A considerable limitation of existing enantioselective methods is chromatographic run time. Methods capable of multi residue separation are typically >60 minutes (Table 4.1). This limits sample throughput and advancement in this area (Sanganyado et ah, 2017). Chiral separations have been limited to HPLC mode with columns of 5 pm stationary phase particle sizes (Table 4.1). Nevertheless, enantioselective columns with sub-2 pm particle sizes are becoming available. Such columns will enable UPLC performance and reduced chromatographic run times. This should make chiral pharmaceutical analysis more desirable for environmental researchers in the future.

Several studies have been conducted on the fate of chiral pharmaceuticals in the environment. This has been undertaken using both river water and soil in controlled laboratory microcosm studies (Bertin et ah, 2020; Camacho-Munoz et ah, 2019; Evans et ah, 2016; Petrie et ah, 2018). Such studies are essential to understand the enantiospecific fate of chiral pharmaceuticals in environmental compartments. However, to date only limited research has been undertaken on single enantiomers. Using racemic analytical standard mixtures in such studies could result in overlooking important fate mechanisms (e.g., chiral inversion) and associated risks of such processes (Bertin et ah, 2020). A contributor of this has been the lack of enantiomerically pure analytical standards. However, they are becoming more readily available for use in such studies.

The majority of enantiospecific studies to date have focused on biodegradation in the environment. However, enantioselective sorption could take place and be an important process in the environment. For example, Sanganyado et ah (2016) reported that sorption of acebutoloh atenolol, and metoprolol to wastewater sludge was enantioselective in nature. Chiral drugs are known to partition into river sediments (Diaz-Cruz et ah, 2003; Kunkel and Radke, 2012). Therefore, enantioselective sorption to sediments as well as suspended particulate matter in rivers needs to be investigated.

Overall, there is a lack of acute and chronic ecotoxicity testing of pharmaceuticals and their metabolites at the enantiomer level (Table 4.3). Such tests at different trophic levels are essential to enable the incorporation of stereochemistry into environmental risk assessments. However, care is needed because adverse effects can be observed at non-traditional endpoints (Brooks et ah, 2003). Furthermore, it is important to consider mixtures as molecular interactions of enantiomers can be additive, antagonistic, and synergistic (Stanley and Brooks, 2009).


Andre's-Costa, M. J., K. Proctor. M. T. Sabatini, A. P. Gee. S. E. Lewis, Y. Pico, and B. Kasprzyk-Hordern. 2017. “Enantioselective transformation of fluoxetine in water and its ecotoxicological relevance.” Scientific Reports 1 (1):15777. doi: 10.1038/s41598-017-15585-l.

Azzouz. A., and E. Ballesteros. 2016. “Determination of 13 endocrine disrupting chemicals in environmental solid samples using microwave-assisted solvent extraction and continuous solid-phase extraction followed by gas chromatography-mass spectrometry.” Analytical and Bioanalytical Chemistry 408 (1):231—241. doi: 10.1007/s00216-015-9096-l.

Bagnall, J. P.. S. E. Evans, M. T. Wort. A. T. Lubben, and B. Kasprzyk-Hordern. 2012. “Using chiral liquid chromatography quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level.” Journal of Chromatography A 1249:115-129. doi: 10.1016/j.chroma.2012.06.012.

Baranowska. M. 2018. “Fate of chiral pharmacologically active compounds in river water microcosms.” MSc Thesis, Robert Gordon University, UK.

Beesley, T. E„ and J.-T. Lee. 2009. “Method development strategy and applications update for CHIROBIOTIC chiral stationary phases.” Journal of Liquid Chromatography & Related Technologies 32 (11-12):1733— 1767. doi: 10.1080/10826070902959489.

Berthod. A., H. X. Qiu, S. M. Staroverov. M. A. Kuznestov, and D. W. Armstrong. 2010. “Chiral Recognition with Macrocyclic Glycopeptides: Mechanisms and Applications.” In Chiral Recognition in Separation Methods: Mechanisms and Applications, edited by Alain Berthod, 203-222. Berlin. Heidelberg: Springer Berlin Heidelberg.

Bertin, S.. K. Yates, and B. Petrie. 2020. “Enantiospecific behaviour of chiral drugs in soil." Environmental Pollution 262:114364. doi: https://doi.Org/10.1016/j.envpol.2020.114364.

Boogaerts, T., M. Degreef, A. Covaci, and A. L. N. van Nuijs. 2019. “Development and validation of an analytical procedure to detect spatio-temporal differences in antidepressant use through a wastewater-based approach." Talanta 200:340-349. doi: https://doi.Org/10.1016/j.talanta.2019.03.052.

Brooks, B. W.. С. M. Foran, S. M. Richards. J. Weston. P. K. Turner. J. K. Stanley. K. R. Solomon. M. Slattery, and T. W. La Point. 2003. “Aquatic ecotoxicology of fluoxetine." Toxicology Letters 142 (3):169—183. doi: https://doi.org/10.1016/S0378-4274(03)00066-3.

