Recommendations and Future Outlook

Table of Contents:

With the rapid industrialization accompanied by the discharge of EPs into the environment, future research needs to focus on:

  • (1) Designing and fabricating new MOFNs with specificity towards certain EPs."
  • (2) Due to their desirable characteristics which are important for adsorption, it is interesting to note that MOFNs have the potential to be a new generation of antidotes to hazardous chemical poisoning in humans and animals.
  • (3) To safeguard human, animal, and aquatic life and the environment, it is important for researchers to perform rigorous nanotoxicity and risk assessment studies of emerging MOFNs before full-scale commercialization. To this effect, researchers could generate Material Safety Data Sheets with potential hazards (health, fire, reactivity, and environmental), and enough information on how to work safely with the product.
  • (4) Governments, especially in developing countries, are encouraged to develop sector-specific regulatory frameworks and legislation which bind manufacturers, importers, and users of MOFN products to ensure safety from the manufacturing line to the market, and disposal.

Conclusion

The application of MOFNs as adsorbents is dependent on their intrinsic properties such as high surface area, architecture, tunable porosity, functionalities, and high crystallinity. The porosity and high specific surface area enable high loading of guest molecules. The metal nodes, organic ligands, and topological configurations of MOFNs are varied. These characteristics can thus be tailored to suit desired applications. Various functional groups can be homogeneously distributed both on the surface and in the pores of MOFNs, which facilitates interaction with molecules to enhance adsorption. The excellent crystallinity confers distinct networks and defined structural information, which is important in investigating the adsorptive mechanisms of pollutants. These exceptional properties of MOFNs allow them to function as supports for the integration of other moieties and materials to form composites for the removal of complex and emerging pollutants. The resulting composites can combine the key features of both components, where MOFNs and the other moieties are synergistic. As a result,

MOFNs have been used to remove a variety of pollutants such as dyes, pharmaceuticals, heavy metals, and REEs from different environmental matrices. With the growth of synthesis technology involving new modification possibilities, the range of MOFNs is likely to increase, and new sorption applications are expected to emerge.

References

