Table of Contents:

SUMMARY

EOs as natural antimicrobials can be used to control foodbome pathogens; however, these can affect the sensory attributes of final food products. Therefore, strategies of EO combined with traditional and emerging physical treatments or antimicrobials or both against several target microorganisms can be a viable alternative. It is necessary to understand the underlying mechanism to design effective hurdle approach. Further validation of observations made in laboratory media in model foods needs to be followed by real foods to understand the factors associated. EO possesses the abnormal flavor if exceeds threshold level. Combination processing methods based on EOs can also facilitate development of novel product formulations and minimal processed foods without compromising the food safety.

KEYWORDS

  • • bacteriocins
  • • essential oils
  • • hurdle technology
  • • modified atmosphere packaging
  • • ohmic heating
  • • pulse electric field

REFERENCES

1. Abou-Taleb, M., & Kawai, Y., (2008). Shelf-life of semi fried tuna slices coated with essential oil compounds after treatment with anodic electrolyzed NaCl solution. Journal of Food Protection, 71(4), 770-774.

  • 2. Ait-Ouazzou, A., Cherrat, L., Espina, L., Loran, S., Rota, C., & Pagan, R., (2011). The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. Innovative Food Science and Emerging Technologies, 72(3), 320-329.
  • 3. Ait-Ouazzou, A., Espina, L., Cherrat, L., Hassani, M., Laglaoui, A., Conchello, P., & Pagan, R., (2012). Synergistic combination of essential oils from Morocco and physical treatments for microbial inactivation. Innovative Food Science and Emerging Technologies, 16, 283-290.
  • 4. Akhtar, S., Torres, J. A., & Paredes-Sabja, D., (2015). High hydrostatic pressure-induced inactivation of bacterial spores. Critical Res’iews in Microbiology’, 47(1), 18-26.
  • 5. Allende, A., Tomas-Barberan, F. A., & Gil, M. I., (2006). Minimal processing for healthy traditional foods. Trends in Food Science and Technology’, 77(9), 513-519.
  • 6. Amalaradjou, M. A. R., Baskaran, S. A., Ramanathan, R., & Johny, A. K., (2010). Enhancing the thermal destruction of Escherichia coli 0157: H7 in ground beef patties by trans-cinnamaldehyde. Food Microbiology, 27(6), 841-844.
  • 7. Antonio, С. M., Abriouel, H., Lopez, R. L., Omar, N. B., Valdivia, E., & Galvez, A., (2009). Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds, and chemical preservatives against Listeria monocy’togenes in ready-to-eat salad. Food and Chemical Toxicology, 47(9), 2216-2223.
  • 8. Arroyo, C., Somolinos, M., Cebrian, G., Condon, S., & Pagan, R., (2010). Pulsed electric fields cause sub lethal injuries in the outer membrane of Enterobacter sakazakii facilitating the antimicrobial activity of citral. Letters in Applied Microbiology’, 51(5), 525-531.
  • 9. Ayari, S., Dussault, D., Jerbi, T., Hamdi, M., & Lacroix, M., (2012). Radio sensitization of Bacillus cereus spores in minced meat treated with cinnamaldehyde. Radiation Physics and Chemistiy, 81(8), 1173-1176.
  • 10. Ayari, S., Dussault, D., Millette, M., Hamdi, M., & Lacroix, M., (2009). Changes in membrane fatty acids and murein composition of Bacillus cereus and Salmonella typhimurium induced by gaimna irradiation treatment. International Journal of Food Microbiology’, 735(1), 1-6.
  • 11. Barros, J. C., Concei9ao, M. L. D., Gomes, N. N. J., Costa, А. С. V., & Souza, E. L., (2012). Combination of Origanum vulgare L. essential oil and lactic acid to inhibit Staphylococcus aureus in meat broth and meat model. Brazilian Journal of Microbiology, 43(3), 1120-1127.
  • 12. Bassole, I. H. N., & Juliani, H. R., (2012). Essential oils in combination and their antimicrobial properties. Molecules, 17(4), 3989-4006.
  • 13. Beales, N., (2004). Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Comprehensive Reviews in Food Science and Food Safety’, 3(1), 1-20.
  • 14. Behrens. J. H., Barcellos, M. N., Frewer, L. J., Nunes, T. P., Franco, B. D. G. M., Destro, M. T., & Landgraf, M., (2010). Consumer purchase habits and views on food safety: A Brazilian study. Food Control, 21(1), 963-969.