Buser, H.-R.. T. Poiger. and M. D. Muller. 1999. “Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater.” Environmental Science & Technology 33 (15):2529-2535. doi: 10.1021/es981014w.

Caballo, C„ M. D. Sicilia, and S. Rubio. 2015. “Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography-tandem mass spectrometry.” Talanta 134:325-332. doi: https://doi.Org/10.1016/j.talanta.2014.ll.016.

Camacho-Munoz, D.. and B. Kasprzyk-Hordern. 2015. “Multi-residue enantiomeric analysis of human and veterinary pharmaceuticals and their metabolites in environmental samples by chiral liquid chromatography coupled with tandem mass spectrometry detection." Analytical and Bioanalytical Chemistry 407 (301:9085-9104. doi: 10.1007/s00216-015-9075-6.

Camacho-Munoz. D„ and B. Kasprzyk-Hordern. 2017. “Simultaneous enantiomeric analysis of pharmacologically active compounds in environmental samples by chiral LC-MS/MS with a macrocyclic antibiotic stationary phase.” Journal of Mass Spectrometry 52 (2):94—108. doi: 10.1002/jms.3904.

Camacho-Munoz, D.. B. Kasprzyk-Hordern, and К. V. Thomas. 2016. “Enantioselective simultaneous analysis of selected pharmaceuticals in environmental samples by ultrahigh-performance supercritical fluid based chromatography tandem mass spectrometry." Analytica Chimica Acta 934:239-251. doi: https:// doi.org/10.1016/j.aca.2016.05.051.

Camacho-Munoz, D., J. Martin, J. L. Santos. I. Aparicio, and E. Alonso. 2010. “Occurrence, temporal evolution and risk assessment of pharmaceutically active compounds in Donana Park (Spain)." Journal of Hazardous Materials 183 (11:602—608. doi: https://doi.Org/10.1016/j.jhazmat.2010.07.067.

Camacho-Munoz, D.. B. Petrie, L. Lopardo, K. Proctor. J. Rice. J. Youdan, R. Barden, and B. Kasprzyk- Hordern. 2019. “Stereoisomeric profiling of chiral pharmaceutically active compounds in wastewaters and the receiving environment - A catchment-scale and a laboratory study.” Environment International 127:558-572. doi: https://doi.Org/10.1016/j.envint.2019.03.050.

Castrignano, E.. A. M. Kantian, E. J. Feil. and B. Kasprzyk-Hordern. 2018. “Enantioselective fractionation of fluoroquinolones in the aqueous environment using chiral liquid chromatography coupled with tandem mass spectrometry.” Chemosphere 206:376-386. doi: https://doi.Org/10.1016/j.chemosphere.2018.05.005.

Coelho, M. M., A. R. Lado Ribeiro, J. C. G. Sousa, C. Ribeiro, C. Fernandes, A. M. T. Silva, and M. E. Tiritan. 2019. “Dual enantioselective LC-MS/MS method to analyse chiral drugs in surface water: Monitoring in Douro River estuary." Journal of Pharmaceutical and Biomedical Analysis 170:89-101. doi: https:// doi.org/10.1016/jjpba.2019.03.032.

da Silva, А. К.. M. J. M. Wells, A. N. Morse, M.-L. Pellegrin, S. M. Miller, J. Peccia, and L. C. Sima.

2012. “Emerging pollutants - Part I: Occurrence, fate and transport.” Water Environment Research 84 (101:1878-1908. doi: 10.2175/106143012x13407275695878.

De Andres. F.. G. Castaneda, and A. Rios. 2009. “Use of toxicity assays for enantiomeric discrimination of pharmaceutical substances.” Chirality 21 (8):751—759. doi: 10.1002/chir.20675.

De Klerck. K.. D. Mangelings. and Y. Vander Heyden. 2012. “Supercritical fluid chromatography for the enan- tioseparation of pharmaceuticals.” Journal of Pharmaceutical and Biomedical Analysis 69:77-92. doi: https://doi.Org/10.1016/j.jpba.2012.01.021.

Dfaz-Cruz. M. S., M. a. J. Lopez de Alda, and D. Barcelo. 2003. “Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge.” TrAC Trends in Analytical Chemistry 22 (6):340—351. doi: https://doi.org/10.1016/S0165-9936(03)00603-4.

Dogan. A.. J. Plotka-Wasylka. D. Kempiriska-Kupczyk, J. Namies'nik, and A. Kot-Wasik. 2020. “Detection, identification and determination of chiral pharmaceutical residues in wastewater: Problems and challenges.” TrAC Trends in Analytical Chemistry 122:115710. doi: https://doi.Org/10.1016/j.trac.2019.l 15710.

Duan. L.. Y. Zhang, B. Wang, S. Deng, J. Huang, Y. Wang, and G. Yu. 2018. “Occurrence, elimination, enantiomeric distribution and intra-day variations of chiral pharmaceuticals in major wastewater treatment plants in Beijing, China.” Environmental Pollution 239:473-482. doi: https://doi.Org/10.1016/j. envpol.2018.04.014.

