Table of Contents:

Summary

Microneedles, either as a patch or an array, have demonstrated potential as an effective transdermal carrier for various macro- molecular drugs. Studies have found that microneedles have the capability of enhanced permeation into systemic circulation along with the advantages of being a painless, effective, and safe route for drug delivery. Currently, approximately 23 active trials are going on and 39 trials on microneedles have been completed by the National Institutes of Health clinical, and microneedles are present for the treatment of different severe and acute diseases, such as type 1 diabetes and psoriatic plaques, and for topical anesthesia [188]. Continuous advancement in these painless delivery systems make them one of the key devices for controlled drug release of the future. It can be concluded that microneedle systems are efficient and superior carriers in comparison to the other needle-based formulations for transdermal drug delivery.

It is expected that fundamental studies and commercialization programs will jointly accelerate an era of microneedle-mediated drug delivery products to improve human health and quality of life.

Acknowledgments

The authors greatly appreciate the financial support from the Wellcome Trust/DBT India Alliance Fellowship under grant number IA/E/16/1/503062 and the Science and Engineering Research Board [SERB] under grant number ECR/2016/001945, Department of Science and Technology (DST), Government of India. We acknowledge all authors and publishers who provided the copyright permissions.

References

  • 1. T. Santra, F. Tseng (2013). Recent trends on micro/nanofluidic single cell electroporation. Micromachines, 4:333-356; doi:10.3390/ mi4030333.
  • 2. T. S. Santra, F.-G. (Kevin) Tseng, T. K. Barik (2014). Biosynthesis of silver and gold nanoparticles for potential biomedical applications: a brief review. / Nanopharm Drug Deliv, 2:249-265; doi:10.1166/ jnd.2014.1065.
  • 3. S. Kar, M. Loganathan, K. Dey, P. Shinde, H.-Y. Chang, M. Nagai, T. S. Santra (2018). Single-cell electroporation: current trends, applications and future prospects, J Micromech Microeng, 28:123002; doi:10.1088/1361-6439/aae5ae.
  • 4. D. Sharma (2018). Microneedles: an approach in transdermal drug delivery: a review. PharmaTutor, 6(1):7—15; http://dx.doi.org/ 10.29161/PT.v6.il.2018.7
  • 5. K. Ita (2015). Transdermal delivery of drugs with microneedles— potential and challenges. Pharmaceutics, 7:90-105; doi:10.3390/ pharmaceutics7030090.
  • 6. H. L. Quinn, M.-C. Kearney, A. J. Courtenay, M. T. C. McCrudden, R. F. Donnelly (2014). The role of microneedles for drug and vaccine delivery. Expert Opin Drug Deliv, 11:1769-1780; doi:10.1517/ 17425247.2014.938635.
  • 7. H. W. Smith, G. H. A. Clowes, E. K. Marshall (1919). On dichloroethyl- sulfide (mustard gas) IV. The mechanism of absorption by the skin. ] Pharmacol Exp Ther, 13:1-30.
  • 8. R. J. Scheuplein (1967). Mechanism of percutaneous absorption: II. Transient diffusion and the relative importance of various routes of skin penetration. / Invest Dermatol, 48:79-88; doi:10.1038/ JID.1967.11.
  • 9. E. Larraneta, R. E. M. Lutton, A. D. Woolfson, R. F. Donnelly (2016). Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng, R, 104:1-32; doi:10.1016/J.MSER.2016.03.001.
  • 10. Drug delivery device (1971). https://patents.google.com/patent/ US3964482A/en (accessed July 16, 2019).
  • 11. S. Henry, D. V. McAllister, M. G. Allen, M. R. Prausnitz (1998). Micro fabricated microneedles: a novel approach to transdermal drug delivery.J Pharm Sci, 87:922-925; doi:10.1021/js980042+.
  • 12. D. V. McAllister, P. M. Wang, S. P. Davis (2003). Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA, 100(24): 13755-13760; doi:10.1073/pnas.2331316100.
  • 13. R. F. Donnelly, M. T. C. McCrudden, A. Zaid Alkilani, E. Larraneta, E. McAlister, A. J. Courtenay, M.-C. Kearney, T. R. R. Singh, H. 0. McCarthy, V. L. Kett, E. Caffarel-Salvador, S. Al-Zahrani, A. D. Woolfson (2014). Hydrogel-forming microneedles prepared from "super swelling" polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One, 9:elll547; doi:10.1371/journal.pone.0111547; doi:10.1371/journal.pone.0111547.
  • 14. J. H. Park, M. G. Allen, M. R. Prausnitz (2005). Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. ] Control Release, 104:51-66; doi:10.1016/j.jconrel.2005.02.002.
  • 15. K. Van Der Maaden, W. Jiskoot, ). Bouwstra (2012). Microneedle technologies for transdermal drug and vaccine delivery. J Control Release, 161:645-655; doi: 10.1016/j.jconrel.2012.01.042.
  • 16. S. H. Bariya, M. C. Gohel, T. A. Mehta, О. P. Sharma (2012). Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol, 64:11-29; doi:10.111 l/j.2042-7158.2011.01369.x.
  • 17. M. R. Prausnitz (2004). Microneedles for transdermal drug delivery. Adv Drug Deliv Rev, 56:581-587; doi:10.1016/J.ADDR.2003.10.023.
  • 18. T. Waghule, G. Singhvi, S. K. Dubey, M. M. Pandey, G. Gupta, M. Singh, K. Dua (2019). Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother, 109:1249-1258; doi:10.1016/j.biopha.2018.10.078.
  • 19. L. W. Wong, W. Q. Sun, N. W. Chan, W. Y. Lai, W. K. Leung, J. C. Tsang, Y. H. Wong, K. L. Yeung (2007). Zeolite microneedles for transdermal drug delivery. Stud Surf Sci Catal, 170:525-530; doi:10.1016/S0167- 2991(07)80887-1.
  • 20. J. A. Mikszta, J. B. Alarcon, J. M. Brittingham, D. E. Sutter, R. J. Pettis, N. G. Harvey (2002). Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med, 8:415-419; doi:10.1038/nm0402-415.
  • 21. D. Prabhakar, J. Sreekanth, K. N. Jayaveera (2016). Transdermal drug delivery patches: a review. J Drug Deliv Ther, 3(4):231-221; doi:10.22270/jddt.v3i4.590.
  • 22. R. Donnelly, D. Douroumis (2015). Microneedles for drug and vaccine delivery and patient monitoring. Drug Deliv Transl Res, 5:311-312; doi:10.1007/sl3346-015-0250-2.