  • 15. Bei. W„ Zhou, Y„ Xing, X., Zahi, M. R., Li, Y„ Yuan, Q„ & Liang, H„ (2015). Organogel- nanoemulsion containing nisin and D-limonene and its antimicrobial activity. Frontiers in Microbiology’, 6(1010), 1-9.
  • 16. Berthold-Pluta, A., Stasiak-Rozanska, L., Pluta, A., & Garbowska, M., (2018). Antibacterial activities of plant-derived compounds and essential oils against Cronobacter strains. European Food Research and Technology’, pp. 1-11.
  • 17. Boumail, A., Salmieri, S., & Lacroix, M., (2016). Combined effect of antimicrobial coatings, gamma radiation, and negative air ionization with ozone on Listeria innocua, Escherichia coli and mesophilic bacteria on ready-to-eat cauliflower florets. Posthaivest Biolog)’ and Technology, 11S, 134-140.
  • 18. Braschi, G., Patrignani, F., Siroli, L., Lanciotti, R., Schlueter, O., & Froehling, A., (2018). Flow cytometric assessment of the morphological and physiological changes of Listeria monocytogenes and Escherichia coli in response to natural antimicrobial exposure. Frontiers in Microbiology, 9(2783), 1-11.
  • 19. Burt, S., (2004). Essential oils: Their antibacterial properties and potential applications in foods - a review. International Journal of Food Microbiology, 94(3), 223-253.
  • 20. Caillet, S., & Lacroix, M., (2006). Effect of gaimna radiation and oregano essential oil on murein and ATP concentration of Listeria monocytogenes. Journal of Food Protection, 69(12), 2961-2969.
  • 21. Caillet, S., Shareck, F., & Lacroix, M., (2005). Effect of gamma radiation and oregano essential oil on murein and ATP concentration of Escherichia coli 0157: H7. Journal of Food Protection, 6S( 12), 2571-2579.
  • 22. Cava-Roda, R. M., Taboada-Rodriguez, A., Valverde-Franco, M. T, & Marin-Iniesta, F., (2010). Antimicrobial activity of vanillin and mixtures with cinnamon and clove essential oils in controlling Listeria monocytogenes and Escherichia coli 0157:H7 in Milk. Food Bioprocess Technology, 5, 2120-2131.
  • 23. Cava-Roda, R. M., Taboada, A., Palop, A., Lopez-Gomez, A., & Marin-Iniesta, F., (2012). Heat resistance of Listeria monocytogenes in semi-skim milk supplemented with vanillin. International Journal of Food Microbiology, 157(2), 314-318.
  • 24. Char, C., Guerrero, S., & Alzamora, S. M., (2009). Survival ofListeria innocua in thermally processed orange juice as affected by vanillin addition. Food Contr ol, 20(1), 67-74.
  • 25. Chiasson, F., Borsa, J., Ouattara, B., & Lacroix, M., (2004). Radiosensitization of Escherichia coli and Salmonella Typhi in ground beef. Journal of Food Protection, 67(6), 1157-1162.
  • 26. Chouhan, S., Sharma, K., & Guleria, S., (2017). Antimicrobial activity of some essential oils-present status and future perspectives. Medicines, 4(58), 1-21.
  • 27. Chueca, B., Ramirez, N., Arvizu-Medrano, S. M., Garcia-Gonzalo, D., & Pagan, R., (2015). Inactivation of spoiling microorganisms in apple juice by a combination of essential oils’ constituents and physical treatments. Food Science and Technolog)’ International, 22(5), 389-398.
  • 28. Chung, D., Cho, T. J., & Rliee, M. S., (2018). Citrus fruit extracts with carvacrol and thymol eliminated 7-log acid-adapted Escherichia coli 0157:H7, Salmonellat yphimurium, and Listeria monocytogenes: A potential of effective natural antibacterial agents. Food Research International, 107, 578-588.
  • 29. Chung, Y. K., Malone, A. S., Yousef, A. E., & Peleg, M., (2008). Sensitization of microorganisms to high pressure processing by phenolic compounds. High Pressure Processing of Foods, 145-172.
  • 30. Corthouts, J., & Michiels, C. W., (2016). Inhibition of nutrient and high pressure induced germination of Bacillus cereus spores by plant essential oils. Innovative Food Science and Emerging Technologies, 34, 250-258.
  • 31. Cox, S. D., Mann, С. M., Markham, J. L., Bell, H. C., Gustafson, J. E., & Warmington,

J. R., (2000). The Mode of Antimicrobial Action of the Essential Oil of Melaleuca Alternifolia (Tea Tree Oil) (pp. 170-175).