Escuder-Gilabert, L., Y. Martfn-Biosca, M. Perez-Baeza, S. Sagrado, and M. J. Medina-Hernandez. 2018. "Direct chromatographic study of the enantioselective biodegradation of ibuprofen and ketoprofen by an activated sludge.” Journal of Chromatography A 1568:140-148. doi: https://doi.Org/10.1016/j. chroma.2018.07.034.

Evans, S„ J. Bagnall, and B. Kasprzyk-Hordern. 2017. “Enantiomeric profiling of a chemically diverse mixture of chiral pharmaceuticals in urban water.” Environmental Pollution 230:368-377. doi: https://doi. org/10.1016/j .envpol .2017.06.070.

Evans. S. E.. J. Bagnall, and B. Kasprzyk-Hordern. 2016. “Enantioselective degradation of amphetamine-like environmental micropollutants (amphetamine, methamphetamine. MDMA and MDA) in urban water.” Environmental Pollution 215:154-163. doi: https://doi.Org/10.1016/j.envpol.2016.04.103.

Evans, S. E., P. Davies, A. Lubben, and B. Kasprzyk-Hordern. 2015. “Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry.” Analytica Chimica Acta 882:112-126. doi: https://doi.Org/10.1016/j.aca.2015.03.039.

Fatta-Kassinos. D.. S. Meric, and A. Nikolaou. 2011. “Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research." Analytical and Bioanalytical Chemistry 399 (1):251—275. doi: 10.1007/s00216-010-4300-9.

Fent, K. 2001. “Fish cell lines as versatile tools in ecotoxicology: Assessment of cytotoxicity, cytochrome P4501A induction potential and estrogenic activity of chemicals and environmental samples.” Toxicology in Vitro 15 (4):477—488. doi: https://doi.org/10.1016/S0887-2333(01)00053-4.

Fent, K., A. A. Weston, and D. Caminada. 2006. “Ecotoxicology of human pharmaceuticals.” Aquatic Toxicology 76 (2): 122—159. doi: https://doi.Org/10.1016/j.aquatox.2005.09.009.

Fono. L. J.. and D. L. Sedlak. 2005. “Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters.” Environmental Science & Technology 39 (23):9244-9252. doi: 10.1021/ es047965t.

Ghirardini, A., and P. Verlicchi. 2019. “A review of selected microcontaminants and microorganisms in land runoff and tile drainage in treated sludge-amended soils.” Science of the Total Environment 655:939- 957. doi: https://doi.Org/10.1016/j.scitotenv.2018.ll.249.

Golovko, О.. V. Kumar, G. Fedorova, T. Randak, and R. Grabic. 2014. “Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant.” Chemosphere 111:418-426. doi: https://doi.Org/10.1016/j.chemosphere.2014.03.132.

Guo, H., M. F. Wahab. A. Berthod, and D. W. Armstrong. 2018. “Mass spectrometry detection of basic drugs in fast chiral analyses with vancomycin stationary phases." Journal of Pharmaceutical Analysis 8 (5):324—332. doi: https://doi.org/10.1016/jjpha.2018.08.001.

Haginaka. J. 2001. “Protein-based chiral stationary phases for high-performance liquid chromatography enantioseparations.” Journal of Chromatography A 906 (1):253—273. doi: https://doi.org/10.1016/ S0021-9673(00)00504-5.

Hashim. N. H„ and S. J. Khan. 2011. “Enantioselective analysis of ibuprofen, ketoprofen and naproxen in wastewater and environmental water samples.” Journal of Chromatography A 1218 (29):4746-4754. doi: https://doi.Org/10.1016/j.chroma.2011.05.046.

Hashim. N. H., L. D. Nghiem. R. M. Stuetz. and S. J. Khan. 2011. “Enantiospecific fate of ibuprofen. ketoprofen and naproxen in a laboratory-scale membrane bioreactor.” Water Research 45 (18):6249—6258. doi: https://doi .org/10.1016/j .watres.2011.09.020.

Hayakawa, I.. S. Atarashi, S. Yokohama, M. Imamura, K. Sakano, and M. Furukawa. 1986. “Synthesis and antibacterial activities of optically active ofloxacin.” Antimicrobial Agents and Chemotherapy 29 (1):163—164. doi: 10.1128/AAC.29.1.163.

He, K., Y. Asada, S. Echigo. and S. Itoh. 2020. “Biodegradation of pharmaceuticals and personal care products in the sequential combination of activated sludge treatment and soil aquifer treatment.” Environmental Technology 41 (3):378-388. doi: 10.1080/09593330.2018.1499810.

Henriksson, H.. G. Pettersson. and G. Johansson. 1999. “Discrimination between enantioselective and non- selective binding sites on cellobiohydrolase-based stationary phases by site specific competing ligands.” Journal of Chromatography A 857 (1):107—115. doi: https://doi.org/10.1016/S0021-9673(99)00776-l.