  • 1. Abdi, J., Mahmoodi, N.M., Vossoughi, M., Alemzadeh, I. Synthesis of magnetic metal- organic framework nanocomposite (ZIF-8@Si02@MnFe204) as a novel adsorbent for selective dye removal from multicomponent systems. Microporous and Mesoporous Materials 2019;273:177-88.
  • 2. Amiri, A., Tayebee, R., Abdar, A., Sani, F.N. Synthesis of a zinc-based metal-organic framewwk with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples. Journal of Chromatography A 2019;1597:39-45.
  • 3. An, H., Li, M., Gao, J., Zhang, Z., Ma, S., Chen, Y. Incorporation of biomolecules in Metal-Organic Framew'orks for advanced applications. Coordination Chemistry Reviews 2019; 384:90-106.
  • 4. Aguilera-Sigalat, J., Bradshaw, D. Synthesis and applications of metal-organic frame- work-quantum dot (QD@MOF) composites. Coordination Chemistry Reviews, Part 2 2016;30:267-91.
  • 5. Guo. X., Kang. C.. Huang. H.. Chang, Y.. Zhong. C. Exploration of functional MOFs for efficient removal of fluoroquinolone antibiotics from water. Microporous and Mesoporous Materials 2019;286:84-91.
  • 6. Archana, K., Pillai, N.G., Rhee, K.Y., Asif, A. Super paramagnetic ZIF-67 metal- organic framework nanocomposite. Composites Part B: Engineering 2019;158:384-9.
  • 7. Asgharnejad. L., Abbasi, A., Shakeri, A. Ni-based metal-organic framework/GO nanocomposites as selective adsorbent for C02 over N2. Microporous and Mesoporous Materials 2018;262:227-34.
  • 8. Babu, C.M., Vinodh, R., Selvamani, A.. Kumar, K.P., Parveen, A.S., Thirukumaran, P., Srinivasan, V.V., Balasubramaniam, R., Ramkumar, V. Organic functionalized Fe304/RG0 nanocomposites for C02 adsorption. Journal of Environmental Chemical Engineering 2017;5:2440-7.
  • 9. Bao, S, Li, K., Ning, P., Peng, J., Jin. X., Tang, L. Synthesis of amino-functionalization magnetic multi-metal organic framework (Fe304/MIL-101(AI0.9Fe0.1)/NH2) for efficient removal of methyl orange from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers 2018;87:64-72.
  • 10. Zhao. S. Chen, D., Wei. F.. Chen. N.. Liang, Z.. Luo, Y. Removal of Congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic w'ave-assisted ball milling. Ultrasonics Sonochemistry 2017;39:845-52.
  • 11. Chakraborty, A., Acharya, H. Facile synthesis of MgAl-layered double hydroxide supported metal-organic framework nanocomposite for adsorptive removal of methyl orange dye. Colloid and Interface Science Communications 2018;24:35-9.
  • 12. Chen. X.. Chen. X.. Cai, S., Yu. E„ Chen. J.. Hongpeng, J. Mn0x/Cr203 composites prepared by pyrolysis of Cr-MOF precursors containing in situ assembly of MnOx as high stable catalyst for toluene oxidation. Applied Surface Science 2019;475:312-24.
  • 13. Feng, M., Zhang. P, Zhou, H. C., Sharma, V. K. Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review'. Chemosphere 2018;209:783-800.