  • 32. Cristani, M., D’Arrigo, M., Mandalari, G., C'astelli, F., Sarpietro, M. G., Micieli, D., Venuti, V., et al., (2007). Interaction of fourmonoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. Journal of Agricultural and Food Chemistry, 55(15), 6300-6308.
  • 33. De Oliveira, С. E. V., Stamford, T. L. M„ Neto, N. J. G„ & De Souza. E. L„ (2010). Inhibition of Staphylococcus aureus in broth and meat broth using synergies of phenolics and organic acids. International Journal of Food Microbiology’, 137(2), 312-316.
  • 34. De Sousa, J. P., De Azeredo, G. A., De Araujo, T. R., Da Silva, V. M. A., Da Concei9ao, M. L., & De Souza, E. L., (2012). Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables. International Journal of Food Microbiology’, 154(3), 145-151.
  • 35. De Souza, E. L., De Azeredo, G. A., De Sousa, J. P., De Figueiredo, R. С. B. Q., & Stamford, T. L. M., (2013). Cytotoxic effects of Origanum vulgare L. and Rosmarinus officinalis L. essential oils alone and combined at sublethal amounts on Pseudomonas fluorescense in a vegetable broth. Journal of Food Safety’, 33(2), 163-171.
  • 36. Delaquis, P. J., Stanich, K., Girard, B., & Mazza, G., (2002). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander, and eucalyptus essential oils. International Journal of Food Microbiology, 74(1), 101-109.
  • 37. Dhifi, W., Bellili, S., Jazi, S.. Bahloul, N., & Mnif, W., (2016). Essential oil chemical characterization and investigation of some biological activities: A critical review. Medicines, 3(4), 25.
  • 38. Dimitrijevic, S. I., Mihajlovski, K. R., Antonovic, D. G., Milanovic, S. M. R., & Mijin, D. Z., (2007). A study of the synergistic antilisterial effects of a sub-lethal dose of lactic acid and essential oils from Thymus vulgaris L., Rosmarinus officinalis L. and Origanum vulgare L. Food Chemistiy, 104(2), 774-782.
  • 39. Donsi, F., Marchese, E., Maresca, P., Pataro, G., Vu, K. D., Salmieri, S., Lacroix, M., & Ferrari, G., (2015). Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Posthairest Biology’ and Technology, 106, 21-32.
  • 40. Espina, L., Garcia-Gonzalo, D., Laglaoui, A., Mackey, В. M., & Pagan, R., (2013). Synergistic combinations of high hydrostatic pressure and essential oils or their constituents and their use in preservation of fruit juices. International Journal of Food Microbiology’, 161(1), 23-30.
  • 41. Espina, L., Monfort, S., Alvarez, I., Garcia-Gonzalo, D., & Pagan, R., (2014). Combination of pulsed electric fields, mild heat and essential oils as an alternative to the ultra pasteurization of liquid whole egg. International Journal of Food Microbiology’, 1S9, 119-125.
  • 42. Espina, L., Somolinos, M., AitOuazzou, A., Condon, S., Garcia-Gonzalo, D., & Pagan, R., (2012). Inactivation of Escherichia coli 0157: H7 in fruit juices by combined treatments of citrus fruits essential oils and heat. International Journal of Food Microbiology’, 759(1), 9-16.
  • 43. Espina, L., Somolinos, M., Loran, S., Conchello, P., Garcia, D., & Pagan, R., (2011). Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control, 22(6), 896-902.
  • 44. Espina, L., Somolinos, M., Pagan, R., & Garcia-Gonzalo, D., (2010). Effect ofcitral on the thermal inactivation of Escherichia coli 0157: H7 in citrate phosphate buffer and apple juice. Journal of Food Protection, 73( 12), 2189-2196.
  • 45. Esteban, M. D., Conesa, R., Huertas, J. P., & Palop, A., (2015). Effect of thymol in heating and recovery media on the isothermal and non-isothermal heat resistance of Bacillus spores. Food Microbiology’, 48, 35-40.
  • 46. Ettayebi, K., El Yamani, J., & Rossi-Hassani, B. D., (2000). Synergistic effects of nisin and thymol on antimicrobial activities in Listeria monocytogenes and Bacillus subtiiis. FEMS Microbiology’ Letters, 183(1), 191-195.
  • 47. Evrendilek, G. A., & Balasubramaniam, V. M., (2011). Inactivation of Listeria monocytogenes and Listeria innocua in yogurt drink applying combination of high pressure processing and mint essential oils. Food Control, 22(8), 1435-1441.
  • 48. Ferrante, S., Guerrero, S., & Alzamora, S. M., (2007). Combined use of ultrasound and natural antimicrobials to inactivate Listeria monocytogenes in orange Juice. Journal of Food Protection, 70(8), 1850-1856.