  • 23. M. R. Prausnitz (2017). Engineering microneedle patches for vaccination and drug delivery to skin. Artrtu Rev Chem BiomolEng, 8:177-200; doi:10.1146/annurev-chembioeng-060816-101514.
  • 24. J. Li, M. Zeng, H. Shan, C. Tong (2017). Microneedle patches as drug and vaccine delivery platform. Curr Med Chem, 24(22):2413-2422; doi:10.2174/0929867324666170526124053.
  • 25. M. S. Ullah, R. Raw, P. A. Rasool, N. Tripathi, V. Singh (2017). Current trends in MEMS drug delivery techniques. Int ] Eng Technol, 9:1355- 1364; doi:10.21817/ijet/2017/v9i2/170902284.
  • 26. S. Pradeep Narayanan, S. Raghavan (2017). Solid silicon microneedles for drug delivery applications. Int ] Adv Manuf Technol, 93:407-422; doi:10.1007/s00170-016-9698-6.
  • 27. S. P. Narayanan, S. Raghavan (2018). Fabrication and characterization of gold-coated solidsilicon microneedles with improved biocompatibility. Int] Adv Manuf Technol, 1-7.e; doi: 10.1007/s00170-018-2596- 3.
  • 28. Q. Y. Li, J. N. Zhang, B. Z. Chen, Q. L. Wang, X. D. Guo (2017). A solid polymer microneedle patch pre-treatments enhances the permeation of drug molecules into the skin. RSC Adv, 7:15408-15415; doi: 10.1039/c6ra26759a.
  • 29. L. Daugimont, N. Baron, G. Vandermeulen, N. Pavselj, D. Miklavcic, M. C. Jullien, G. Cabodevila, L. M. Mir, V. Preat (2018). Hollow microneedle arrays for intradermal drug delivery and DNA electroporation.JMembr Biol, 236:117-125; doi:10.1007/s00232-010-9283-0.
  • 30. К. B. Vinayakumar, P. G. Kulkarni, M. M. Nayak, N. S. Dinesh, G. M. Hegde, S. G. Ramachandra, K. Rajanna (2016). A hollow stainless steel microneedle array to deliver insulin to a diabetic rat.) Micromech Microeng, 26; doi:10.1088/0960-1317/26/6/065013.
  • 31. E. Garcia-Lopez, H. R. Siller, C. A. Rodriguez (2018). Study of the fabrication of AISI 316L microneedle arrays. Procedia Manuf, 26:117- 124; doi:10.1016/J.PROMFG.2018.07.014.
  • 32. S. Khumpuang, M. Horade, K. Fujioka, S. Sugiyama (2006). Geometrical strengthening and tip-sharpening of a microneedle array fabricated by X-ray lithography. Microsyst Technol, 13:209-214; doi:10.1007/s00542-006-0173-4.
  • 33. S. D. Gittard, A. Ovsianikov, B. N. Chichkov, A. Doraiswamy, R. J. Narayan (2010). Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opin Drug Deliv, 7:513-533; doi:10.1517/17425241003628171.
  • 34. A. Arora, M. R. Prausnitz, S. Mitragotri (2008). Micro-scale devices for transdermal drug delivery. Int J Pharm, 364:227-236; doi:10.1016/j.ijpharm.2008.08.032.
  • 35. R. Mishra, T. K. Maiti, T. K. Bhattacharyya (2018). Development of SU-8 hollow microneedles on a silicon substrate with microfluidic interconnects for transdermal drug delivery. / Micromech Microeng, 28:105017; doi:10.1088/1361-6439/aad301.
  • 36. K. van der Maaden, J. Heuts, M. Camps, M. Pontier, A. Terwiss- cha van Scheltinga, W. Jiskoot, F. Ossendorp, ). Bouwstra (2018). Hollow microneedle-mediated micro-injections of a liposomal HPV E743-63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. / Control Release, 269:347-354; doi:10.1016/j.jconrel.2017.11.035.
  • 37. M. Wang, L. Hu, C. Xu (2017). Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip, 17:1373-1387; doi:10.1039/C7LC00016B.
  • 38. J. D. Kim, M. Kim, H. Yang, K. Lee, H. Jung (2013). Droplet-born air blowing: novel dissolving microneedle fabrication. / Control Release, 170:430-436; doi:10.1016/j.jconrel.2013.05.026.
  • 39. K. Lee, C. Y. Lee, H. Jung (2011). Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials, 32:3134-3140; doi:10.1016/j. biomaterials.2011.01.014.
  • 40. M. C. Chen, M. H. Ling, K. Y. Lai, E. Pramudityo (2012). Chi- tosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromolecules, 13:4022-4031; doi:10.1021/ bm301293d.
  • 41. K. Fukushima, A. Ise, H. Morita, R. Hasegawa, Y. Ito, N. Sugioka, K. Takada (2011). Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm Res, 28:7-21; doi:10.1007/sl 1095-010-0097-7.
  • 42. D. D. Zhu, Q. L. Wang, X. B. Liu, X. D. Guo (2016). Rapidly separating microneedles for transdermal drug delivery. Acta Biomater, 41:312- 319; doi:10.1016/j.actbio.2016.06.005.
  • 43. Y. H. Park, S. К. На, I. Choi, K. S. Kim, J. Park, N. Choi, B. Kim, J. H. Sung (2016). Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery. Biotechnol Bioprocess Eng, 21:110-118; doi:10.1007/sl2257-015-0634-7.
  • 44. Y. К. Demir, Z. Akan, 0. Kerimoglu (2013). Characterization of polymeric microneedle arrays for transdermal drug delivery. PLoS One, 8:1-9; doi:10.1371/journal.pone.0077289.
  • 45. J.-H. Park, S.-O. Choi, R. Kamath, Y.-K. Yoon, M. G. Allen, M. R. Prausnitz (2007). Polymer particle-based micromolding to fabricate novel microstructures. Biomed Microdevices, 9:223-234; doi:10.1007/sl0544- 006-9024-4.
  • 46. W. Yu, G. Jiang, Y. Zhang, D. Liu, B. Xu, J. Zhou (2017). Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater Sci Eng C, 80:187-196; doi:10.1016/ j.msec.2017.05.143.
  • 47. X. Hong, L. Wei, F. Wu, Z. Wu, L. Chen, Z. Liu, W. Yuan (2013). Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Dev Ther, 7:945-952; doi:10.2147/D DDT.S44401.
  • 48. X. Hong, L. Chen, L. Wei, W. Yuan, Z. Wu, F. Wu (2014). Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett, 6:191-199; doi:10.5101/nmll40021r.
  • 49. J. Jin, V. Reese, R. Coler, D. Carter, M. Rolandi (2014). Chitin microneedles for an easy-to-use tuberculosis skin test. Adv Healthc Mater, 3:349-353; doi:10.1002/adhm.201300185.
  • 50. M. Y. Kim, B. Jung, J. H. Park (2012). Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials, 33:668-678; doi:10.1016/j.biomaterials.2011.09.074.
  • 51. B. Jana, A. Wadhwani (2019). Microneedle-future prospect for efficient drug delivery in diabetes management. Indian J Pharmacol, 51:4-10; doi: 10.4103/ijp.ijp_16_18.