14. Gao, G„ Nie, L„ Yang. S„ Jin, P„ Chen. R„ Ding. D.. Wang, X.C.. Wang. W„ Wu.

K., Zhang, Q. Well-defined strategy for development of adsorbent using metal-organic frameworks (MOF) template for high performance removal of hexavalent chromium. Applied Surface Science 2018;457:1208-17.

  • 15. Wen, J., Fang, Y., Zeng, G. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade. Chemosphere 2018;201:627-43.
  • 16. Hashemi, B., Zohrabi, P, Raza, N.. Kim, K.H. Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. Trends in Analytical Chemistry 2017:97:65-82.
  • 17. Zhang, B., Luo, Y., Kanyuck, K., Saenz, N.. Reed, K., Zavalij, P, Mowery, J., Bauchan, G. Facile and template-free solvothermal synthesis of mesoporous/macroporous metal- organic framework nanosheets. RSC Advances 2018:8:33059-64.
  • 18. Murty, B.S., Shankar, P, Raj, B., Rath, B.B., Murday, J. Unique properties of nanomaterials. In Textbook of Nanoscience and Nanotechnology. Berlin, Heidelberg: Springer; 2013. pp. 29-65.
  • 19. Sanjay, S.S., Pandey, A.C. A brief manifestation of nanotechnology. In Shukla, Ashutosh Kumar, editor. EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials. New Delhi. India: Springer; 2017.
  • 20. Wang, L., Zheng, M., Xie, Z. Nanoscale metal-organic frameworks for drug delivery: A conventional platform with new promise. Journal of Materials Chemistry В 2017;6:707-17.
  • 21. Lu, W.. Wei, Z„ Gu, Z„ Liu, T., Park, J., Park, J.. Tian, J.. Zhang. M.. Zhang, Q.. Gentle III, T., Bosch, M., Zhou, H. Tuning the structure and function of metal-organic frameworks via linker design. Chemical Society Reviews 2014;43:5561-93.
  • 22. Farha. O.K., Eryazici. I.. Jeong. N.C., Hauser, B.G., Christopher E. Wilmer, C.E.. Sarjeant, A.A., Snurr, R.Q., Nguyen, S.B., Yazaydin, A.O., Hupp, J.T. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? Journal of American Chemical Society 2012;134:15016-21.
  • 23. Yin, Z., Wan, S., Yang, J., Kurmoo, M., Zeng, M. Recent advances in post-synthetic modification of metal-organic frameworks: New types and tandem reactions. Coordination Chemistry Reviews 2019:378:500-12.
  • 24. Belmabkhout, Y.. Mouttaki. H., Eubank, J.F., Guillerm. N.. Eddaoudi. M. Effect of pendant isophthalic acid moieties on the adsorption properties of light hydrocarbons in HKUST-l-like tbo-MOFs: Application to methane purification and storage. RSC Advances 2014;4:63855-9.
  • 25. Andriamitantsoa. R.S.. Wang, J., Dong. W.. Gao, H.. Wang. G. S03H-functionalized metal organic frameworks: An efficient heterogeneous catalyst for the synthesis of qui- noxaline and derivatives. RSC Advances 2016;6:35135-43.
  • 26. Li, N., Xu, J., Feng, R., Hu, T., Bu, X. Governing metal-organic frameworks towards high stability. Chemical Communications 2016;52:8501-13.
  • 27. Zhou, M., Ju, Z., Yuan, D. A new metal-organic framework constructed from cationic nodes and cationic linkers for highly efficient anion exchange. Chemical Communications 2018:54:2998-3001.
  • 28. Lee, H.J., We, J.. Kim, J.O.. Kim. D„ Cha. W„ Lee, E„ Sohn. J.. Oh, M. Morphological and structural evolutions of metal-organic framework particles from amorphous spheres to crystalline hexagonal rods Angewandte Chemie International Edition 2015;54:10564-8.
  • 29. Elhussein, A.A.A., Sahin, S., Bayazit, S.S. Preparation of CeO, nanofibers derived from Ce-BTC metal organic frameworks and its application on pesticide adsorption. Journal of Molecular Liquids 2019;225:10-7.
  • 30. Burgaz, E., Erciyes, A.. Andac, M., Andac, O. Synthesis and characterization of nanosized metal-organic framework-5 (MOF-5) by using consecutive combination of ultrasound and microwave irradiation methods. Inorganica Chimica Acta 2019;485:118-24.