  • 49. Feyaerts, J., Rogiers, G., Corthouts, J., & Michiels, C. W., (2015). Thiol-reactive natural antimicrobials and high pressure treatment synergistically enhance bacterial inactivation. Innovative Food Science and Emerging Technologies, 27, 26-34.
  • 50. Fisher, K., & Phillips, C., (2009). The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. Journal of Applied Microbiology’, 706(4), 1343-1349.
  • 51. Friedly, E. C., Crandall, P. G., Ricke, S. C., Roman, M., O’Bryan, C., & Chalova, V. I., (2009). In vitro antilisterial effects of citrus oil fractions in combination with organic acids. Journal of Food Science, 74(2), M67-M72.
  • 52. Friedman, M., Henika, P. R., & Mandrell, R. E., (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection, 65(10), 1545-1560.
  • 53. Manju, G., Grover, C. R., & Suman, R. (2015) Antimicrobial efficacy of vanillin in conjunction with mild heat treatment against Escherichia coli 0157: H7 in sweetened lassi. Indian Journal of Dairy Science, 68(3), 411-416.
  • 54. Gastelum. G., Avila-Sosa, R., Lopez-Malo, A., & Palou, E., (2012). Listeria innocua multi-target inactivation by thermo-sonication and vanillin. Food Bioprocess Technology’, 5(2), 665-671.
  • 55. Gayan, E., Torres, J. A., & Paredes-Sabja, D., (2012). Hurdle approach to increase the microbial inactivation by high pressure processing: Effect of essential oils. Food Engineering Reviews, 4(3), 141-148.
  • 56. Ghabraie, M., Vu, K. D., Tata, L., Sahnieri, S., & Lacroix, M., (2016). Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT-Food Science and Technology’, 66, 332-339.
  • 57. Ghrairi, T., & Hani, K., (2013). Enhanced bactericidal effect of enterocin A in combination with thyme essential oils against L. monocytogenes and E. coli 0157:H7. Journal of Food Science and Technology, pp. 1-9.
  • 58. Gibriel, A. Y„ Al-Sayed, H. M. A., Rady. A. H„ & Abdelaleem, M. A., (2013). Synergistic antibacterial activity of irradiated and nonirradiated cumin, thyme and rosemary essential oils. Journal of Food Safety, 33(2), 222-228.
  • 59. Gomes, C., Moreira, R. G., & Castell-Perez, E., (2011). Microencapsulated antimicrobial compounds as a means to enhance electron beam irradiation treatment for inactivation of pathogens on fresh spinach leaves. Journal of Food Science, 76(6), E479-E488.
  • 60. Goni, P., Lopez, P., Sanchez, C., Gomez-Lus, R., Becerril, R., & Nerin, C., (2009). Antimicrobial activity in the vapor phase of a combination of cinnamon and clove essential oils. Food Chemistry, 116(4), 982-989.
  • 61. Goullieux. A., & Pain, J. P., (2014). Ohmic heating. In: Sun, D. W., (ed.), Emerging Technologies for Food Processing (2nd edn., pp. 399-426). Academic Press, San Diego.
  • 62. Govaris, A., Solomakos,N., Pexara, A., & Chatzopoulou, P. S., (2010). The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella enteritidis in minced sheep meat during refrigerated storage. International Journal of Food Microbiology, 237(3), 175-180.
  • 63. Grande, M. J., Lopez, R. L., Abriouel, H., Valdivia, E., Omar, N. B., Maqueda, M., Martinez-Canamero, M., & Galvez, A., (2007). Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. Journal of Food Protection, 70(2), 405-411.
  • 64. Gutierrez, J., Barry-Ryan, C., & Bourke, P., (2008). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology’, 124(1), 91-97.
  • 65. Gutierrez, J., Barry-Ryan, C., & Bourke, P., (2009). Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiology’, 26(2), 142-150.
  • 66. Han, J. H., Patel, D., Kim, J. E., & Min, S. C., (2015). Microbial inhibition in mozzarella cheese using rosemary and thyme oils in combination with sodium diacetate. Food Science and Biotechnology, 24(1), 75-84.
  • 67. Hossain, F., Follett, P, Dang, K., Salmieri, S., Senoussi, C., & Lacroix, M., (2014). Radio sensitization of Aspergillus niger and Penicillium chiysogenum using basil essential oil and ionizing radiation for food decontamination. Food Control, 45, 156-162.
  • 68. Hulankova, R., Borilova, G., & Steinhauserova, I., (2013). Combined antimicrobial effect of oregano essential oil and caprylic acid in minced beef. Meat Science, 95(2), 190-194.