  • 52. S. Lau, J. Fei, H. Liu, W. Chen, R. Liu (2017). Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery. J Control Release, 265:113-119; doi:10.1016/j.jconrel.2016.08.031.
  • 53. R. F. Donnelly, T. R. R. Singh, A. Z. Alkilani, M. T. C. McCrudden, S. O'Neill, C. O'Mahony, K. Armstrong, N. McLoone, P. Kole, A. D. Woolfson (2013). Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. Int J Pharm, 451:76- 91; doi:10.1016/j.ijpharm.2013.04.045.
  • 54. E. M. Migdadi, A. J. Courtenay, 1. A. Tekko, M. T. C. McCrudden, M.-C. Kearney, E. McAlister, H. 0. McCarthy, R. F. Donnelly (2018). Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Control Release, 285:142-151; doi: 10.1016/j.jconrel.2018.07.009.
  • 55. S. Hashmi, P. Ling, G. Hashmi, M. Reed, R. Gaugler, W. Trimmer (1995). Genetic transformation of nematodes using arrays of micromechanical piercing structures. Biotechniques, 19:766-770.
  • 56. Y. Ito, J.-I. Yoshimitsu, K. Shiroyama, N. Sugioka, K. Takada (2006). Selfdissolving microneedles for the percutaneous absorption of EPO in mice. J Drug Target, 14:255-261; doi:10.1080/10611860600785080.
  • 57. J. Wang, J. Lu, Y. L. Suw, V. Maika, T. Baomin, W. K. Adeniyi, R. A. Armendariz (2000). Lab-on-a-cable for electrochemical monitoring of phenolic contaminants. Anal Chem, 72:2659-2663. doi.org/10. 1021/ac991054y.
  • 58. A. Ovsianikov, B. Chichkov, P. Mente, N. A. Monteiro-Riviere, A. Doraiswamy, R. J. Narayan (2007). Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol, 4:22-29; doi: 10.1111/j. 1744-7402.2007.02115.x.
  • 59. C. S. Kolli, A. K. Banga (2008). Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res, 25:104-113; doi:10.1007/sll095-007-9350-0.
  • 60. T. Miyano, Y. Tobinaga, T. Kanno, Y. Matsuzaki, H. Takeda, M. Wakui, K. Hanada (2005). Sugar micro needles as transdermic drug delivery system. Biomed Microdevices, 7:185-188; doi:10.1007/sl0544-005- 3024-7.
  • 61. R. F. Donnelly, D. 1. J. Morrow, T. R. R. Singh, K. Migalska, P. A. McCarron, C. O’Mahony, A. David Woolfson (2009). Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev. Ind Pharm, 1242-1254; doi: 10.1080/03639040902882280.
  • 62. J.-H. Park, Y.-K. Yoon, S.-O. Choi, M. R. Prausnitz, M. G. Allen (2007). Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery. IEEE Trans Biomed Eng, 54:903-913; doi:10.1109/TBME.2006.889173.
  • 63. J. H. Park, M. G. Allen, M. R. Prausnitz (2006). Polymer microneedles for controlled-release drug delivery. Pharm Res, 23:1008; doi: 10.1007/sl 1095-006-0028-9.
  • 64. M. A. Hopcroft, W. D. Nix, T. W. Kenny (2010). What is the Young’s modulus of silicon? ] Microelectromech Syst, 19:229-238; doi: 10.1109/JMEMS.2009.2039697.
  • 65. R. F. Donnelly, T. R. R. Singh, A. D. Woolfson (2010). Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv, 17:187-207; doi:10.3109/10717541003667798.
  • 66. F. J. Verbaan, S. M. Bal, D. J. van den Berg, W. H. H. Groenink, H. Verpoorten, R. Liittge, J. A. Bouwstra (2007). Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin .J Control Release, 117:238-245; doi:10.1016/J.JCONREL.2006.11.009.
  • 67. M. Niinomi, M. Nakai (2011). Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater, 2011:836587; doi.org/10.1155/2011/836587.
  • 68. A. C. Williams, B. W. Barry (2004). Penetration enhancers. Adv Drug DelivRev, 56:603-618; doi:10.1016/J.ADDR.2003.10.025.
  • 69. S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, B. Chisholm (2009). Pulsed laser deposition of antimicrobial silver coating on Ormocer®microneedles. Biofabrication, 1:041001; doi:10.1088/1758-5082/l/4/041001.
  • 70. J. Gupta, E. I. Felner, M. R. Prausnitz (2009). Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther, 11; doi:10.1089/dia.2008.0103.
  • 71. C. J. Martin, C. J. Allender, K. R. Brain, A. Morrissey, J. C. Birchall (2012). Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J Control Release, 158:93-101; doi:10.1016/J.JCONREL.2011.10.024.
  • 72. F. Perennes, B. Marmiroli, M. Matteucci, M. Tormen, L. Vaccari, E. Di Fabrizio (2016). Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol./ Mi- cromech Microeng, 16:473-479; doi: 10.1088/0960-1317/16/3/001.
  • 73. S. Aoyagi, H. Izumi, Y. Isono, M. Fukuda, H. Ogawa (2007). Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle. Sens Actuators, A, 139:293-302; doi:10.1016/J.SNA.2006.11.022.
  • 74. M. Han, D.-H. Hyun, H.-H. Park, S. S. Lee, C.-H. Kim, C. Kim (2007). A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer. / Micromech Microeng, 17:1184-1191; doi:10.1088/0960-1317/17/6/012.
  • 75. L. Y. Chu, S.-O. Choi, M. R. Prausnitz (2010). Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs .J Pharm Sci, 99:4228-4238; doi:10.1002/JPS.22140.
  • 76. Y.-C. Kim, F.-S. Quan, R. W. Compans, S.-M. Kang, M. R. Prausnitz (2010). Formulation of microneedles coated with influenza virus-like particle vaccine. AAPS PharmSciTech, 11:1193-1201; doi:10.1208/sl2249- 010-9471-3.
  • 77. R. F. Donnelly, R. Majithiya, T. R. R. Singh, D. I. J. Morrow, M. J. Garland, Y. K. Demir, K. Migalska, E. Ryan, D. Gillen, C. ). Scott, A. D. Woolf- son (2011). Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res, 28:41-57; doi:10.1007/sll095-010-0169-8.
  • 78. H. Huang, C. Fu (2007). Different fabrication methods of out-of- plane polymer hollow needle arrays and their variations. / Micromech Microeng, 17:393-402; doi:10.1088/0960-1317/17/2/027.
  • 79. X. Chen, G. J. R Fernando, M. L. Crichton, C. Flaim, S. R. Yukiko, E. J. Fairmaid, H. ). Corbett, C. A. Primiero, A. B. Ansaldo, I. H. Frazer, L. E. Brown, M. A. F. Kendall (2011). Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermo stabilization. / Control Release, 152:349-55; doi:10.1016/j.jconrel.2011.02.026.
  • 80. A. Vrdoljak, E. A. Allen, F. Ferrara, N. ). Temperton, A. M. Crean,