  • 31. Kaur, R., Kaur, A.. Umar, A., Anderson, W.A., Kansal, S.K. Metal-organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced adsorption properties. Materials Research Bulletin 2019;109:124-33.
  • 32. Low. J.J., Benin, A.I.. Jakubczak, R. Abrahamian, J.F.. Faheem, S.A.. Willis. R.R. Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration. Journal of the American Chemical Society 2009;131:15834-42.
  • 33. Canivet, J., Fateeva, A., Guo, Y., Coasne, B., Farrusseng, D. Water adsorption in MOFs: Fundamentals and applications. Chemical Society Reviews 2014:43:5594-617.
  • 34. Tanase, S„ Mittelmeijer-Hazeleger, M.C., Rothenberg, G., Mathoniere, C., Jubera, V., Smits, J.M.M., de Gelder, R. A facile building-block synthesis of multifunctional lanthanide MOFs. Journal of Materials Chemistry A 2011:21:15544-51.
  • 35. Liu. Y.. Liu, Z., Huang. D., Cheng. M.. Zeng, G.. Lai. C. Zhang, C„ Zhou. C„ Wang. W.. Jiang, D„ Wang, H., Shao, B. Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coordination Chemistry Reviews 2019:388:63-78.
  • 36. Abbasi, Z., Cseri, L., Zhang, X., Ladewig, B.P., Wang, H. Metal-organic frameworks (MOFs) and MOF-derived porous carbon materials for sustainable adsorptive waste- water treatment In Gyorgy Szekely, AL. editor. Sustainable Nanoscale Engineering Elsevier; 2020. pp. 163-94.
  • 37. Li. J.. Yuan, X., Wu, Y„ Ma, X.. Li. F„ Zhang. B„ Wang. Y„ Lei. Z„ Zhang, Z. From powder to cloth: Facile fabrication of dense MOF-76(Tb) coating onto natural silk fiber for feasible detection of copper ions. Chemical Engineering Journal 2018;350:637-44.
  • 38. Bazer-Bachi, D., Assie, L., Lecocq, V.. Harbuzaru, B., Falk, V. Towards industrial use of metal-organic framework: Impact of shaping on the MOF properties. Powder Technology 2014:255:52-9.
  • 39. Gangu, K.K., Maddila, S., Mukkamala, S.B., Jonnalagadda, S.B. A review on contemporary Metal-Organic Framework materials. Inorganica Chim ica Acta 2016;446:61-74.
  • 40. Li. G., Si. Z.. Cai, D.. Wang, Z.. Qin, P., Tan. T. The in-situ synthesis of a high-flux ZIF-8/polydimethylsiloxane mixed matrix membrane for n-butanol pervaporation. Separation and Purification Technology 2019:236:116263.
  • 41. Arora, C., Soni, S., Sahu, S., Mittal, J., Kumar, P., Bajpai, P.K. Iron based metal-organic framework for efficient removal of methylene blue dye from industrial waste. Journal of Molecular Liquids 2019:284:343-52.
  • 42. Ojha, D.P., Song, J.H., Kim, H.J. Facile synthesis of graphitic carbon-nitride supported antimony-doped tin oxide nanocomposite and its application for the adsorption of volatile organic compounds. Journal of Environmental Sciences 2019;79:35-42.
  • 43. Su. H.. Lin. Y„ Wang, Z.. Wong, Y. L.E., Chen, X.. Chan. T.W D. Magnetic metal- organic framework-titanium dioxide nanocomposite as adsorbent in the magnetic solid-phase extraction of fungicides from environmental water samples. Journal of Chromatography A 2016:1466:21-8.
  • 44. Gu. Y.. Xie, D.. Wang. Y.. Qin, W„ Zhang, H„ Wang, G.. Zhang. Y.. Zhao, H. Facile fabrication of composition-tunable Fe/Mg bimetal-organic frameworks for exceptional arsenate removal. Chemical Engineering Journal 2019:357:579-88.
  • 45. Hou, X., et al. High adsorption pearl-necklace-like composite membrane based on metal-organic framework for heavy metal ion removal. Particle & Particle Systems Characterization 2018;35:1-8.
  • 46. Ke, F. Jiang, J., Li, Y., Liang, J., Wan, X., Ко, S. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe304@metal-organic framework core-shell magnetic microspheres. Applied Surface Science 2017;4103:266-74.