  • 69. Husnu, K., Baser, C., & Demirci, F., (2007). Chemistry of essential oils. In: Berger, R., (ed.), Flavors and Fragrances (pp. 43-86). Springer, Berlin Heidelberg.
  • 70. Hyldgaard, M., Mygind, T., & Meyer, R. L., (2012). Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3, 12.
  • 71. Ju, J., Xu. X., Xie, Y., Guo, Y.. Cheng, Y., Qian, H„ & Yao, W„ (2018). Inhibitory effects of cinnamon and clove essential oils on mold growth on baked foods. Food Chemistiy, 240, 850-855.
  • 72. Juneja, V. K., & Friedman, M., (2007). Carvacrol, cinnarnaldehyde, oregano oil, and thymol inhibit Clostridium perfringens spore germination and outgrowth in ground turkey during chilling. Journal of Food Protection, 70(1), 218-222.
  • 73. Juneja, V. K., & Friedman, M., (2008). Carvacrol and cinnarnaldehyde facilitate thermal destruction of Escherichia coli 0157: H7 in raw ground beef. Journal of Food Protection, 71(8), 1604-1611.
  • 74. Juneja, V. K., Hwang, C. A., & Friedman, M., (2010). Thermal inactivation and post- thermal treatment growth during storage of multiple Salmonella serotypes in ground beef as affected by sodium lactate and oregano oil. Journal of Food Science, 75(1), M1-M6.
  • 75. Juneja, V. K., Thippareddi, H., & Friedman, M., (2006). Control of Clostridium perfringens in cooked ground beef by carvacrol, cinnamaldehyde, thymol, or oregano oil during chilling. Journal of Food Protection, 69(1), 1546-1551.
  • 76. Juven, B. J., Kanner, J., Schved, F., & Weisslowicz, H., (1994). Factors that interact with the antibacterial action of thyme essential oil and its active constituents. Journal of Applied Bacteriology’, 76(6), 626-631.
  • 77. Kalemba, D., & Kunicka, A., (2003). Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry, 70(10), 813-829.
  • 78. Karatzas, A. K., Kets, E. P., Smid, E. J., & Bennik, M. H., (2001). The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes Scott A. Journal of Applied Microbiology, 90(3), 463-469.
  • 79. Karatzas, A. K„ Kets, E. P. W„ Smid, E. J., & Bennik, M. H. J., (2001). The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes scott A. Journal of Applied Microbiology’, 90(3), 463-469.
  • 80. Kethireddy, V., Oey, I., Jowett, T., & Bremer, P., (2016). Critical analysis of the maximum non-inhibitory concentration (MNIC) method in quantifying sub-lethal injury in Saccharomyces cerevisiae cells exposed to either thermal or pulsed electric field treatments. International Journal of Food Microbiology, 233, 73-80.
  • 81. Kim, S. S., &Kang,D. H.,(2017). Combination treatment of ohmic heating with various essential oil components for inactivation of food-borne pathogens in buffered peptone water and salsa. Food Control, SO, 29-36.
  • 82. Kim, S. S., & Kang, D. H., (2017). Synergistic effect of carvacrol and ohmic heating for inactivation of E. coli 0157:H7, S. Typhimurium, L. monocytogenes, and MS-2 bacteriophage in salsa. Food Control, 73, 300-305.
  • 83. Kim, S. A., & Rliee, M. S., (2016). Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, p-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli 0157:H7. Food Control, 60, 447-454.
  • 84. Lachowicz, K. J., Jones, G. P, Briggs, D. R., Bienvenu, F. E., Wan, J., Wilcock, A., & Coventry, M. J., (1998). The synergistic preservative effects of the essential oils of sweet basil (Ocimum basilicum L.) against acid-tolerant food microflora. Letters in Applied Microbiology’, 26(3), 209-214.
  • 85. Lacroix, M., Caillet, S., & Shareck, F., (2009). Bacterial radio sensitization by using radiation processing in combination with essential oil: Mechanism of action. Radiation Physics and Chemistry, 78(1), 567-570.
  • 86. Lacroix, M., Chiasson, F., Borsa, J., & Ouattara, B., (2004). Radio sensitization of Escherichia coli and Salmonella typhi in presence of active compounds. Radiation Physics and Chemistry, 77(1), 65-68.
  • 87. Lambert, R. J. W., Skandamis, P. N., Coote, P. J., & Nychas, G. E., (2001). A Study of the Minimum Inhibitoiy Concentration (MIC) and Mode of Action of Oregano Essential Oil, Thymol and Carvacrol (pp. 453-462).
