Opportunities and Challenges

In the economic evaluation of OSCs, when the photoelectric conversion efficiency of OSCs is more than 7% with large area and the OSC maintains 5-year lifetime, it can produce a competitive power output with silicon solar cells.'74 The efficiency of OSCs in large scale can be 7% with a module area of 4cm2.175 However, the poor stability limits its industrial application. In recent years, many factors have been found to limit the stability of devices, including metastable morphology, diffusion of electrodes and charge transfer layers, oxygen and water, and light radiation. The main approaches to solve the device stability problem are new organic materials, the inverted structure, interface engineering, and packaging technology. Donor and acceptor materials determine the device performance of OSCs. Fullerene with the spherical structure is easy to aggregate and crystallize, which affects the long-term stability of the device seriously. Nowadays, the device based on the combination of wide-bandgap polymer donor and low-bandgap no-fullerene acceptor shows the highest PCE and good stability. This may be a trend in the synthesis of new organic semiconductors. The main reason for the good performance of the device with inverted structure is that the top electrode reacts less with oxygen and water. Interface engineering has been introduced in detail in the previous section; it is only briefly introduced here. PEDOT: PSS is usually used as the hole transport layer material which has a corrosive effect on ITO electrode. In order to improve the stability of the device, metal oxide is also a good choice. For example, MoOv has better long-term air stability because of its hydrophobicity and better oxidation resistance. Encapsulation is a convenient, effective, and universal method to improve the device stability. Encapsulation materials include organic materials, inorganic materials, and organic-inorganic composite materials. Epoxy resin is usually used as the encapsulation material, which has high sealing property, high transparency, and low cost. The efficiency of the device encapsulated with epoxy resin can be maintained at 90% for 1,000 hours.176 The stability of the device is improved after encapsulation, which is mainly related to the similar thermal expansion between organic materials.

The solvents used in the preparation of OSCs are usually dichlorobenzene, chlorobenzene, or chloroform, which will cause damage to human health and the environment. Chlorine-based solvents are used because they can promote the homogeneity of the films with smaller particles, which are favorable of the sunlight absorption and the exciton separation.177 With the continuous improvement of the device efficiency, how to remove toxic solutions and use environmentally friendly solvents is still a great challenge in the practical application of OSCs. In order to solve the problem of solvent toxicity, we can design donor materials which are soluble in environmentally friendly solvents. For example, some functional groups were introduced into the conjugated main chain of the donor to make it dissolve in environmentally friendly solvents.178-'80 A lot of attempts have been made to replace chlorine-based solvents in the classical P3HTPCBM system. For high-performance donor materials with narrow bandgap, the device efficiency can exceed 9% when non-chlorine solvents are used as solvents.18'-'86 The mixed solvent will cause the metastable morphology, current- voltage S-shape curve, reduced filling factor, and poor repeatability of the preparation process. Therefore, the selection of a single green solvent will be more attractive and economical. It should be pointed out that most of the device efficiency has not been certified. It is not universal for the solvents in different material systems when compared with chlorine-based solvents. Another problem is that the real green solvents in OSCs have not yet been realized from the perspective of sustainable development.