47. Samuel, M.S., Subrarnaniyan, V., Bhattacharya, J., Parthiban, C., Chand, S., Singh,

N.D.P. A GO-CS@MOFZn(BDC)(DMF) material for the adsorption of chromium(VI) ions from aqueous solution. Composites Part B: Engineering 2018;152:116-25.

  • 48. Jun, B., Kim, S.. Kim. Y„ Her. N.. Heo, J.. Han, J.. Jang. M„ Park, C.M., Yoon, Y. Comprehensive evaluation on removal of lead by graphene oxide and metal-organic framework. Chemosphere 2019:231:82-92.
  • 49. Jamshidifard, S., Koushkbaghi, S., Hosseini, S., Rezaei, S., Karamipour, A., Jafarirad, A., Irani, M. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. Journal of Hazardous Materials 2019:368:10—20.
  • 50. Sivashankar, R., Sathya, A.B., Vasantharaj, K., Sivasubramanian, V. Environmental Nanotechnology, Monitoring & Management Magnetic composite an environmental super adsorbent for dye sequestration - A review. Environmental Nanotechnology, Monitoring & Management 2014;l-2:36-49.
  • 51. Dhaka, S., Kumar, R., Deep, A., Kurade, M.B., Ji, S W., Jeon, B.H. Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coordination Chemistry Reviews 2019;380:330-52.
  • 52. Song, Y., Qiang, T., Ye, M., Ma, Q., Fang, Z. Metal-organic framework derived magnetically separable 3-dimensional hierarchical Ni@C nanocomposites: Synthesis and adsorption properties. Applied Surface Science 2015;359:834-40.
  • 53. Zhu, L., Meng, L., Shi, J., Li, J., Zhang, X., Feng, M. Metal-organic frameworks/car- bon-based materials for environmental remediation: A state-of-the-art mini-review. Journal of Environmental Management 2019;232:964-77.
  • 54. Gwenzi, W„ Chaukura, N.. Noubactep, C., Mukome, F.N.D. Biochar based water treatment as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management 2017;197:732-49.
  • 55. Hao, L., Liu, W., Wang, C., Wu, Q., Wang, Z. Novel porous Fe304@C nanocomposite from magnetic metal-phenolic networks for the extraction of chlorophenols from environmental samples. Talanta 2019:194:673-9.
  • 56. Jia, Y„ Zhao, Y„ Zhao, M., Wang, Z., Chen, X.. Wang. M. Core-shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons. Journal of Chromatography Л 2018;1551:21-8.
  • 57. Kohantorabi, M., Gholami, M.R. Cyclohexene oxidation catalyzed by flower-like coreshell Fe304@Au/metal -organic frameworks nanocomposite. Materials Chemistry and Physics 2018;213:472-81.
  • 58. Liu, S., Ma, Y., Gao, L., Pan, J. pH-responsive magnetic metal-organic framework nanocomposite: A smart porous adsorbent for highly specific enrichment of cis-diol containing luteolin. Chemical Engineering Journal 2018;341:198-207.
  • 59. Matlooba, A.M., El-Hafiza, D.R.A, Saada, L., Mikhaila, S., Guirguis, D. Metal-organic framework-graphene nanocomposite for high adsorption removal of DBT hazardous material in liquid fuel. Journal of Hazardous Materials 2019;373:447-58.
  • 60. Mirzajana, R., Kardani, F., Ramezani, Z. Preparation and characterization of magnetic metal-organic framework nanocomposite as solid-phase microextraction fibers coupled with highperformance liquid chromatography for determination of non-steroidal antiinflammatory drugs in biological fluids and tablet formulation samples. Microchemical Journal 2019;144:270-84.
  • 61. Navarathna, C.M., Dewage, N.B., Karunanayake, A.G., Farmer, E.L., Perez, F., Hassan, E.B., Mlsna, T.E., Pittman Jr, C.U. Rhodamine В adsorptive removal and pho- tocatalytic degradation on MIL-53-Fe MOF/magnetic magnetite/biochar composites. Journal of Inorganic and Organometallic Polymers and Materials 2020;30:214-229.