  • 88. Leistner, L., (2000). Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology’, 55( 1-3), 181-186.
  • 89. Li, H., & Ganzle, M., (2016). Effect of hydrostatic pressure and antimicrobials on survival of Listeria monocytogenes and enterohaemorrhagic Escherichia coli in beef. Innovative Food Science and Emerging Technologies, 38, 321-327.
  • 90. Lim, S. W„ Kim, S. W„ Lee, S. C„ & Yuk, H. G., (2013). Exposure of Salmonella typhimurium to guava extracts increases their sensitivity to acidic environments. Food Condo!, 33(2), 393-398.
  • 91. Lu, Y., & Wu, C., (2012). Reductions of Salmonella enterica on chicken breast by thymol, acetic acid, sodium dodecyl sulfate or hydrogen peroxide combinations as compared to chlorine wash. International Journal of Food Microbiology, 152(1-2), 31-34.
  • 92. Luis-Villaroya, A., Espina, L., Garcia-Gonzalo, D., Bayarri, S., Perez, C., & Pagan, R., (2015). Bioactive properties of a propolis-based dietary supplement and its use in combination with mild heat for apple juice preservation. Internationa! Journal of Food Microbiology, 205, 90-97.
  • 93. Luu-Thi, H., Corthouts, J., Passaris, I., Grauwet, T., Aertsen, A., Hendrickx, M., & Michiels, C. W., (2015). C'arvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores. International Journal of Food Microbiology’, 197, 45-52.
  • 94. Luz, I. D. S., De Melo, A. N. F., Bezerra, T. K. A., Madruga, M. S., Magnani, M., & deSouza, E. L., (2014). Sublethal amounts of Origanum vulgare L. essential oil and carvacrol cause injury and changes in membrane fatty acid of Salmonella typhimurium cultivated in a meat broth. Food Borne Pathogens and Disease, 11(5), 357-361.
  • 95. Lv, F., Liang, H., Yuan, Q., & Li, C., (2011). In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food- related microorganisms. Food Research International, 44(9), 3057-3064.
  • 96. Mahmoud, B. S. M., Kawai, Y., Yamazaki, K., Miyashita, K., & Suzuki, T., (2007). Effect of treatment with electrolyzed NaCl solutions and essential oil compounds on the proximate composition, amino acid and fatty acid composition of carp fillets. Food Chemistry, 101(4), 1492-1498.
  • 97. Mahmoud, B. S. M., Yamazaki, K., Miyashita, K., Shin, II., & Suzuki, T., (2006). New technology for fish preservation by combined treatment with electrolyzed NaCl solutions and essential oil compounds. Food Chemistry, 99(4), 656-662.
  • 98. Mate, J., Periago, P. M., & Palop, A., (2016). When nano-emulsified, d-limonene reduces Listeria monocytogenes heat resistance about one hundred times. Food Control, 59, 824-828.
  • 99. Matser, A. M., Krebbers, B., Vanden, B. R. W., & Bartels, P. V., (2004). Advantages of high pressure sterilization on quality of food products. Trends in Food Science and Technology’, 15(2), 79-85.
  • 100. Millan-Sango, D., Garroni, E., Farrugia, C., Vanimpe, J. F. M., & Valdramidis, V. P., (2016). Determination of the efficacy of ultrasound combined with essential oils on the decontamination of Salmonella inoculated lettuce leaves. LWT-Food Science and Technology’, 73, 80-87.
  • 101. Millan-Sango, D., McElhatton, A., & Valdramidis, V. P., (2015). Determination of the efficacy of ultrasound in combination with essential oil of oregano for the decontamination of Escherichia coli on inoculated lettuce leaves. Food Research International, 67, 145-154.
  • 102. Moon, H„ Kim, N. H„ Kim, S. H„ Kim. Y„ Ryu, J. H„ & Rliee, M. S„ (2017). Teriyaki sauce with carvacrol or thymol effectively controls Escherichia coli 0157: H7, Listeria monocytogenes, Salmonella typhimurium, and indigenous flora in marinated beef and marinade. Meat Science, 129, 147-152.
  • 103. Moon, H., & Rhee, M. S., (2016). Synergism between carvacrol or thymol increases the antimicrobial efficacy of soy sauce with no sensory impact. International Journal of Food Microbiology, 217, 35-41.
  • 104. Moosavy, M. H., Basti, A. A., Misaghi, A., & Salehi, T. Z., (2008). Effect of Zataria multiflora Boiss essential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial cell membranes. Food Research International, 41(10), 1050-1057.