References

  • 1. X. T. Hao, T. Hosokai. N. Mitsuo, S. Kera, K. Mase. К. K. Okudaira and N. Ueno, Appl. Phys. Lett.. 89 182113, (2006).
  • 2. Z. He. B. Xiao. F. Liu, H. Wu, Y. Yang, S. Xiao. C. Wang. T. P. Russell and Y. Cao. Nat. Photonics, 9 174-179, (2015).
  • 3. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat. Mater., 4 864-868, (2005).
  • 4. G. Li, R. Zhu and Y. Yang, Nat. Photonics, 6 153-161, (2012).
  • 5. J. You. L. Dou, K. Yoshimura. T. Kato, K. Ohya. T. Moriarty, K. Emery. С. C. Chen, J. Gao, G. Li and Y. Yang, Nat Commun, 4 1446, (2013).
  • 6. C. W. Tang. Appl. Phys. Lett., 48 183, (1986).
  • 7. M. Hiramoto, H. Fujiwara and M. Yokoyama, J. Appl. Pltys., 72 3781-3787, (1992).
  • 8. J. J. M. Halls, C. A. Walsh. N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes. Nature, 376 498-500, (1995).
  • 9. G. Yu, J. Gao. J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 270 1789-1791, (1995).
  • 10. J. D. Chen. C. Cui, Y. Q. Li, L. Zhou. Q. D. Ou. C. Li, Y. Li and J. X. Tang, Adv Mater, 27 1035-1041.(2015).
  • 11. X. Ouyang, R. Peng, L. Ai. X. Zhang and Z. Ge, Nat. Photonics, 9 520-524, (2015).
  • 12. Q. Liu, Y. Jiang, K. Jin et al., Sci. Bull., doi:10.1016/j.scib.2020.01.001.
  • 13. C. Sun. S. Qin, R. Wang, S. Chen, F. Pan. B. Qiu, Z. Shang. L. Meng, C. Zhang, M. Xiao, C. Yang, and Y. Li. J. Am. Chem. Soc., 142 1465-1474, (2020).
  • 14. K. Jiang. Q. Wei, J. Y. L. Lai, Z. Peng. H. K. Kim. J. Yuan. L. Ye, H. Ade. Y. Zou, and H. Yan, Joule, 3 18, (2019).
  • 15. M. Hallermann, I. Kriegel, E. Da Como, J. M. Berger, E. von Hauff and J. Feldmann, Adv. Fund. Mater.. 19 3662-3668, (2009).
  • 16. S. Westenhoff, W. J. D. Beenken, R. H. Friend, N. C. Greenham. A. Yartsev and V. Sundstrom, Phys. Rev. Lett., 97 166804, (2006).
  • 17. В. M. Savoie, S. Dunaisky, T. J. Marks and M. A. Ratner, Adv. Energy Mater., 5 1400891,(2015).
  • 18. J. M. Szarko, B. S. Rolczynski, S. J. Lou, T. Xu. J. Strzalka, T. J. Marks. L. Yu and L. X. Chen, Adv. Fund. Mater., 24 10-26, (2014).
  • 19. В. C. Thompson and J. M. J. Frechet. Angew. Chem. Int. Ed., 47 58-77, (2008).
  • 20. A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek. J. Cornil, D. Beljonne and R. H. Friend, Science. 335 1340-1344, (2012).
  • 21. S. Gelinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll. G. C. Bazan and R. H. Friend, Science, 343 512-516, (2014).
  • 22. B. S. Rolczynski, J. M. Szarko. H. J. Son, Y. Liang, L. Yu and L. X. Chen. J. Am. Chem. Soc., 134 4142-4152,(2012).
  • 23. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz. A. Petrozza and H. J. Snaith. Science, 342 341-344, (2013).
  • 24. M. T. Dang. L. Hirsch and G. Wantz. Adv. Mater., 23 3597-3602. (2011).
  • 25. M. C. Scharber, D. Miihlbacher. M. Koppe. P. Denk. C. Waldauf, A. J. Heeger and C. J. Brabec, Adv. Mater., 18 789-794, (2006).
  • 26. H. A. Atwater and A. Polman, Nat. Mater., 9 205, (2010).
  • 27. H. Deckman, C. Roxlo and E. Yablonovitch, Opt. Lett.. 8 491-493, (1983).
  • 28. E. Yablonovitch and G. D. Cody, IEEE T. Electron Dev., 29 300-305, (1982).
  • 29. Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan. K. Chung and D. H. Kim. Chem. Rev., 116 14982-15034, (2016).
  • 30. S. Pillai, K. Catchpole, T. Trupke and M. Green, J. Appl. Phys., 101 093105, (2007).
  • 31. T. Temple. G. Mahanama, H. Reehal and D. Bagnall, Sol. Energy Mat. Sol. Cells.. 93 1978-1985, (2009).
  • 32. H. M. Chen, С. K. Chen. C.-J. Chen. L.-C. Cheng. P. C. Wu, В. H. Cheng, Y. Z. Ho, M.