  • 62. Liu, X., Gong, W., Luo, J., Zou, C., Yang, Y., Yang, S. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-organic framework composite. Applied Surface Science 2016;362:517-24.
  • 63. Yu, L., Cao, W., Wu, S., Yang, C., Cheng, J. Removal of tetracycline from aqueous solution by MOF/graphite oxide pellets: Preparation, characteristic, adsorption performance and mechanism. Ecotoxicology and Environmental Safety 2018; 164: 289-96.
  • 64. Suarez, S., Lema, J.M., Omil, F. Pre-treatment of hospital wastewater by coagulation- flocculation and flotation. Bioresource Technology 2009;100:2138-46.
  • 65. Hua, Z.. Guo, K... Kong, X., Lin, S„ Wu, Z„ Wang, L„ Huang. H„ Fang. J. PPCP degradation and DBP formation in the solar/free chlorine system: Effects of pH and dissolved oxygen. Water Research 2019;150:77-85.
  • 66. Joseph, L., Jun, B., Jang, M., Park, C.M., Munoz-Senmached, J.C., Hernandez- Maldonadod, A.J., Heydene, A., Yuf, M., Yoon, Y. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review. Chemical Engineering Journal 2019;369:928-46.
  • 67. Seo, Y.S., Khan, N.A., Jhung, S.H. Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework. Chemical Engineering Journal 2015;270:22-7.
  • 68. Wang, B„ Lv. X„ Feng. D„ Xie. L„ Zhang, J.. Li, M„ Xie, Y„ Li, J.. Zhou. H. Highly stable Zr (V)- based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. Journal of the American Chemical Society 2016;138:6204-16.
  • 69. Annamalai, J., Namasivayam, V. Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife. Environment International 2015;201:78-97.
  • 70. van Zijl. M.C.. Aneck-Hahn. N.H., Swart, P, Hayward, S., Genthe, B., De Jager. C. Estrogenic activity, chemical levels and health risk assessment of municipal distribution point water from Pretoria and Cape Town, South Africa. Chemosphere 2017;186:305-13.
  • 71. Byrne, C., Subramanian, G., Pillai, S.C. Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering 2018;6: 3531-55.
  • 72. Fukahori, S., Fujiwara, T., Ito, R., Funamizu, N. pH dependent adsorption of sulfa drugs on high silica zeolites. Desalination 2011 ;275:237—42.
  • 73. Ragab, D., Gomaa, H.G., Sabouni, R., Salem, M., Ren, M., Zhu, J. Micropollutants removal from water using microfiltration membrane modified with ZIF-8 metal- organic framework (MOFs). Chemical Engineering Journal 2016;300:273-9.
  • 74. Rizzo, L., Manaia, C.. Merlin, C.. Schwartz. T., Dagot, C.. Ploy, M.C.. Michael. I., Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment, a review. Science of The Total Environment 2013;447:345-60.
  • 75. Mwakalapa, E.B., Simukoko, C.K., Mmochi, A.J.. Mdegela. R.H., Berg, V.. Muller. M.H.B., Lyche, J.V., Polder, A. Heavy metals in farmed and wild milkfish (Chanos chanos) and wild mullet (Mugil cephalus) along the coasts of Tanzania and associated health risk for humans and fish. Chemosphere 2019;224:176-86.
  • 76. Musterat, C., Teodosin, C. Removal of persistant organic pollutants from textile wastwawater by membrane processes. Environmental Engineering and Management Journal 2007;6:175-87.
  • 77. Loha, K.M., Lamoree, M., Weiss, J.M., de Boer, J. Import, disposal, and health impacts of pesticides in the East Africa Rift (EAR) zone: A review on management and policy analysis. Crop Protection 2018;112:322-31.