Henriksson, H.. J. Stahlberg, A. Koivula. G. Pettersson. C. Divne. L. Valtcheva, and R. Isaksson. 1997. “The catalytic amino-acid residues in the active site of cellobiohydrolase 1 are involved in chiral recognition.” Journal of Biotechnology 57 (1):115—125. doi: https://doi.org/10.1016/S0168-1656(97)00094-l.

Hermansson, J. 1984. “Direct liquid chromatographic resolution of racemic drugs by means of al-acid glycoprotein as the chiral complexing agent in the mobile phase.” Journal of Chromatography A 316:537-546. doi: https://doi.org/10.1016/S0021-9673(00)96181-8.

Huang. Q., Z. Wang. C. Wang, and X. Peng. 2013. “Chiral profiling of azole antifungals in municipal wastewater and recipient rivers of the Pearl River delta, China.” Environmental Science and Pollution Research 20 (121:8890-8899. doi: 10.1007/sll356-013-1862-z.

Ilisz, I.. A. Aranyi. Z. Pataj, and A. Peter. 2013. “Enantioseparations by High-Performance Liquid Chromatography Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview.” In Chiral Separations: Methods and Protocols, edited by Gerhard К. E. Scriba. 137-163. Totowa. NJ: Humana Press.

Ilisz, I.. T. Orosz, and A. Peter. 2019. "High-Performance Liquid Chromatography Enantioseparations Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview.” In Chiral Separations: Methods and Protocols, edited by Gerhard К. E. Scriba, 201-237. New York. NY: Springer New York.

Karakka Kal. А. К., T. K. Karatt, R. Sayed, M. Philip. S. Meissir, and J. Nalakath. 2019. “Separation of ephedrine and pseudoephedrine enantiomers using a polysaccharide-based chiral column: A normal phase liquid chromatography-hish-resolution mass spectrometry approach." Chirality 31 (8):568—574. doi: 10.1002/chir.23104.

Kasprzyk-Hordern, B.. and D. R. Baker. 2012. "Enantiomeric profiling of chiral drugs in wastewater and receiving waters.” Environmental Science and Technology 46 (3):1681—1691. doi: 10.1021 /es203113y.

Kasprzyk-Hordern, В., V. V. R. Kondakal, and D. R. Baker. 2010. “Enantiomeric analysis of drugs of abuse in wastewater by chiral liquid chromatography coupled with tandem mass spectrometry.” Journal of Chromatography A 1217 (27):4575-4586. doi: https://doi.Org/10.1016/j.chroma.2010.04.073.

Khan. S. J.. L. Wang. N. H. Hashim, and J. A. Mcdonald. 2014. “Distinct enantiomeric signals of ibuprofen and naproxen in treated wastewater and sewer overflow.” Chirality 26 (11):739—746. doi: 10.1002/chir.22258.

Kruve, A., A. Kiinnapas, K. Herodes. and I. Leito. 2008. “Matrix effects in pesticide multi-residue analysis by liquid chromatography-mass spectrometry.” Journal of Chromatography A 1187 (1 ):58—66. doi: https:// doi.org/10.1016/j.chroma.2008.01.077.

Kruve, A., I. Leito, and K. Herodes. 2009. “Combating matrix effects in LC/ESI/MS: The extrapolative dilution approach.” Analytica Chimica Acta 651 (1):75—80. doi: https://doi.Org/10.1016/j.aca.2009.07.060.

Kumirska. J.. P. Lukaszewicz. M. Caban, N. Migowska, A. Plenis, A. Biatk-Bieliriska. M. Czerwicka, F. Qi, and S. Piotr. 2019. “Determination of twenty pharmaceutical contaminants in soil using ultrasound- assisted extraction with gas chromatography-mass spectrometric detection.” Chemosphere 232:232-242. doi: https://doi.Org/10.1016/j.chemosphere.2019.05.164.

Kunkel. U., and M. Radke. 2012. “Fate of pharmaceuticals in rivers: Deriving a benchmark dataset at favorable attenuation conditions.” Water Research 46 (17):5551—5565. doi: https://doi.Org/10.1016/j. watres.2012.07.033.

Laaniste. A., I. Leito. and A. Kruve. 2019. “ESI outcompetes other ion sources in LC/MS trace analysis.” Analytical and Bioanalytical Chemistry 411 (16):3533—3542. doi: 10.1007/s00216-019-01832-z.

Lammerhofer, M. 2010. “Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases.” Journal of Chromatography A 1217 (6):814—856. doi: https://doi. org /10.1016/j .chroma.2009.10.022.

Li, W. C. 2014. “Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil.” Environmental Pollution 187:193-201. doi: https://doi.Org/10.1016/j.envpol.2014.01.015.