L. Tseng. Y.-Y. Hsu and T.-S. Chan. ACS Nano., 6 7362-7372, (2012).

  • 33. K. Catchpole and A. Polman, Appl. Phys. Lett.. 93 191113, (2008).
  • 34. K. A. Catchpole and A. Polman. Opt. Express., 16 21793-21800, (2008).
  • 35. F. Beck. A. Polman and K. Catchpole. J. Appl. Phys.. 105 114310, (2009).
  • 36. S. Lim, W. Mar, P. Matheu. D. Derkacs and E. Yu. J. Appl. Phys., 101 104309. (2007).
  • 37. P. Matheu, S. Lim. D. Derkacs, C. McPheeters and E. Yu, Appl. Phys. Lett.. 93 113108, (2008).
  • 38. P. Spinelli. M. Verschuuren and A. Polman. Nat. Commun., 3 692, (2012).
  • 39. H. F. Zarick. O. Hurd, J. A. Webb. C. Hungerford, W. R. Erwin and R. Bardhan. ACS Photonics. 1 806-811. (2014).
  • 40. M. L. Juan. M. Righini and R. Quidant, Nat. Photonics, 5 349, (2011).
  • 41. L. Feng. M. Niu, Z. Wen and X. Hao, Polymers, 10 123, (2018).
  • 42. S. R. Gollu, R. Sharma, G. Srinivas, S. Kundu and D. Gupta, Org. Electronics, 29 79-87, (2016).
  • 43. I. Khan, H. Keshmiri, F. Kolb, T. Dimopoulos, E. J. List-Kratochvil and J. Dostalek, Adv. Opt. Mater.. 4 435-443. (2016).
  • 44. A. C. Liapis. M. Y. Sfeir and С. T. Black. Appl. Phys. Lett., 109 201101. (2016).
  • 45. A. M. Nardes, S. Ahn, D. Rourke, C. Mao, J. van de Lagemaat, A. J. Ferguson, W. Park and N. Kopidakis, Org. Electronics. 39 59-63, (2016).
  • 46. X. Ren. J. Cheng, S. Zhang. X. Li, T. Rao. L. Huo. J. Hou and W. C. Choy. Small. 12 5200-5207, (2016).
  • 47. C. Stelling, C. R. Singh. M. Karg, T. A. Konig, M. Thelakkat and M. Retsch, Sci. Rep., 142530, (2017).
  • 48. K. Yao. H. Jiao, Y.-X. Xu. Q. He, F. Li and X. Wang, J. Mater Chem. A. 4 13400-13406, (2016).
  • 49. M. Yao, P. Shen. Y. Liu, B. Chen, W. Guo, S. Ruan and L. Shen, ACS Appl. Mater. Inter., 8 6183-6189, (2016).
  • 50. Y.-S. Hsiao. S. Charan. F.-Y. Wu, F.-C. Chien. C.-W. Chu. P. Chen and F.-C. Chen. J. Phys. Chem. C, 116 20731-20737, (2012).
  • 51. E. Wei, H. L. Zhu, L. Chen, W. C. Chew and W. C. Choy, Sci. Rep.. 5 8525, (2015).
  • 52. J. M. Lee, J. Lim, N. Lee, H. 1. Park. К. E. Lee, T. Jeon, S. A. Nam, J. Kim. J. Shin and S. O. Kim, Adv. Mater.. 27 1519-1525, (2015).
  • 53. D. H. Wang. D. Y. Kim, K. W. Choi. J. H. Seo, S. H. Im, J. H. Park, O. O. Park and A. J. Heeger, Angew. Chem. Int. Ed., 50 5519-5523, (2011).
  • 54. D. H. Wang, К. H. Park, J. H. Seo, J. Seifter. J. H. Jeon, J. K. Kim, J. H. Park. O. O. Park and A. J. Heeger, Adv. Energy Mater.. 1 766-770, (2011).
  • 55. D. Chi. S. Lu. R. Xu, K. Liu, D. Cao, L. Wen. Y. Mi. Z. Wang, Y. Lei and S. Qu, Nanoscale, 7 15251-15257. (2015).
  • 56. G. Kakavelakis, I. Vangelidis, A. Heuer-Jungemann, A. G. Kanaras, E. Lidorikis, E. Stratakis and E. Kymakis, Adv. Energy Mater., 6 1501640, (2016).
  • 57. P. Xu, L. Shen. F. Meng, J. Zhang. W. Xie. W. Yu. W. Guo, X. Jia and S. Ruan. Appl. Phys. Lett., 102 53, (2013).
  • 58. H. I. Park, S. Lee, J. M. Lee, S. A. Nam, T. Jeon, S. W. Han and S. O. Kim, ACS Nano, 8 10305-10312, (2014).
  • 59. M. Chalh, S. Vedraine. B. Lucas and B. Ratier, Sol. Energy Mat. Sol. Cells., 152 34-41, (2016).
  • 60. E. C. Garnett. W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo. Y. Cui.

M. D. McGehee and M. L. Brongersma, Nat. Mater., 11 241. (2012).

  • 61. M. G. Kang, M. S. Kim, J. Kim and L. J. Guo, Adv. Mater., 20 4408-4413, (2008).
  • 62. M. G. Kang. T. Xu, H. J. Park. X. Luo and L. J. Guo, Adv. Mater.. 22 4378-4383,
  • (2010).
  • 63. M. C. Scharber, C. Lungenschmied, H.-J. Egelhaaf, G. Matt, M. Bednorz, T. Fromherz, J. Gao, D. Jarzab and M. A. Loi, Energy Environ. Sci., 4 5077, (2011).
  • 64. J. Huang, Z. Yin and Q. Zheng. Energy Environ. Sci., 4 3861-3877, (2011).
  • 65. S. Kim, J. H. Koh. X. Yang. W. S. Chi, C. Park. J. W. Leem, B. Kim, S. Seo, Y. Kim and