A. C. Moore (2016). Induction of broad immunity by thermo stabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. J Control Release, 225:192-204; doi: 10.1016/j.jconrel.2016.01.019.

81. C. Uppuluri, A. S. Shaik, T. Han, A. Nayak, K. J. Nair, B. R. Whiteside,

B. N. Nalluri, D. B. Das (2017). Effect of microneedle type on transdermal permeation of rizatriptan. AAPS PharmSciTech, 18:1495- 1506; doi:10.1208/sl2249-016-0702-0.

  • 82. Y. Zhang, Q. Liu, J. Yu, S. Yu, J. Wang, L. Qiang, Z. Gu (2017). Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano, 11:9223-9230; doi:10.1021/acsnano.7b04348.
  • 83. A. S. Rzhevskiy, T. R. R. Singh, R. F. Donnelly, Y. G. Anissimov (2018). Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release, 270:184-202; doi:10.1016/j.jconrel.2017.11.048.
  • 84. L. Wei Ze, H. Mei Rong, Z. Jian Ping, Z. Yong Qiang, H. Bao Hua,

L. Ting, Z. Yong (2010). Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm, 389:122-129; doi:10.1016/j.ijpharm.2010.01.024.

85. Y. Qiu, Y. Gao, K. Hu, F. Li (2008). Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. / Control Release, 129:144-150; doi:10.1016/j. jconrel.2008.04.019.

  • 86. S. L. Banks, K. S. Paudel, N. K. Brogden, C. D. Loftin, A. L. Stinchcomb (2011). Diclofenac enables prolonged delivery of naltrexone through microneedle-treated skin. Pharm Res, 28:1211-1219; doi:10.1007/sl 1095-011-0372-2.
  • 87. R. F. Donnelly, D. I. J. Morrow, P. A. McCarron, A. David Woolfson, A. Morrissey, P. Juzenas, A. Juzeniene, V. Iani, H. 0. McCarthy, ). Moan (2009). Microneedle arrays permit enhanced intradermal delivery of a preformed photosensitizer. Photochem Photobiol, 85:195-204; doi:10.1111/j.1751-1097.2008.00417.x.
  • 88. M. T. Clementoni, M. В Roscher, G. S. Munavalli (2010). Photodynamic photorejuvenation of the face with a combination of microneedling, red light, and broadband pulsed light. Lasers Surg Med, 42:150-159; doi:10.1002/lsm.20905.
  • 89. J. Ornelas, N. Foolad, V. Shi, W. Burney, R. K. Sivamani (2016). Effect of microneedle pretreatment on topical anesthesia: a randomized clinical trial. JAMA Dermatol, 152:476-477; doi:10.1001/ jamaderma- tol.2015.5544.
  • 90. M. T. C. Mccrudden, E. Mcalister, A. J. Courtenay, P. Gonzalezn Vazquez, T. R. Raj Singh, R. F. Donnelly (2015). Microneedle applications in improving skin appearance. Exp Dermatol, 24:561-566; doi:10.1111/exd.l2723.
  • 91. Y. H. Mohammed, M. Yamada, L. L. Lin, J. E. Grice, M. S. Roberts, A. P. Raphael, H. A. E. Benson, T. W. Prow (2014). Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin. PLoS One, 9:el01956; doi:10.1371/journal.pone.0101956.
  • 92. M. M. Badran, J. Kuntsche, A. Fahr (2009). Skin penetration enhancement by a microneedle device (Dermaroller®) in vitro: dependency on needle size and applied formulation. Eur J Pharm Sci, 36:511—523; doi:10.1016/j.ejps.2008.12.008.
  • 93. D. Bhardwaj (2013). Collagen induction therapy with dermaroller. Community Based Med J, 1:35-37; doi:10.3329/cbmj.vlil.13854.
  • 94. L. M. Bonati, G. K. Epstein, T. L. Strugar (2017). Microneedling in all skin types: a review.J Drugs Dermatol, 16:308-313.
  • 95. A. Kumar, Y. W. Naguib, Y. C. Shi, Z. Cui (2016). A method to improve the efficacy of topical eflornithine hydrochloride cream. Drug Deliv, 23:1495-1501; doi:10.3109/10717544.2014.951746.
  • 96. R. Dhurat, M. Sukesh, G. Avhad, A. Dandale, A. Pal, P. Pund (2013). A randomized evaluator blinded study of effect of microneedling in androgenetic alopecia: a pilot study. Int ] Trichol, 5:6-11; doi:10.4103/0974-7753.114700.
  • 97. Y. Park, K. S. Kim, M. Chung, J. H. Sung, B. Kim (2016). Fabrication and characterization of dissolving microneedle arrays for improving skin permeability of cosmetic ingredients. ] Ind Eng Chem, 39:121—126; doi:10.1016/j.jiec.2016.05.022.
  • 98. L. Yan, A. P. Raphael, X. Zhu, B. Wang, W. Chen, T. Tang, Y. Deng, H. J. Sant, G. Zhu, K. W. Choy, В. K. Gale, T. W. Prow, X. Chen (2014). Nanocomposite strengthened dissolving microneedles for improved transdermal delivery to human skin. Adv Healthc Mater, 3:555-564; doi:10.1002/adhm.201300312.
  • 99. Y. Park, J. Park, G. S. Chu, K. S. Kim, J. H. Sung, B. Kim (2015). Transdermal delivery of cosmetic ingredients using dissolving polymer microneedle arrays. Biotechnol Bioprocess Eng, 20:543-549; doi:10.1007/sl2257-014-0775-0.
  • 100. L. K. Vora, P. R. Vavia, E. Larraneta, S. E. J. Bell, R. F. Donnelly (2018). Novel nanosuspension-based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug. J Interdiscip Nanomed, 3:89-101; doi:10.1002/jin2.41.
  • 101. H. Chen, B. Wu, M. Zhang, P. Yang, B. Yang, W. Qin, Q. Wang, X. Wen,

