
Zhang Y., J. Li, L. Wang and S. Zhang. 2014. Sulfonated polyimide/alooh composite membranes with decreased vanadium permeability and increased stability for vanadium redox flow battery. Journal of Solid State Electrochemistry 18: 3479-90.
Zhang Y., H. Wang, W. Yu and H. Shi. 2018a. Structure and properties of sulfonated polyfether ether ketone) hybrid membrane with polyaniline-chains-modified graphene oxide and its application for vanadium redox flow battery. Chemistry Select 3: 9249-58.
Zhang Y., H. Wang, W. Yu, J. Shi and H. Shi. 2018b. Sulfonated poly(ether ether ketone)-based hybrid membranes containing polydopamine-decorated multiwalled carbon nanotubes with acid-base pairs for all vanadium redox flow battery. Journal of Membrane Science 564: 916-25.
Zhang Y., S. Zhang, X. Huang, Y. Zhou, Y. Pu and H. Zhang. 2016. Synthesis and properties of branched sulfonated polyimides for membranes in vanadium redox flow battery application. Electrochimica Acta 210: 308-20.
Zhao Y., M. Li, Z. Yuan, X. Li, H. Zhang and I.F.J. Vankelecom. 2016. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries. Advanced Functional Materials 26: 210-18.
Zhou X., T. Zhao, L. An, L. Wei and C. Zhang. 2015. The use of polybenzimidazole membranes in vanadium redox flow batteries leading to increased coulombic efficiency and cycling performance. Electrochimica Acta 153: 492-98.