J. S. Yu, Adv. Energy Mater., 4 1301338, (2014).

  • 66. S. Kundu, S. R. Gollu, R. Sharma, G. Srinivas, A. Ashok, A. Kulkarni and D. Gupta, Org. Electronics, 14 3083-3088, (2013).
  • 67. S. Sanchez, S. Berson, S. Guillerez, C. Levy-Clement and V. Ivanova, Adv. Energy Mater., 2 541-545. (2012).
  • 68. J.-C. Wang. W.-T. Weng. M.-Y. Tsai. M.-K. Lee. S.-F. Horng, T.-P. Perng, C.-C. Kei. C.-C. Yu and H.-F. Meng, J. Mater. Chem., 20 862-866, (2010).
  • 69. M.-S. White, D. Olson. S. Shaheen, N. Kopidakis and D. S. Ginley, Appl. Phys. Lett., 89 143517, (2006).
  • 70. Y. Sun. J. H. Seo. C. J. Takacs. J. Seifter and A. J. Heeger, Adv. Mater., 23 1679-1683,
  • (2011).
  • 71. Y. Liu. J. Zhao. Z. Li. C. Mu, W. Ma, H. Hu, K. Jiang. H. Lin, H. Ade and H. Yan, Nat. Commun., 5 5293, (2014).
  • 72. Z. Yin. Q. Zheng, S. C. Chen and D. Cai, ACS Appl Mater. Inter., 5 9015-9025, (2013).
  • 73. W.-L. Xu, B. Wu, F. Zheng. H.-B. Wang, Y.-Z. Wang. F.-G. Bian, X.-T. Hao and F. Zhu, Org. Electronics, 25 266-274, (2015).
  • 74. S. B. Dkhil, D. Duche, M. Gaceur, A. K. Thakur, F. B. Aboura, L. Escoubas, J. J. Simon, A. Guerrero, J. Bisquert and G. Garcia-Belmonte, Adv. Energy Mater., 4 1400805, (2015).
  • 75. K. Lee, J. Y. Kim, S. H. Park. S. H. Kim, S. Cho and A. J. Heeger, Adv. Mater., 19 2445-2449, (2007).
  • 76. X. Bao, L. Sun. W. Shen. C. Yang, W. Chen and R. Yang, J. Mater. Chem. A. 2 1732-1737, (2014).
  • 77. S. H. Park, A. Roy. S. Beaupre, S. Cho. N. Coates. J. S. Moon, D. Moses. M. Leclerc,

K. Lee and A. J. Heeger, Nat. Photonics, 3 297, (2009).

  • 78. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. Choulis and C. Brabec, Appl. Phys. Lett.. 89 233517, (2006).
  • 79. J. Xiong, B. Yang, C. Zhou. J. Yang, H. Duan, W. Huang, X. Zhang, X. Xia, L. Zhang and H. Huang. Org. Electronics, 15 835-843, (2014).
  • 80. A. R. bin Mohd Yusoff. H. P. Kim and J. Jang, Sol. Energy Mat. Sol. Cells.. 109 63-69,
  • (2013).
  • 81. J. Bok Kim. S. Ahn. S. Ju Kang, C. Nuckolls and Y.-L. Loo, Appl. Phys. Lett.. 102 45, (2013).
  • 82. J. Liu, S. Shao. B. Meng, G. Fang, Z. Xie. L. Wang and X. Li, Appl. Phys. Lett., 100 213906, (2012).
  • 83. S. Trost. K. Zilberberg. A. Behrendt and T. Riedl, J. Mater. Chem.. 22 16224-16229,
  • (2012).
  • 84. B. Bob, T.-B. Song, C.-C. Chen. Z. Xu and Y. Yang. Chem. Mater.. 25 4725-4730, (2013).
  • 85. S. Trost, A. Behrendt. T. Becker, A. Polywka, P. Gorrn and T. Riedl, Adv. Energy Mater., 5 1500277, (2015).
  • 86. H. Zhang and J. Ouyang, Appl. Phys. Lett., 97 063509, (2010).
  • 87. Y. Zhou, H. Cheun, W. J. Potscavage Jr, C. Fuentes-Hernandez, S.-J. Kim and B. Kippelen, J. Mater. Chem., 20 6189-6194. (2010).
  • 88. J. Peng. Q. Sun, Z. Zhai. J. Yuan. X. Huang, Z. Jin, K. Li, S. Wang. H. Wang and W. Ma. Nanotechnology, 24 484010. (2013).
  • 89. Z. Yin, Q. Zheng, S. C. Chen, D. Cai, L. Zhou and J. Zhang, Adv. Energy Mater.. 4 1301404. (2014).
  • 90. T. Z. Oo. R. D. Chandra, N. Yantara. R. R. Prabhakar, L. H. Wong, N. Mathews and S. G. Mhaisalkar, Org. Electronics, 13 870-874. (2012).
  • 91. A. Puetz, T. Stubhan, M. Reinhard. O. Loesch. E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann and U. Lemmer, Sol. Energy Mat. Sol. Cells., 95 579-585.(2011).
  • 92. K.-S. Shin. K.-H. Lee. H. H. Lee. D. Choi and S.-W. Kim. J. Phys. Chem. C, 114 15782-15785. (2010).
  • 93. T. Stubhan. I. Litzov, N. Li. M. Salinas. M. Steidl. G. Sauer. K. Forberich, G. J. Matt, M. Halik and C. J. Brabec, J. Mater. Chem. A, 1 6004-6009. (2013).
  • 94. T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov and C. J. Brabec, Org. Electronics, 12 1539-1543, (2011).
  • 95. M. Thambidurai, J. Y. Kim, C.-M. Kang, N. Muthukumarasamy, H.-J. Song, J. Song, Y. Ко, D. Velauthapillai and C. Lee, Renewable Energy, 66 433-442, (2014).
  • 96. X. Li, F. Xie, S. Zhang, J. Hou and W. C. Choy, Adv. Fund. Mater., 24 7348-7356.
  • (2014).
  • 97. X. Li. F. Xie, S. Zhang, J. Hou and W. C. Choy, Light Sci. Appl., 4 e273, (2015).
  • 98. J. You, С. C. Chen, L. Dou. S. Murase. H. S. Duan. S. A. Hawks, T. Xu, H. J. Son,