  • 105. Mosqueda-Melgar, J., Raybaudi-Massilia, R. M., & Martin-Belloso, O., (2008). Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innovative Food Science and Emerging Technologies, 9(3), 328-340.
  • 106. Naveena, В. M., Muthukumar, M., Sen, A. R., Babji, Y., & Murthy, T. R. K., (2006). Improvement of shelf-life of buffalo meat using lactic acid, clove oil and vitamin C during retail display. Meat Science, 74(2), 409-415.
  • 107. Ndoti-Nembe, A., Vu, K. D., Doucet, N., & Lacroix, M., (2013). Effect of combination of essential oils and bacteriocins on the efficacy of gamma radiation against Salmonella typhimurium and Listeria monocytogenes. International Journal of Radiation Biology, 89( 10), 794-800.
  • 108. Ogawa, X, Nakatani, A., Matsuzaki, H., Isobe, S., & Isshiki, K., (2000). Combined effects of hydrostatic pressure, temperature, and the addition of allyl isothiocyanate on inactivation of Escherichia coli. Journal ofFood Protection, 63(1), 884-888.
  • 109. Olasupo, N. A., Fitzgerald, D. J., Narbad, A., & Gasson, M. J., (2004). Inhibition of Bacillus subtilis and Listeria innocua by nisin in combination with some naturally occurring organic compounds. Journal of Food Protection, 67(3), 596-600.
  • 110. Oliveira, X L. C. D., Ramos, A. L. S., Ramos, E. M., Piccoli, R. H., & Cristianini, M., (2015). Natural antimicrobials as additional hurdles to preservation of foods by high pressure processing. Trends in Food Science and Technology’, 45(1), 60-85.
  • 111. Ouattara, B., Sabato, S. F., & Lacroix, M., (2001). Combined effect of antimicrobial coating and gamma irradiation on shelf-life extension of pre-cooked shrimp (Penaeus spp.). International Journal of Food Microbiology’, 68( 1), 1-9.
  • 112. Oussalah, M., Caillet, S., & Lacroix, M., (2006). Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli 0157: H7 and Listeria monocytogenes. Journal of Food Protection, 69(5), 1046-1055.
  • 113. Palhano, F. L., Vilches, X X. B., Santos, R. B., Orlando, M. X. D., Ventura, J. A., & Fernandes, P. M. B., (2004). Inactivation of Colletotrichum gloeosporioides spores by high hydrostatic pressure combined with lemongrass essential oil. International Journal of Food Microbiology, 95(1), 61-66.
  • 114. Park, H. G„ Han, S. I.. Oh, S. Y., & Kang, H. S„ (2005). Cellular responses to mild heat stress. Cellular and Molecular Life Sciences CEILS, 62(1), 10-23.
  • 115. Perez-Pulido, R., Xoledo, A. J., Grande, В. M. J., & Galvez, A., (2012). Bactericidal effects of high hydrostatic pressure treatment singly or in combination with natural antimicrobials on Staphylococcus aureus in rice pudding. Food Control, 2S(1), 19-24.
  • 116. Periago, P. M., Palop, A., & Fernandez, P. S., (2001). Combined effect of nisin, carvacrol and thymol on the viability of Bacillus cereus heat-treated vegetative cells. Food Science and Technology International, 7(6), 487-492.
  • 117. Pina-Perez. M. C., Martinez-Lopez, A., & Rodrigo, D., (2012). Cinnamon antimicrobial effect against Salmonella typhimurium cells treated by pulsed electric fields (PEF) in pasteurized skim milk beverage. Food Research International, 48(2), 777-783.
  • 118. Piyasena, P., Mohareb, E., & McKellar, R. C., (2003). Inactivation of microbes using ultrasound: A review. International Journal of Food Microbiology, 57(3), 207-216.
  • 119. Pol, I. E„ Mastwijk, H. C„ Slump, R. A., Popa. M. E., & Srnid, E. J„ (2001). Influence of food matrix on inactivation of Bacillus cereus by combinations of nisin, pulsed electric field treatment, and carvacrol. Journal of Food Protection, 64(1), 1012-1018.
  • 120. Pol, I. E., & Smid, E. J., (1999). Combined action of nisin and carvacrol on Bacillus cereus and Listeria monocytogenes. Letters in Applied Microbiology’, 29(3), 166-170.
  • 121. Randrianarivelo, R., Sarter, S., Odoux, E., Brat, P., & Lebrun, M., (2009). Composition and antimicrobial activity of essential oils of Cinnamosma fragrans. Food Chemistry, 114(2), 680-684.
  • 122. Raso, J., & Barbosa-Canovas, G. V., (2003). Non-thermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, 43(3), 265-285.