Lindim. C„ J. van Gils, D. Georgieva, O. Mekenyan. and I. T. Cousins. 2016. “Evaluation of human pharmaceutical emissions and concentrations in Swedish river basins.” Science of the Total Environment 572:508-519. doi: https://doi.Org/10.1016/j.scitotenv.2016.08.074.

Liu, J.. X. Dan. G. Lu. J. Shen, D. Wu, and Z. Yan. 2018. “Investigation of pharmaceutically active compounds in an urban receiving water: Occurrence, fate and environmental risk assessment.” Ecotoxicology and Environmental Safety 154:214-220. doi: https://doi.Org/10.1016/j.ecoenv.2018.02.052.

Lopez-Serna. R.. B. Kasprzyk-Hordern. M. Petrovic, and D. Barcelo. 2013. “Multi-residue enantiomeric analysis of pharmaceuticals and their active metabolites in the Guadalquivir River basin (south Spain) by chiral liquid chromatography coupled with tandem mass spectrometry." Analytical and Bioanalytical Chemistry 405 (18):5859-5873. doi: 10.1007/s00216-013-6900-7.

Luo. Y„ W. Guo. H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, S. Liang, and X. C. Wang. 2014. “A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during waste- water treatment.” Science of the Total Environment 473-474:619-641. doi: https://doi.Org/10.1016/j. scitotenv.2013.12.065.

Ma, R., H. Qu, B. Wang, F. Wang, Y. Yu. and G. Yu. 2019. “Simultaneous enantiomeric analysis of non-ste- roidal anti-inflammatory drugs in environment by chiral LC-MS/MS: A pilot study in Beijing, China.” Ecotoxicology and Environmental Safety 174:83-91. doi: https://doi.Org/10.1016/j.ecoenv.2019.01.122.

Ma, R., B. Wang. S. Lu, Y. Zhang, L. Yin, J. Huang, S. Deng, Y. Wang, and G. Yu. 2016. “Characterization of pharmaceutically active compounds in Dongting Lake, China: Occurrence, chiral profiling and environmental risk.” Science of the Total Environment 557-558:268-275. doi: https://doi.0rg/lO.lOl6/j. scitotenv.2016.03.053.

Mane. S. 2016. “Racemic drug resolution: a comprehensive guide.” Analytical Methods 8 (42):7567-7586. doi: 10.1039/C6AY02015A.

Martin, J., D. Camacho-Munoz. J. L. Santos. I. Aparicio, and E. Alonso. 2012. “Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal.” Journal of Hazardous Materials 239-240:40-47. doi: https://doi.Org/10.1016/j.jhazmat.2012.04.068.

Michael, I., L. Rizzo, C. S. McArdell, С. M. Manaia, C. Merlin. T. Schwartz. C. Dagot, and D. Fatta-Kassinos.

2013. “Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review.” Water Research 47 (3):957—995. doi: https://doi.Org/10.1016/j.watres.2012.ll.027.

Minguez, L., J. Pedelucq. E. Farcy. C. Ballandonne. H. Budzinski, and M.-P. Halm-Lemeille. 2016. “Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France.” Environmental Science and Pollution Research 23 (6):4992—5001. doi: 10.1007/ si 1356-014-3662-5.

Morrissey. I., K. Hoshino, K. Sato. A. Yoshida, I. Hayakawa, M. G. Bures, and L. L. Shen. 1996. “Mechanism of differential activities of ofloxacin enantiomers?” Antimicrobial Agents and Chemotherapy 40 (8): 1775—1784.

Mosiashvili, L„ L. Chankvetadze, T. Farkas, and B. Chankvetadze. 2013. “On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phasesJournal of Chromatography A 1317:167-174. doi: https://doi. org/10.1016/j.chroma.2013.08.029.

Munoz, I.. J. C. Lopez-Doval. M. Ricart. M. Villagrasa. R. Brix. A. Geiszinger, A. Ginebreda, H. Guasch, M. J. L. de Alda, A. M. Romani, S. Sabater, and D. Barcelo. 2009. “Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat River basin (northeast Spain).” Environmental Toxicology and Chemistry 28 (12):2706—2714. doi: 10.1897/08-486.1.

Neale, P. A.. A. Branch, S. J. Khan, and F. D. L. Leusch. 2019. “Evaluating the enantiospecific differences of non-steroidal anti-inflammatory drugs (NSAIDs) using an ecotoxicity bioassay test battery.” Science of the Total Environment 694:133659. doi: https://doi.Org/10.1016/j.scitotenv.2019.133659.

Nguyen, L. N.. F. I. Hai, J. A. McDonald. S. J. Khan. W. E. Price, and L. D. Nghiem. 2017. “Continuous transformation of chiral pharmaceuticals in enzymatic membrane bioreactors for advanced wastewater treatment." Water Science and Technology 76 (7): 1816—1826. doi: 10.2166/wst.2017.331.

Okamoto, Y„ M. Kawashima, and K. Hatada. 1984. “Chromatographic resolution. 7. Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: phenylcarbamates of polysaccharides coated on silica gel.” Journal of the American Chemical Society 106 (18):5357—5359. doi: 10.1021 /ja00330a057.