L. Yu and G. Li. Adv. Mater.. 24 5267-5272, (2012).

  • 99. S. Chen. J. R. Manders, S.-W. Tsang and F. So, J. Mater. Cltem., 22 24202-24212, (2012).
  • 100. W. Cai. P. Liu, Y. Jin. Q. Xue. F. Liu. T. P. Russell. F. Huang. H. L. Yip and Y. Cao, Adv Sci., 2 1500095, (2015).
  • 101. Z. He, C. Zhong, X. Huang. W. Y. Wong, H. Wu. L. Chen, S. Su and Y. Cao, Adv Mater, 23 4636-4643, (2011).
  • 102. X. Hu, C. Yi, M. Wang, С. H. Hsu. S. Liu, K. Zhang, C. Zhong, F. Huang, X. Gong and Y. Cao, Adv. Energy Mater., 4 1400378, (2014).
  • 103. Y. L. Li, Y. S. Cheng, P. N. Yeh. S. H. Liao and S. A. Chen, Adv. Fund. Mater., 24 6811-6817,(2014).
  • 104. Z. Tang. W. Tress, Q. Bao. M. J. Jafari, J. Bergqvist. T. Ederth. M. R. Andersson and O. Inganas, Adv. Energy Mater., 4 1400643, (2014).
  • 105. H. Kang, S. Hong, J. Lee and K. Lee. Adv. Mater.. 24 3005-3009, (2012).
  • 106. E. Saracco, B. Bouthinon, J. M. Verilhac. C. Celle, N. Chevalier, D. Mariolle, O. Dhez and J. P. Simonato, Adv. Mater.. 25 6534-6538, (2013).
  • 107. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun and J. Kim, Science, 336 327-332, (2012).
  • 108. V. Gupta, А. К. K. Kyaw, D. H. Wang, S. Chand. G. C. Bazan and A. J. Heeger, Sci. Rep., 3 1965, (2013).
  • 109. C. Y. Jiang, X. W. Sun. D. W. Zhao. А. К. K. Kyaw and Y. N. Li. Sol. Energy Mat. Sol. Cells.. 94 1618-1621, (2010).
  • 110. D. Zhao. P. Liu, X. Sun, S. Tan. L. Ke and A. Kyaw, Appl. Phys. Lett., 95 275. (2009).
  • 111. J. Huang, G. Li and Y. Yang. Adv. Mater.. 20 415-419, (2008).
  • 112. G. Wang. T. Jiu. C. Sun, J. Li, P. Li, F. Lu and J. Fang, ACS Appl. Mater. Inter.. 6 833-838. (2014).
  • 113. T. Xiao, W. Cui, M. Cai, W. Leung, J. W. Anderegg, J. Shinar and R. Shinar, Org. Electronics, 14 267-272, (2013).
  • 114. Z. A. Tan. S. Li, F. Wang, D. Qian. J. Lin, J. Hou and Y. Li, Sci. Rep.. 4 4691, (2014).
  • 115. S. Shao, K. Zheng, T. Pullerits and F. Zhang, AC.S' Appl. Mater. Inter., 5 380-385, (2013).
  • 116. С. E. Small, S. Chen, J. Subbiah, С. M. Amb. S.-W. Tsang. T.-H. Lai. J. R. Reynolds and F. So, Nat. Photonics, 6 115, (2012).
  • 117. N. Wu, Q. Luo. Z. Bao. J. Lin, Y.-Q. Li and C.-Q. Ma, Sol. Energy Mat. Sol. Cells.. 141 248-259, (2015).
  • 118. Z.-Q. Xu, J.-R Yang, F.-Z. Sun, S.-T. Lee, Y.-Q. Li and J.-X. Tang, Org. Electronics, 13 697-704, (2012).
  • 119. Z. Yin. Q. Zheng, S.-C. Chen, J. Li, D. Cai, Y. Ma and J. Wei, Nano Research. 8 456-468. (2015).
  • 120. L. Nian, W. Zhang, N. Zhu. L. Liu. Z. Xie. H. Wu. F. Wurthner and Y. Ma. J. Am. Client. Soc., 137 6995-6998, (2015).
  • 121. S. Woo. W. Hyun Kim, H. Kim. Y. Yi, H. K. Lyu and Y. Kim. Adv. Energy Mater.. 4 1301692, (2014).
  • 122. S. R. Cowan, P. Schulz, A. J. Giordano. A. Garcia. B. A. MacLeod. S. R. Marder. A. Kahn. D. S. Ginley. E. L. Ratcliff and D. C. Olson, Adv. Fund. Mater.. 24 4671-4680, (2014).
  • 123. H. W. Lee, Y. O. Jin, T. I. Lee. W. S. Jang. Y. B. Yoo, S. S. Chae. J. H. Park, J. M. Myoung, К. M. Song and К. B. Hong. Appl. Phys. Lett.. 102 1474. (2013).
  • 124. Y. Zhang. S. Yuan, Y. Li and W. Zhang. Electrochimica Acta. 117 438-442, (2014).
  • 125. H.-L. Yip and A. K.-Y. Jen. Energy Environ. Sci., 5 5994-6011, (2012).