78. Liu, G., Li, L., Huang, X., Zheng, S., Xu, X., Liu, Z., Zhang, Y., Wang, I, Lin, H., Xu,

D. Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8. Journal of Materials Science 2018;53:10772-83.

  • 79. Gwenzi, W., Mangori, L., Danha, C., Chaukura, N.. Dunjana, N. Sources, behaviour and environmental risks of high-technology rare earth elements as emerging contaminants. Science of The Total Environment 2018;636:299-313.
  • 80. Yesiller, S.U., Eroglu, A.E., Shahwan, T. Removal of aqueous rare earth elements REEs using nano-based materials. Journal of Industrial and Engineering Chemistry 2013;19:898-907.
  • 81. Elsaidi, S.K., Sinnwell, M.A., Devaraj, A.. Droubay, T.C.. Nie. Z.. Murugesan, V.. McGrail, B.R, Thallapally, RK. Extraction of rare earth elements using magnetite® MOF composites. Journal of Materials Chemistry A 2018;6:18438-43.
  • 82. Lee, YaA. Selective adsorption of rare earth elements over functionalized Cr-MlL-101. ACS Applied Materials & Interfaces 2018;10:23918-27.
  • 83. Schelling, M., Kim, M., Otal, E., Hinestroza, J. Decoration of cotton fibers with a water-stable metal-organic framework (UiO-66) for the decomposition and enhanced adsorption of micropollutants in water. Bioengineering 2018;5:1-11.
  • 84. Sarker, M., Ahmed, I., Jhung, S.H. Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid®» ZIF-8. Chemical Engineering Journal 2017;323:203-11.
  • 85. Abdelhameed, R.M., Abdel-Gawad, H., Elshahat. M., Emam, H.E. Cu-BTC@ cotton composite: Design and removal of ethion insecticide from water. RSC Advances 2016;6:42324-33.
  • 86. Yang, Q„ Wang. J„ Zhang, W„ Liu, F„ Yue, X.. Liu. Y„ Yang, M„ Li, Z„ Wang, J. Interface engineering of metal -organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide. Chemical Engineering Journal 2017;313:19-26.
  • 87. Kadhom, M., Deng, B. Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Applied Materials Today 2018; 11:219-30.
  • 88. Fard, A.K., McKay, G.. Buekenhoudt. A.. Sulaiti, H.A.. Motmans, F.. Khraisheh, M. Atieh, M. Inorganic Membranes: Preparation and application for water treatment and desalination. Materials 2018;11:1-47.
  • 89. Denny, M.S., Moreton, J.C., Benz, L., Cohen, S.M. Metal-organic frameworks for membrane-based separations. Nature Reviews Materials 2016;1:1-17.
  • 90. Wang, H.. Zhao, S.. Liu. Y.. Yao. R.. Wang. X.. Cao. Y.. Ma. D.. Zou, M„ Cao, A.. Feng, X., Wang, B. Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nature Communications 2019;10:1-9.
  • 91. Shekhah, O., Chernikova, V., Belmabkhout, Y., Eddaoudi, M. Metal-Organic Framework Membranes: From fabrication to gas separation. Crystals 2018;8:1-55.
  • 92. Tijing, L.D.. Woo. Y.C.. Yao, M., Ren. J.. Shon. H.K.. Drioli. E.. Giorno, L.. Fontananova,

E. Electrospinning for membrane fabrication: Strategies and applications. In Drioli, E., Giorno, L., and Fontananova, E., editors. Comprehensive Membrane Science and Engineering. 2nd ed. Oxford, UK: Elsevier; 2017. pp. 418-44.

  • 93. Chigome, S., Darko, G., Torto, N. Electrospun nanofibers as sorbent material for solid phase extraction. Analyst 2011;136:2879-89.
  • 94. Ifegwu, O.C., Anyakora, C., Chigome, S., Torto, N. Electrospun nanofiber sorbents for the pre-concentration of urinary 1-hydroxy pyrene. Journal of Analytical Science and Technology 2015;6:1-12.
  • 95. Wang, Y.. Dai, X.. Li. X.. Wang, X. The PM2.5 capture of poly (lactic acid)/nano MOFs eletrospinning membrane with hydrophilic surface. Material Research Express 2018:5:1-6.
  • 96. Wahiduzzaman, A.K.. Stone, J., Harp, S., Khan Mujibur, K. Synthesis and electrospraying of nanoscale MOF (Metal Organic Framework) for high performance C02 adsorption membrane nanoscale. Research Letters 2017;12.
  • 97. Wen, M„ Li, G„ Liu, H., Chen, J., An, T., Yamashita, H. Metal-organic framework- based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: Recent progress and challenges. Environmental Science: Nano 2019;6:1006-25.
  • 98. Zhao. G„ Qin, N.. Pan. A., Wu, X., Peng, C„ Ke. F„ Iqbal, M.. Ramachandraiah. K., Zhu, J. Magnetic Nanoparticles@Metal-Organic Framework composites as sustainable environment adsorbents. Journal of Nanomaterials 2019;2019:1-11.
 
Source
< Prev   CONTENTS   Source   Next >