M. Chen, G. Quan, X. Pan, C. Wu (2019). A novel scalable fabrication process for the production of dissolving microneedle arrays. Drug Deliv Transl Res, 9:240-248; doi:10.1007/sl3346-018-00593-z.

  • 102. At home Clinic: Dermaroller, The Wrinkle Warrior (n.d.). https://fiftyplusfab.wordpress.com/2014/09/19/at-home-clinic-l- dermaroller/ (accessed July 17, 2019).
  • 103. J. Yoon, T. Son, E. Choi, B. Choi,J. S. Nelson, B. Jung (2008). Enhancement of optical skin clearing efficacy using a microneedle roller. J Biomed Opt, 13:021103; doi:10.1117/1.2907483.
  • 104. J. Yoon, D. Park, T. Son, J. Seo, J. S. Nelson, B. Jung (2010). A physical method to enhance transdermal delivery of a tissue optical clearing agent: combination of microneedling and sonophoresis. Lasers Surg Med, 42:412-417; doi:10.1002/lsm.20930.
  • 105. Y. T. Kim, S. I. Ahn, H. J. Park, S. H. Jung, H. K. Hong, H.-K. Lee, D. Lee, J. M. Rhee, K.-H. Lee, G. Khang (2009). Microneedle-mediated transdermal delivery of chondroitin sulphate. Tissue Eng Regen Med, 6:756-761.
  • 106. J. W. Lee, M. R. Prausnitz (2018). Drug delivery using microneedle patches: not just for skin. Expert Opin Drug Deliv, 15:541-543; doi:10.1080/17425247.2018.1471059.
  • 107. R. R. Thakur Singh, 1. Tekko, K. McAvoy, H. McMillan, D. Jones, R. F. Donnelly (2017). Minimally invasive microneedles for ocular drug delivery. Expert Opin Drug Deliv, 14:525-537; doi:10.1080/ 17425247.2016.1218460.
  • 108. J. Jiang, H. S. Gill, D. Ghate, В. E. McCarey, S. R. Patel, H. F. Edelhauser, M. R. Prausnitz (2007). Coated microneedles for drug delivery to the eye. Investig Opthalmol VisSci, 48:4038; doi:10.1167/iovs.07-0066.
  • 109. A. Than, C. Liu, H. Chang, P. K. Duong, С. M. G. Cheung, C. Xu, X. Wang, P. Chen (2018). Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat Commun, 9:1-12; doi:10.1038/s41467-018-06981-w.
  • 110. K. S. Yadav, R. Rajpurohit, S. Sharma (2019). Glaucoma: current treatment and impact of advanced drug delivery systems. Life Sci, 221:362-376; doi: 10.1016/j.lfs.2019.02.029.
  • 111. S. H. Park, D. H. Jo, C. S. Cho, K. Lee, J. H. Kim, S. Ryu, C. Joo, J. H. Kim, W. Ryu (2018). Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye. EurJPharm Biopharm, 133:31- 41; doi:10.1016/J.EJPB.2018.09.021.
  • 112. 0. Khandan, M. Y. Kahook, M. P. Rao (2016). Fenestrated microneedles for ocular drug delivery. Sens Actuators, B, 223:15-23; doi:10.1016/j.snb.2015.09.071.
  • 113. E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, N. C. MacDonald (2005). Inductively coupled plasma etching of bulk titanium for MEMS applications./Electrochem Soc, 152:C675; doi:10.1149/1.2006647.
  • 114. 0. Khandan, A. Famili, M. Y. Kahook, M. P. Rao (2012). Titanium- based, fenestrated, in-plane microneedles for passive ocular drug delivery. In 34th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, pp. 6572-6575; doi:10.1109/ EMBC.2012.6347500.
  • 115. H. B. Song, K. J. Lee, I. H. Seo, J. Y. Lee, S.-M. Lee, J. H. Kim, J. H. Kim, W. Ryu (2015). Impact insertion of transfer molded microneedle for localized and minimally invasive ocular drug delivery. J Control Release, 209:272-279; doi:10.1016/j.jconrel.2015.04.041.
  • 116. H. Chang, M. Zheng, X. Yu, A. Than, R. Z. Seeni, R. Kang, J. Tian, D. P. Khanh, L. Liu, P. Chen, C. Xu (2017). A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater, 29:1702243; doi:10.1002/adma.201702243.
  • 117. A. Than, K. Liang, S. Xu, L. Sun, H. Duan, F. Xi, C. Xu, P. Chen (2017). Transdermal delivery of anti-obesity compounds to subcutaneous adipose tissue with polymeric microneedle patches. Small Methods, 1:1700269; doi:10.1002/smtd.201700269.
  • 118. Y. Luo, K. R. Kirker, G. D. Prestwich [2000). Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. / Control Release, 69:169-184; doi: 10.1016/s0168-3659(00)00300-x.
  • 119. Z. Jiang, J. Chen, L. Cui, X. Zhuang, J. Ding, X. Chen [2018). Advances in stimuli-responsive polypeptide nanogels. Small Methods, 2:1700307; doi:10.1002/smtd.201700307.
  • 120. I. Hartman (2008). Insulin analogs: impact on treatment success, satisfaction, quality of life, and adherence. Clin Med Res, 6:54-67; doi:10.3121/cmr.2008.793.
  • 121. Skin perforating device for transdermal medication (1995). https:// patents.google.com/patent/US5611806 (accessed July 11, 2019).
  • 122. W. Martanto, S. P. Davis, N. R. Holiday, J. Wang, H. S. Gill, M. R. Prausnitz (2004). Transdermal delivery of insulin using microneedles in vivo. Pharm Res, 21:947-952; doi:10.1023/B:PHAM.000002 9282.44140.2e.
  • 123. J. Gupta, E. I. Felner, M. R. Prausnitz (2011). Rapid pharmacokinetics of intradermal insulin administered using microneedles in type 1 diabetes subjects. Diabetes Technol Ther, 13(4); doi:10.1089/dia. 2010.0204.