  • 126. F. Jiang, W. C. Choy, X. Li. D. Zhang and J. Cheng, Adv. Mater., 27 2930-2937, (2015).
  • 127. T. Stubhan. N. Li. N. A. Luechinger. S. C. Halim, G. J. Matt and C. J. Brabec, Adv. Energy Mater.. 2 1433-1438, (2012).
  • 128. X. Tu, F. Wang. C. Li, Z. A. Tan and Y. Li, J. Phys. Chem. C, 118 9309-9317, (2014).
  • 129. F. Wang, Q. Xu. Z. A. Tan. L. Li. S. Li. X. Hou, G. Sun. X. Tu. J. Hou and Y. Li, J. Mater. Chem. A. 2 1318-1324, (2014).
  • 130. K. S. Tan, M. K. Chuang, F. C. Chen and C. S. Hsu. ACS Appl. Mater. Inter.. 5 12419-12424, (2013).
  • 131. Z. A. Tan, D. Qian, W. Zhang. L. Li, Y. Ding, Q. Xu, F. Wang and Y. Li, J. Mater. Chem. A. 1 657-664. (2013).
  • 132. J. Wang. J. Zhang. B. Meng, B. Zhang, Z. Xie and L. Wang, ACS Appl. Mater. Inter., 7 13590-13596, (2015).
  • 133. S.-S. Li. K.-H. Tu, C.-C. Lin. C.-W. Chen and M. Chhowalla, ACS Nano, 4 3169-3174,
  • (2010).
  • 134. Y. Gao. H.-L. Yip. S. K. Hau. К. M. O'Malley, N. C. Cho. H. Chen and A. K.-Y. Jen, Appl. Phys. Lett.. 97 251, (2010).
  • 135. Y. Gao, H. L. Yip. K. S. Chen. К. M. O'Malley. O. Acton. Y. Sun, G. Ting, H. Chen and A. K. Y. Jen, Adv. Mater., 23 1903-1908. (2011).
  • 136. J. M. Yun. J. S. Yeo. J. Kim, H. G. Jeong, D. Y. Kim. Y. J. Noh, S. S. Kim. В. C. Ku and S. I. Na. Adv. Mater.. 23 4923-4928. (2011).
  • 137. S. Mao. H. Pu and J. Chen, RSC Adv., 2 2643-2662, (2012).
  • 138. D. R. Dreyer. S. Park, C. W. Bielawski and R. S. Ruoff. Chem. Soc. Rev., 39 228-240, (2010).
  • 139. S. Pei and H.-M. Cheng. Carbon. 50 3210-3228. (2012).
  • 140. Y. Yang. W. Chen. L. Dou, W.-H. Chang. H.-S. Duan. B. Bob. G. Li and Y. Yang. Nat. Photonics. 9 190-198, (2015).
  • 141. S.-T. Chuang. S.-C. Chien and F.-C. Chen, Appl. Phys. Lett.. 100 013309, (2012).
  • 142. F. Guo, B. Yang, Y. Yuan. Z. Xiao. Q. Dong. Y. Bi and J. Huang, Nat. Nanotech.. 7 798-802, (2012).
  • 143. Y. Han, C. Fan, G. Wu, H.-Z. Chen and M. Wang, J. Phys. Chem. C, 115 13438-13445,
  • (2011).
  • 144. J. M. Melancon and S. R. Zivanovic,Appl. Phys. Lett.. 105 163301, (2014).
  • 145. H. Wang. Z. Li. C. Fu, D. Yang, L. Zhang. S. Yang and B. Zou, IEEE Photonics Tech. Lett., 27 612-615, (2015).
  • 146. Y. Xie, M. Gong, T. A. Shastry, J. Lohrman, M. C. Hersam and S. Ren, Adv Mater, 25 3433-3437, (2013).
  • 147. D. J. Xue, J. J. Wang, Y. Q. Wang. S. Xin. Y. G. Guo and L. J. Wan. Adv Mater, 23 3704-3707, (2011).
  • 148. Q. An, F. Zhang. J. Zhang, W. Tang, Z. Deng and B. Hu, Energy Environ. Sci.. 9 281-322, (2016).
  • 149. Q. An. J. Zhang. W. Gao, F. Qi. M. Zhang, X. Ma, C. Yang. L. Huo and F. Zhang, Small, 14 1802983, (2018).
  • 150. J. Zhang, Y. Zhang, J. Fang, K. Lu, Z. Wang, W. Ma and Z. Wei, J. Am. Chem. Soc.. 137 8176-8183, (2015).
  • 151. Q. An. F. Zhang, J. Zhang. W. Tang, Z. Wang, L. Li, Z. Xu, F. Teng and Y. Wang, Sol. Energy Mat. Sol. Cells., 118 30-35, (2013).
  • 152. J.-H. Huang, M. Velusamy, K.-C. Ho. J.-T. Lin and C.-W. Chu. J. Mater. Chem., 20 2820-2825Д2010).
  • 153. M. Koppe, H. J. Egelhaaf, E. Clodic. M. Morana. L. Liier, A. Troeger. V. Sgobba. D. M. Guldi, T. Ameri and C. J. Brabec. Adv. Energy Mater., 3 949-958, (2013).
  • 154. J.-S. Huang, T. Goh. X. Li. M. Y. Sfeir, E. A. Bielinski, S. Tomasulo, M. L. Lee,