Ort, С.. M. G. Lawrence, J. Rieckermann, and A. Joss. 2010. “Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: Are your conclusions valid? A critical review.” Environmental Science & Technology 44 (16):6024-6035. doi: 10.1021/esl00779n.

Osorio, V.. A. Larranaga, J. Acena, S. Perez, and D. Barcelo. 2016. “Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian rivers.” Science of the Total Environment 540:267-277. doi: https://doi.Org/10.1016/j.scitotenv.2015.06.143.

Pan. X.. F. Dong, Z. Chen, J. Xu, X. Liu, X. Wu, and Y. Zheng. 2017. “The application of chiral ultra-high- performance liquid chromatography tandem mass spectrometry to the separation of the zoxamide enantiomers and the study of enantioselective degradation process in agricultural plants.” Journal of Chromatography A 1525:87—95. doi: https://doi.Org/10.1016/j.chroma.2017.10.016.

Pereira. A. M. P. T„ L. J. G. Silva, C. S. M. Laranjeiro, L. M. Meisel, С. M. Lino, and A. Pena. 2017. “Human pharmaceuticals in Portuguese rivers: The impact of water scarcity in the environmental risk.” Science of the Total Environment 609:1182-1191. doi: https://doi.Org/10.1016/j.scitotenv.2017.07.200.

Perez-Lemus, N.. R. Lopez-Serna, S. I. Perez-Elvira, and E. Barrado. 2019. “Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review.” Analytica Chimica Acta 1083:19-40. doi: https://doi.Org/10.1016/j.aca.2019.06.044.

Petrie, B., R. Barden, and B. Kasprzyk-Hordern. 2015. “A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring.” Water Research 72:3-27. doi: https://doi.Org/10.1016/j.watres.2014.08.053.

Petrie, B., D. Camacho-Munoz, E. Castrignano, S. Evans, and B. Kasprzyk-Hordern. 2015. “Chiral liquid chromatography coupled with tandem mass spectrometry for environmental analysis of pharmacologically active compounds.” LC-GC Europe 28 (3).

Petrie, B., A. Gravell. G. A. Mills. J. Youdan, R. Barden, and B. Kasprzyk-Hordern. 2016. “In situ calibration of a new Chemcatcher configuration for the determination of polar organic micropollutants in waste- water effluent." Environmental Science & Technology 50 (17):9469—9478. doi: 10.1021/acs.est.6b02216.

Petrie. B.. J. Mrazova, B. Kasprzyk-Hordern. and K. Yates. 2018. “Multi-residue analysis of chiral and achiral trace organic contaminants in soil by accelerated solvent extraction and enantioselective liquid chromatography tandem-mass spectrometry.” Journal of Chromatography A 1572:62-71. doi: https://doi. org/10.1016/j.chroma.2018.08.034.

Petrovic, M. 2014. “Methodological challenges of multi-residue analysis of pharmaceuticals in environmental samples.” Trends in Environmental Analytical Chemistry I:e25-e33. doi: https://doi.Org/10.1016/j. teac.2013.11.004.

Pico, Y.. R. Alvarez-Ruiz. A. H. Alfarhan. M. A. El-Sheikh. H. O. Alshahrani. and D. Barcelo. 2020. “Pharmaceuticals, pesticides, personal care products and microplastics contamination assessment of Al-Hassa irrigation network (Saudi Arabia) and its shallow lakes.” Science of the Total Environment 701:135021. doi: https://doi.Org/10.1016/j.scitotenv.2019.135021.

Pinasseau, L.. L. Wiest, A. Fildier. L. Volatier, G. R. Fones, G. A. Mills, F. Mermillod-Blondin, and E. Vulliet. 2019. “Use of passive sampling and high resolution mass spectrometry using a suspect screening approach to characterise emerging pollutants in contaminated groundwater and runoff.” Science of the Total Environment 672:253-263. doi: https://doi.Org/10.1016/j.scitotenv.2019.03.489.

Radjenovic, J.. A. Jelic, M. Petrovic, and D. Barcelo. 2009. “Determination of pharmaceuticals in sewage sludge by pressurized liquid extraction (PLE) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS).” Analytical and Bioanalytical Chemistry 393 (6):1685—1695. doi: 10.1007/ s00216-009-2604-4.

Ramage, S.. D. Camacho-Munoz. and B. Petrie. 2019. “Enantioselective LC-MS/MS for anthropogenic markers of septic tank discharge.” Chemosphere 219:191-201. doi: https://doi.Org/10.1016/j.chemosphere.2018.12.007.

Ribeiro. A. R., P. M. L. Castro, and M. E. Tiritan. 2012. “Environmental Fate of Chiral Pharmaceuticals: Determination. Degradation and Toxicity.” In Environmental Chemistry for a Sustainable World: Volume 2: Remediation of Air and Water Pollution, edited by Eric Lichtfouse, Jan Schwarzbauer, and Didier Robert. 3-45. Dordrecht: Springer Netherlands.