  • 124. R. J. Pettis, B. Ginsberg, L. Hirsch, D. Sutter, S. Keith, E. McVey, N. G. Harvey, M. Hompesch, L. Nosek, C. Kapitza, L. Heinemann (2011). Intradermal microneedle delivery of insulin lispro achieves faster insulin absorption and insulin action than subcutaneous injection. Diabetes Technol Ther, 13(4); doi:10.1089/dia.2010.0184.
  • 125. X. Jin, D. D. Zhu, B. Z. Chen, M. Ashfaq, X. D. Guo (2018). Insulin delivery systems combined with microneedle technology. Adv Drug Deliv Rev, 127:119-137; doi:10.1016/j.addr.2018.03.011.
  • 126. C. J. Rini, E. McVey, D. Sutter, S. Keith, H. J. Kurth, L. Nosek, C. Kapitza, K. Rebrin, L. Hirsch, R. J. Pettis (2015). Intradermal insulin infusion achieves faster insulin action than subcutaneous infusion for 3-day wear. Drug Deliv Transl Res, 5:332-345; doi:10.1007/sl3346-015- 0239-x.
  • 127. R. J. Pettis, B. Ginsberg, L. Hirsch, D. Sutter, S. Keith, E. McVey, N. G. Harvey, M. Hompesch, L. Nosek, C. Kapitza, L. Heinemann (2011). Intradermal microneedle delivery of insulin lispro achieves faster insulin absorption and insulin action than subcutaneous injection. Diabetes Technol Ther, 13:435-442; doi: 10.1089/dia.2010.0184.
  • 128. X. Jin, D. D. Zhu, B. Z. Chen, M. Ashfaq, X. D. Guo (2018). Insulin delivery systems combined with microneedle technology. Adv Drug Deliv Rev, 127:119-137; doi:10.1016/j.addr.2018.03.011.
  • 129. S. P. Davis, W. Martanto, M. G. Allen, M. R. Prausnitz (2005). Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans BiomedEng, 52:909-915; doi:10.1109/TBME.2005.845240.
  • 130. P. M. Wang, M. Cornwell, J. Hill, M. R. Prausnitz (2006). Precise microinjection into skin using hollow microneedles. / Invest Dermatol, 126:1080-1087; doi:10.1038/sj.jid.5700150.
  • 131. Y. Ito, E. Hagiwara, A. Saeki, N. Sugioka, K. Takada (2006). Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci, 29:82-88; doi:10.1016/j.ejps.2006.05.011.
  • 132. K. Migalska, D. I. J. Morrow, M. J. Garland, R. Thakur, A. D. Woolfson, R. F. Donnelly (2011). Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharm Res, 28:1919- 1930; doi:10.1007/sl 1095-011-0419-4.
  • 133. M. H. Ling, M. C. Chen (2013). Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater, 9:8952-8961; doi:10.1016/j.actbio.2013.06. 029.
  • 134. K. Fukushima, T. Yamazaki, R. Hasegawa, Y. Ito, N. Sugioka, K. Takada (2010). Pharmacokinetic and pharmacodynamic evaluation of insulin dissolving microneedles in dogs. Diabetes Technol Ther, 12(6); doi:10.1089/dia.2009.0176.
  • 135. J. Gupta, H. S. Gill, S. N. Andrews, M. R. Prausnitz (2011). Kinetics of skin resealing after insertion of microneedles in human subjects. / Control Release, 154:148-155; doi:10.1016/j.jconrel.2011.05.021.
  • 136. J. J. Norman, M. R. Brown, N. A. Raviele, M. R. Prausnitz, E. 1. Felner (2013). Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes. Pediatr Diabetes, 14:459-465; doi:10.1111/pedi.l2031.
  • 137. J. Cegla (2015). Microneedle-array patches loaded with hypoxia- sensitive vesicles provide fast glucose-responsive insulin delivery. Ann Clin Biochem, 112:8260-8265; doi:10.1177/0004563215605691.
  • 138. H. Chen, H. Zhu, j. Zheng, D. Mou, J. Wan, J. Zhang, T. Shi, Y. Zhao, H. Xu, X. Yang (2003). Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin micro channels for enhancing transdermal delivery of insulin. / Control Release, 139:63- 72; doi:10.1016/j.jconrel.2009.05.031.
  • 139. C. P. P. Pere, S. N. Economidou, G. Lall, C. Ziraud, J. S. Boateng, B. D. Alexander, D. A. Lamprou, D. Douroumis (2018). 3D printed microneedles for insulin skin delivery. Int J Pharm, 544:425-432; doi:10.1016/j.ijpharm.2018.03.031.
  • 140. E. L. Giudice, J. D. Campbell [2006). Needle-free vaccine delivery. Adv Drug Deliv Rev, 58:68-89; doi:10.1016/j.addr.2005.12.003.
  • 141. J. Di, S. Yao, Y. Ye, Z. Cui, J. Yu, T. K. Ghosh, Y. Zhu, Z. Gu (2015). Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano, 9:9407-9415; doi:10.1021/ acsnano.5b03975.
  • 142. S. Yang, F. Wu, J. Liu, G. Fan, W. Welsh, H. Zhu, T. Jin (2015). Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv Funct Mater, 25:4633-4641; doi:10.1002/adfm.201500554.
  • 143. W. Sun, Q. Hu, W. Ji, G. Wright, Z. Gu (2017). Leveraging physiology for precision drug delivery. Physiol Rev, 97:189-225; doi:10.1152/ physrev.00015.2016.
  • 144. J. Yu, Y. Zhang, A. R. Kahkoska, Z. Gu (2017). Bioresponsive transcutaneous patches. Curr Opin Biotechnol, 48:28-32; doi:10.1016/ j.copbio.2017.03.001.
  • 145. Y. Lu, A. A. Aimetti, R. Langer, Z. Gu (2016). Bioresponsive materials. Nat Rev Mater, 16075; doi:10.1038/natrevmats.2016.75.