N. Hazari and A. D. Taylor, Nat. Photonics, 7 479, (2013).

  • 155. L. Lu. T. Xu, W. Chen, E. S. Landry and L. Yu, Nat. Photonics, 8 716, (2014).
  • 156. L. Ye, H.-H. Xu. H. Yu, W.-Y. Xu, H. Li. H. Wang, N. Zhao and J.-B. Xu. J. Phys. Chem. C. 118 20094-20099, (2014).
  • 157. Q. An. F. Zhang, L. Li, J. Wang. Q. Sun, J. Zhang, W. Tang and Z. Deng, ACS Appl. Mater. Inter., 1 3691, (2015).
  • 158. X.-T. Hao. L. J. McKimmie and T. A. Smith, J. Phys. Chem. Lett., 2 1520-1525, (2011).
  • 159. W.-L. Xu, B. Wu, F. Zheng, X.-Y. Yang, H.-D. Jin. F. Zhu and X.-T. Hao. J. Phys. Chem. C. 119 21913-21920, (2015).
  • 160. W. L. Xu, P. Zeng, B. Wu. F. Zheng, F. Zhu, T. A. Smith, К. P Ghiggino and X. T. Hao, J. Phys. Chem. Lett., 7 1872, (2016).
  • 161. N. Y. Chan. M. Chen, X.-T. Hao, T. A. Smith and D. E. Dunstan, J. Phys. Chem. Lett., 1 1912-1916,(2010).
  • 162. A. R. Clapp, 1. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi and H. Mattoussi, J. Am. Chem. Soc., 126 301-310, (2004).
  • 163. G. D. Scholes, Annu. Rev. Phys. Chem., 54 57-87, (2003).
  • 164. F. Wang. X.-Y. Yang, M.-S. Niu, L. Feng and X.-T. Hao, Org. Electronics. 67 146-152, (2019).
  • 165. K.-N. Zhang, P-Q. Bi, Z.-C. Wen. M.-S. Niu, Z.-H. Chen. T. Wang. L. Feng. J.-L. Yang and X.-T. Hao, Org. Electronics, 62 643-652, (2018).
  • 166. K.-N. Zhang, X.-Y. Yang, M.-S. Niu, Z.-C. Wen. Z.-H. Chen, L. Feng, X.-J. Feng and X.-T. Hao, Org. Electronics, 66 13-23, (2019).
  • 167. L. Yang, H. Zhou, S. C. Price and W. You. J. Am. Chem. Soc., 134 5432-5435,
  • (2012).
  • 168. M. Zhang, F. Zhang, J. Wang, Q. An and Q. Sun, J. Mater. Chem. C, 3 11930-11936,
  • (2015).
  • 169. W. Chen, T. Xu, F. He. W. Wang, C. Wang, J. Strzalka, Y. Liu. J. Wen, D. J. Miller and J. Chen. Nano Lett., 11 3707-3713, (2011).
  • 170. J. Rivnay, R. Noriega, R. J. Kline, A. Salleo and M. F. Toney, Phys. Rev. B, 84 045203, (2011).
  • 171. J. Zhang, Y. Zhang, J. Fang, K. Lu, Z. Wang, W. Ma and Z. Wei, J. Am. Chem. Soc.. 137 8176-8183, (2015).