Ribeiro. A. R.. L. H. M. L. M. Santos, A. S. Maia, C. Delerue-Matos. P. M. L. Castro, and M. E. Tiritan.

2014. “Enantiomeric fraction evaluation of pharmaceuticals in environmental matrices by liquid chromatography-tandem mass spectrometryJournal of Chromatography A 1363:226-235. doi: https://doi. org/10.1016/j.chroma.2014.06.099.

Rice, J.. K. Proctor, L. Lopardo, S. Evans, and B. Kasprzyk-Hordern. 2018. “Stereochemistry of ephedrine and its environmental significance: Exposure and effects directed approach.” Journal of Hazardous Materials 348:39-46. doi: https://doi.Org/10.1016/j.jhazmat.2018.01.020.

Rimayi. C., L. Chimuka. A. Gravell. G. R. Fones. and G. A. Mills. 2019. “Use of the Chemcatcher® passive sampler and time-of-flight mass spectrometry to screen for emerging pollutants in rivers in Gauteng Province of South Africa.” Environmental Monitoring and Assessment 191 (6):388. doi: 10.1007/ sl0661-019-7515-z.

Ruan, Y.. R. Wu. J. C. W. Lam. K. Zhang, and P. K. S. Lam. 2019. “Seasonal occurrence and fate of chiral pharmaceuticals in different sewage treatment systems in Hong Kong: Mass balance, enantiomeric profiling, and risk assessment.” Water Research 149:607-616. doi: https://doi.Org/10.1016/j.watres.2018.ll.010.

Sanchez-Prado. L.. C. Garcia-Jares. T. Dagnac, and M. Llompart. 2015. “Microwave-assisted extraction of emerging pollutants in environmental and biological samples before chromatographic determination.” TrAC Trends in Analytical Chemistry 71:119-143. doi: https://doi.Org/10.1016/j. trac.2015.03.014.

Sanganyado. E.. Q. Fu. and J. Gan. 2016. “Enantiomeric selectivity in adsorption of chiral [3-blockers on sludge.” Environmental Pollution 214:787-794. doi: https://doi.Org/10.1016/j.envpol.2016.04.091.

Sanganyado. E., Z. Lu, Q. Fu. D. Schlenk. and J. Gan. 2017. “Chiral pharmaceuticals: A review on their environmental occurrence and fate processes.” Water Research 124:527-542. doi: https://doi.Org/10.1016/j. watres.2017.08.003.

Sanganyado. E.. Z. Lu. and J. Gan. 2014. “Mechanistic insights on chaotropic interactions of liophilic ions with basic pharmaceuticals in polar ionic mode liquid chromatography.” Journal of Chromatography A 1368:82-88. doi: https://doi.Org/10.1016/j.chroma.2014.09.054.

Santos, L. H. M. L. M., A. N. Araujo. A. Fachini. A. Pena. C. Delerue-Matos. and M. С. B. S. M. Montenegro. 2010. “Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment.” Journal of Hazardous Materials 175 (1 ):45—95. doi: https://doi.Org/10.1016/j.jhazmat.2009.10.100.

Sharma, V. K.. N. Johnson. L. Cizmas. T. J. McDonald, and H. Kim. 2016. “A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes.” Chemosphere 150:702— 714. doi: https://doi.Org/10.1016/j.chemosphere.2015.12.084.

Shen. J.. T. Ikai. and Y. Okamoto. 2014. “Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography.” Journal of Chromatography A 1363:51-61. doi: https://doi.Org/10.1016/j.chroma.2014.06.042.

Sigma-Aldrich. 2020. “Operating Guidelines for ChromTech CHIRAL-AGP. CHIRAL-HSA, and CHIRAL- CBH HPLC Columns." accessed 08/05/2020. https://www.sigmaaldrich.com/content/dam/sigma- aldrich/docs/Supelco/Product_Information_Sheet/t709074.pdf.

Stanley, J. K.. and B. W. Brooks. 2009. “Perspectives on ecological risk assessment of chiral compounds.” Integrated Environmental Assessment and Management 5 (3):364—373. doi: 10.1897/ieam_2008-076.1.

Stanley, J. K.. A. J. Ramirez. С. K. Chambliss, and B. W. Brooks. 2007. “Enantiospecific sublethal effects of the antidepressant fluoxetine to a model aquatic vertebrate and invertebrate.” Chemosphere 69 (1):9—16. doi: https://doi.Org/10.1016/j.chemosphere.2007.04.080.

Stanley, J. K.. A. J. Ramirez. M. Mottaleb. С. K. Chambliss, and B. W. Brooks. 2006. “Enantiospecific toxicity of the P-blocker propranolol to Daphnia magna and Pimephales promelas." Environmental Toxicology and Chemistry 25 (7): 1780-1786. doi: 10.1897/05-298rl.l.