  • 146. J. 0. You, D. Almeda, G. J. C. Ye, D. T. Auguste (2010). Bioresponsive matrices in drug delivery.J Biol Eng, 15; doi:10.1186/1754-1611-4-15.
  • 147. Y. Ye, J. Yu, D. Wen, A. R. Kahkoska, Z. Gu (2018). Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev, 127:106-118; doi:10.1016/j.addr.2018.01.015.
  • 148. Microneedle devices and uses thereof (2012). https:// patents.google.com/patent/US20130165772Al/en (accessed August 11,2019).
  • 149. H.-S. Seon-Woo, H. J. Kim, J. Y. Roh, J.-H. Park (2019). Dissolving microneedle systems for the oral mucosal delivery of triamcinolone acetonide to treat aphthous stomatitis. Macromol Res, 27:282-289; doi:10.1007/sl3233-019-7031-6.
  • 150. Y. Ma, S. E. Boese, Z. Luo, N. Nitin, H. S. Gill (2015). Drug coated microneedles for minimally-invasive treatment of oral carcinomas: development and in vitro evaluation. Biomed Microdevices, 17:9944; doi:10.1007/sl0544-015-9944-y.
  • 151. M.-C. Chen, Z.-W. Lin, M.-H. Ling (2016). Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano, 10:93-101; doi:10.1021/acsnano.5b05043.
  • 152. G. Traverso, С. M. Schoellhammer, A. Schroeder, R. Maa, G. Y. Lauwers, В. E. Polat, D. G. Anderson, D. Blankschtein, R. Langer (2015). Microneedles for drug delivery via the gastrointestinal tract. J Pharm Sci, 104:362-367; doi:10.1002/jps.24182.
  • 153. J.-F. Liao, J.-C. Lee, C.-K. Lin, K.-C. Wei, P.-Y. Chen, H.-W. Yang (2017). Self-assembly DNA polyplex vaccine inside dissolving microneedles for high-potency intradermal vaccination. Theranostics, 7:2593-2605; doi:10.7150/thno.19894.
  • 154. M. An, H. Liu (2017). Dissolving microneedle arrays for transdermal delivery of amphiphilic vaccines. Small, 13:1700164; doi:10.1002/ smll.201700164.
  • 155. E. M. Saurer, R. M. Flessner, S. P. Sullivan, M. R. Prausnitz, D. M. Lynn (2010). Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules, 11:3136-3143; doi:10.1021/bml009443.
  • 156. Q. Zeng, J. M. Gammon, L. H. Tostanoski, Y.-C. Chiu, С. M. Jewell (2017). In vivo expansion of melanoma-specific t cells using microneedle arrays coated with immune-polyelectrolyte multilayers. ACS Biomater Sci Eng, 3:195—205; doi:10.1021/acsbiomaterials.6b00414.
  • 157. E. McAlister, M. J. Garland, T. R. R. Singh, R. F. Donnelly (2017). Microporation using microneedle arrays. In Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 273-303; doi:10.1007/978- 3-662-53273-7.18.
  • 158. J. Monkare, M. Reza Nejadnik, K. Baccouche, S. Romeijn, W. Jiskoot, J. A. Bouwstra (2015). IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. ] Control Release, 218:53-62; doi:10.1016/j.jconrel.2015.10.002.
  • 159. Y. P. Yekaterina Ostapchuk, Y. Ostapchuk, E. A. Cetin, A. Yilmaz, G. Deniz, S. Talaeva, N. Omarbaeva, I. Oskolchenko, N. Belyaev (2015). Hyaluronan-binding T regulatory cells in peripheral blood of breast cancer patients. J Clin Cell Immunol, 06:1-6; doi:10.4172/2155- 9899.1000286.
  • 160. A. Pattani, P. F. McKay, M. J. Garland, R. M. Curran, K. Migalska, С. M. Cassidy, R. K. Malcolm, R. J. Shattock, H. 0. McCarthy, R. F. Donnelly (2012). Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gpl40 effectively primes mucosal boost inoculations. ] Control Release, 162:529-537; doi:10.1016/j.jconrel.2012.07.039.
  • 161. P. C. DeMuth, Y. Min, D. J. Irvine, P. T. Hammond (2014). Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv Healthc Mater, 3:47-58; doi:10.1002/adhm.201300139.
  • 162. K. Tsioris, W. K. Raja, E. M. Pritchard, B. Panilaitis, D. L. Kaplan, F. G. Omenetto (2012). Fabrication of silk microneedles for controlled-release drug delivery. Adv Fund Mater, 22:330-335; doi:10.1002/adfm.201102012.
  • 163. M. Zaric, 0. Lyubomska, 0. Touzelet, C. Poux, S. Al-Zahrani, F. Fay, L. Wallace, D. Terhorst, B. Malissen, S. Henri, U. F. Power, C. J. Scott, R. F. Donnelly, A. Kissenpfennig (2013). Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly- d,l- lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano, 7:2042-2055; doi:10.1021/ nn304235j.
  • 164. С. K. Choi, J. B. Kim, E. H. Jang, Y.-N. Youn, W. H. Ryu (2012). Curved biodegradable microneedles for vascular drug delivery. Small, 8:2483- 2488; doi:10.1002/smll.201200441.
  • 165. S.-H. Baek, J.-H. Shin, Y.-C. Kim (2017). Drug-coated microneedles for rapid and painless local anesthesia. Biomed Microdevices, 19:2; doi:10.1007/sl0544-016-0144-l.
  • 166. C. Baek, M. Han, J. Min, M. R. Prausnitz, J. H. Park, J. H. Park (2011). Local transdermal delivery of phenylephrine to the anal sphincter muscle using microneedles./ Control Release, 154:138-147; doi:10.1016/j.jconrel.2011.05.004.