  • 172. T. Liu. L. Huo. S. Chandrabose. K. Chen. G. Han, F. Qi, X. Meng. D. Xie, W. Ma and Y. Yi, Adv. Mater.. 30 1707353, (2018).
  • 173. Z. Luo. H. Bin, T. Liu, Z. G. Zhang, Y. Yang. C. Zhong, B. Qiu. G. Li. W. Gao and D. Xie. Adv. Mater.. 30 1706124, (2018).
  • 174. B. Azzopardi, C. J. Emmott, A. Urbina, F. C. Krebs, J. Mutale and J. Nelson, Energy Environ. Sci., 4 3741-3753, (2011).
  • 175. L. Zuo, S. Zhang, H. Li and H. Chen, Adv. Mater.. 27 6983-6989, (2015).
  • 176. S. B. Sapkota, A. Spies, B. Zimmermann, I. Durr and U. Wiirfel, Sol. Energy Mat. Sol. Cells.. 130 144-150, (2014).
  • 177. L. Ye, X. Jiao. M. Zhou, S. Zhang. H. Yao, W. Zhao, A. Xia. H. Ade and J. Hou. Adv. Mater., 27 6046-6054, (2015).
  • 178. Y. Chen, S. Zhang, Y. Wu and J. Hou, Adv. Mater.. 26 2744-2749, (2014).
  • 179. C. Duan. W. Cai. В. B. Y. Hsu. C. Zhong. K. Zhang, C. Liu. Z. Hu, F. Huang. G. C. Bazan, A. J. Heeger and Y. Cao, Energy Environ. Sci.. 6 3022-3034. (2013).
  • 180. B. Meng. Y. Fu, Z. Xie, J. Liu and L. Wang, Polym. Chem.. 6 805-812, (2015).
  • 181. Y. Deng, W. Li, L. Liu, H. Tian. Z. Xie, Y. Geng and F. Wang, Energy Environ. Sci.. 8 585-591, (2015).
  • 182. X. Dong, Y. Deng. H. Tian. Z. Xie, Y. Geng and F. Wang, J. Mater. Chem. A. 3 19928-19935, (2015).
  • 183. J. Griffin, A. J. Pearson. N. W. Scarratt, T. Wang. A. D. F. Dunbar. H. Yi. A. Iraqi. A. R. Buckley and D. G. Lidzey, Org. Electronics, 21 216-222, (2015).
  • 184. G. Susanna, L. Salarnandra, C. Ciceroni, F. Mura, T. M. Brown, A. Reale, M. Rossi, A. Di Carlo and F. Brunetti, Sol. Energy Mat. Sol. Cells., 134 194-198, (2015).
  • 185. W. Zhao, L. Ye, S. Zhang, M. Sun and J. Hou. J. Mater. Chem. A, 3 12723-12729, (2015).
  • 186. C. Sprau, F. Buss, M. Wagner, D. Landerer, M. Koppitz, A. Schulz, D. Bahro, W. Schabel, P. Scharfer and A. Colsmann, Energy Environ. Sci., 8 2744-2752, (2015).
 
Source
< Prev   CONTENTS   Source   Next >