Suzuki. T, Y. Kosugi. M. Hosaka, T. Nishimura. and D. Nakae. 2014. “Occurrence and behavior of the chiral anti-inflammatory drug naproxen in an aquatic environment.” Environmental Toxicology and Chemistry 33 (12):2671-2678. doi: 10.1002/etc.2741.

Svan. A., M. Hedeland. T. Arvidsson, J. T. Jasper. D. L. Sedlak, and С. E. Pettersson. 2015. “Rapid chiral separation of atenolol, metoprolol. propranolol and the zwitterionic metoprolol acid using supercritical fluid chromatography-tandem mass spectrometry - Application to wetland microcosms.” Journal of Chromatography A 1409:251-258. doi: https://doi.Org/10.1016/j.chroma.2015.07.075.

Tousova, Z., B. Vrana. M. Smutna, J. Novak, V. Klucarova, R. Grabic. J. Slobodmk, J. P. Giesy, and K. Hilscherova. 2019. “Analytical and bioanalytical assessments of organic micropollutants in the Bosna River using a combination of passive sampling, bioassays and multi-residue analysis.” Science of the Total Environment 650:1599-1612. doi: https://doi.Org/10.1016/j.scitotenv.2018.08.336.

Vanderford. B. J.. D. B. Mawhinney, R. A. Trenholm, J. C. Zeigler-Holady. and S. A. Snyder. 2011. “Assessment of sample preservation techniques for pharmaceuticals, personal care products, and steroids in surface and drinking water.” Analytical and Bioanalytical Chemistry 399 (6):2227—2234. doi: 10.1007/ s00216-010-4608-5.

Vanessa. L. C., S. С. B. Lilian, and C. Ivone. 2009. “Stereoselectivity in drug metabolism: Molecular mechanisms and analytical methods.” Current Drug Metabolism 10 (2): 188—205. doi: http://dx.doi. org/10.2174/138920009787522188.

Wang. Z., Q. Huang. Y. Yu. C. Wang. W. Ou, and X. Peng. 2013. “Stereoisomeric profiling of pharmaceuticals ibuprofen and iopromide in wastewater and river water, China." Environmental Geochemistry and Health 35 (5):683-691. doi: 10.1007/sl0653-013-9551-x.

Wang. Z., P. Zhao, B. Zhu, Z. Jiang, and X. Guo. 2018. "Magnetic solid-phase extraction based on Fe304/ graphene nanocomposites for enantioselective determination of representative profens in the environmental water samples and molecular docking study on adsorption mechanism of graphene.” Journal of Pharmaceutical and Biomedical Analysis 156:88-96. doi: https://doi.Org/10.1016/j. jpba.2018.04.023.

Watanabe, H.. I. Tamura. R. Abe. H. Takanobu. A. Nakamura. T. Suzuki. A. Hirose. T. Nishimura. and N. Tatarazako. 2016. “Chronic toxicity of an environmentally relevant mixture of pharmaceuticals to three aquatic organisms (alga, daphnid, and fish).” Environmental Toxicology and Chemistry 35 (4):996- 1006. doi: 10.1002/etc.3285.

Winkler, M., J. R. Lawrence, and T. R. Neu. 2001. “Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems.” Water Research 35 (13):3197—3205. doi: https://doi.org/10.1016/ S0043 -1354(01)00026-4.

Wong, C. S., and S. L. MacLeod. 2009. “JEM Spotlight: Recent advances in analysis of pharmaceuticals in the aquatic environment.” Journal of Environmental Monitoring 11 (5):923—936. doi: 10.1039/B819464E.

Zhang. T. C. Kientzy, P. Franco. A. Ohnishi. Y. Kagamihara. and H. Kurosawa. 2005. “Solvent versatility of immobilized 3,5-dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC.” Journal of Chromatography A 1075 (1):65—75. doi: https://doi.Org/10.1016/j.chroma.2005.03.116.

Zhao, P.. M. Deng, P. Huang, J. Yu, X. Guo, and L. Zhao. 2016. “Solid-phase extraction combined with dispersive liquid-liquid microextraction and chiral liquid chromatography-tandem mass spectrometry for the simultaneous enantioselective determination of representative proton-pump inhibitors in water samples.” Analytical and Bioanahtical Chemistry 408 (23):6381—6392. doi: 10.1007/s00216-016-9753-z.

Zhou. Y„ S. Wu. H. Zhou, H. Huang, J. Zhao. Y. Deng, H. Wang. Y. Yang, J. Yang, and L. Luo. 2018. “Chiral pharmaceuticals: Environment sources, potential human health impacts, remediation technologies and future perspective.” Environment International 121:523-537. doi: https://doi.Org/10.1016/j. envint.2018.09.041.

Ziylan, A., and N. H. Ince. 2011. “The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: Treatability by conventional and non-conventional processes.” Journal of Hazardous Materials 187 (1):24—36. doi: https://doi.Org/10.1016/j.jhazmat.2011.01.057.

< Prev   CONTENTS   Source   Next >