  • 167. W. S. Chiu, N. A. Belsey, N. L. Garrett, J. Moger, G. J. Price, M. B. Delgado Charro, R. H. Guy (2015). Drug delivery into microneedle porated nails from nanoparticle reservoirs. / Control Release, 220:98-106; doi:10.1016/j.jconrel.2015.10.026.
  • 168. L. Klouda, A. G. Mikos (2008). Thermo responsive hydrogels in biomedical applications. Eur ] Pharm Biopharm, 68:34-45; doi:10.1016/ j.ejpb.2007.02.025.
  • 169. Y. Choi, M. A. McClain, M. C. LaPlaca, A. B. Frazier, M. G. Allen (2007). Three dimensional MEMS microfluidic perfusion system for thick brain slice cultures. Biomed Microdevices, 9:7-13; doi:10.1007/sl0544-006- 9004-8.
  • 170. H. W. Vesper, P. M. Wang, E. Archibold, M. R. Prausnitz, G. L. Myers (2006). Assessment of trueness of a glucose monitor using interstitial fluid and whole blood as specimen matrix. Diabetes Technol Ther, 8:76-80; doi: 10.1089/dia.2006.8.76.
  • 171. P. M. Wang, M. Cornwell, M. R. Prausnitz (2005). Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol Ther, 7:131-141; doi:10.1089/ dia.2005.7.131.
  • 172. G. Wang, M. D. Poscente, S. S. Park, C. N. Andrews, 0. Yadid- Pecht, M. P. Mintchev (2017). Wearable microsystem for minimally invasive, pseudo-continuous blood glucose monitoring: the e- mosquito. IEEE Trans Biomed Circuits Syst, 11:979-987; doi:10.1109/ TBCAS.2017.2669440.
  • 173. W. H. Smart, K. Subramanian (2000). The use of silicon microfabrication technology in painless blood glucose monitoring. Diabetes Technol Ther, 2:549-559; doi:10.1089/15209150050501961.
  • 174. Q. Qing Bai, K. D. Wise, D. ). Anderson (2000). A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans Biomed Eng, 47:281-289; doi:10.1109/10.827288.
  • 175. Y. C. Kim, J. H. Park, M. R. Prausnitz (2012). Microneedles for drug and vaccine delivery. Adv Drug DelivRev, 64:1547-1568; doi:10.1016/ j.addr.2012.04.005.
  • 176. S. Rajaraman, J. A. Bragg, J. D. Ross, M. G. Allen (2011). Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking. / Micromech Microeng, 21:085014(13pp); doi:10.1088/0960- 1317/21/8/085014.
  • 177. K. D. Wise, A. M. Sodagar, Ying Yao, M. N. Gulari, G. E. Perlin, K. Najafi (2008). Microelectrodes, microelectronics, and implantable neural Microsystems. Proc IEEE, 96:1184-1202; doi: 10.1109/ JPROC.2008.922564.
  • 178. L. M. Yu, F. E. H. Tay, D. G. Guo, L. Xu, K. L. Yap (2009). A microfabricated electrode with hollow microneedles for ECG measurement. Sens Actuators, A, 151:17-22; doi:10.1016/j.sna.2009.01.020.
  • 179. P. Griss, H. K. Tolvanen-Laakso, P. Merilainen, G. Stemme (2002). Characterization of micro machined spiked bio potential electrodes. IEEE Trans Biomed Eng, 49:597-604; doi:10.1109/TBME.2002.1001974.
  • 180. S. Hashmi, R. Gaugler (1997). Application of micromechanical piercing structures for genetic transformation of nematodes. In Recombinant Gene Expression Protocols, Humana Press, New Jersey, Vol. 62, pp. 393- 398; doi: 10.1385/0-89603-480-1:393.
  • 181. N. Wang, Y. Zhen, Y. Jin, X. Wang, N. Li, S. Jiang, T. Wang (2017). Combining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (VADDS). J Control Release, 246:12-29; doi:10.1016/j.jconrel.2016.12.009.
  • 182. S. Bhatnagar, P. Kumari, S. P. Pattarabhiran, V. V. K. Venuganti (2018). Zein microneedles for localized delivery of chemotherapeutic agents to treat breast cancer: drug loading, release behavior, and skin permeation studies. AAPS PharmSciTech, 19:1818-1826; doi:10.1208/sl2249-018-1004-5.
  • 183. Y. Ye, C. Wang, X. Zhang, Q. Hu, Y. Zhang, Q. Liu, D . Wen,J. Milligan, A. Bellotti, L. Huang, G. Dotti, Z. Gu (2017). A melanin- mediated cancer immunotherapy patch. Sci Immunol, 2:eaan5692; doi:10.1126/sciimmunol.aan5692.
  • 184. H. S. Gill, D. D. Denson, B. A. Burris, M. R. Prausnitz (2008). Effect of microneedle design on pain in human volunteers. Clin J Pain, 24:585- 594; doi:10.1097/AJP0b013e31816778f9.
  • 185. S. Kaushik, A. H. Hord, D. D. Denson, D. V. McAllister, S. Smitra, M. G. Allen, M. R. Prausnitz (2001). Lack of pain associated with micro- fabricated microneedles. Anesth Analg, 92:502-504; doi:10.1097/ 00000539-200102000-00041.
  • 186. S. M. Bal, J. Caussin, S. Pavel, J. A. Bouwstra (2008). In vivo assessment of safety of microneedle arrays in human skin. EurJPharm Sci, 35:193- 202; doi:10.1016/j.ejps.2008.06.016.
  • 187. B. Godin, E. Touitou (2007). Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev, 59:1152-1161; doi:10.1016/j.addr.2007.07.004.
  • 188. Special Diabetes Program: Clinical Trials Recruiting Patients & Families, NIDDK (n.d.). https://www.niddk.nih.gov/about-niddk/research- areas/diabetes/type-l-diabetes-special-statutory-funding-program/ special-diabetes-program-clinical-trials-recruiting-patients-families (accessed July 17, 2019).
 
Source
< Prev   CONTENTS   Source   Next >