  • 123. Rastogi, N. K., (2011). Opportunities and challenges in application of ultrasound in food processing. Critical Reviews in Food Science and Nutrition, 51(8), 705-722.
  • 124. Sadeghi, E., Akliondzadeh- Basti, A., Noori, N., Khanjari, A. L. I., & Partovi, R., (2013). Effect of Cuminum cyminum L. essential oil and Lactobacillus acidophilus (a probiotic) on Staphylococcus aureus during the manufacture, ripening and storage of white brined cheese. Journal of Food Processing and Preservation, 37(5), 449-455.
  • 125. Sango, D. M., Abela, D., McElhatton, A., & Valdramidis, V. P., (2014). Assisted ultrasound applications for the production of safe foods. Journal of Applied Microbiology/, 116(5), 1067-1083.
  • 126. Schirmer, В. C., & Langsrud, S., (2010). A dissolving Co, headspace combined with organic acids prolongs the shelf-life of fresh pork. Meat Science, 85(2), 280-284.
  • 127. Severino, R., Ferrari, G., Dang, K., & Donsi, F., (2015). Antimicrobial Effects of Modified Chitosan-Based Coating Containing Nano-Emulsion of EssentiaI Oils, Modified Atmosphere Packaging and Gamma Irradiation Against Escherichia coli 0157: H7 and Salmonella Typhimurium on Green Beans, 50, 215-222.
  • 128. Severino, R., Vu, K. D., Donsi, F., Salmieri, S., Ferrari, G., & Lacroix, M., (2014). Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. International Journal of Food Microbiology, 191, 82-88.
  • 129. Siroli, L., Braschi, G., deJong, A., Kok, J., Patrignani, F., & Lanciotti, R., (2018). Transcriptomic approach and membrane fatty acid analysis to study the response mechanisms of Escherichia coli to thyme essential oil, carvacrol, 2-(E)-hexanal and citral exposure. Journal of Applied Microbiology, 125(5), 1308-1320.
  • 130. Smith-Palmer, A., Stewart, J., & Fyfe, L., (2001). The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiology’, 18(4), 463-470.
  • 131. Solomakos, N., Govaris, A., ICoidis, P., & Botsoglou, N., (2008). The antimicrobial effect of thyme essential oil, nisin and their combination against Escherichia coli 0157:H7 in minced beef during refrigerated storage. Meat Science, 80(2), 159-166.
  • 132. Somolinos, M., Garcia, D., Condon, S., Mackey, B., & Pagan, R., (2010). Inactivation of Escherichia coli by citral. Journal of Applied Microbiology’, 108(6), 1928-1939.
  • 133. Somolinos, M., Garda, D., Pagan, R., & Mackey, B., (2008). Relationship between sub lethal injury and microbial inactivation by the combination of high hydrostatic pressure and tert-butyl hydroquinone. Applied and Environmental Microbiology, 74(24), 7570-7577.
  • 134. Souza, E. L. D., Barros, J. C. D., Concei9ao, M. L. D., Gomes, N. N. J., & Costa, A. С. V. D., (2009). Combined application of Origanum vulgare L. essential oil and acetic acid for controlling the growth of Staphylococcus aureus in foods. Brazilian Journal of Microbiology', 40(2), 387-393.
  • 135. Sow, L. C., Tirtawinata, F., Yang, H., Shao, Q., & Wang, S., (2017). Carvacrol nanoemulsion combined with acid electrolyzed water to inactivate bacteria, yeast in vitro and native microflora on shredded cabbages. Food Control, 76, 88-95.
  • 136. Stojanovic-Radic, Z., Pejcic, M., Jokovic, N., & Jokanovic, M., (2018). Inhibition of Salmonella enteritidis growth and storage stability in chicken meat treated with basil and rosemary essential oils alone or in combination. Food Control, 90, 332-343.
  • 137. Tajik, H., Naghili, H., Ghasemmahdi, H., Moradi, M., & Badali. A., (2015). Effects of Zataria multiflora boiss essential oil, ultraviolet radiation and their combination on Listeria monocytogenes biofilm in a simulated industrial model. International Journal of Food Science & Technology, 50(9), 2113-2119.
  • 138. Tawema, P., Han, J., Vu, K. D., Salmieri, S., & Lacroix, M., (2016). Antimicrobial effects of combined UV-C or gamma radiation with natural antimicrobial formulations against Listeria monocytogenes, Escherichia coli 0157: H7, and total yeasts/molds in fresh cut cauliflower. LWT-Food Science and Technology’, 65, 451-456.
  • 139. Torpol, K., Wiriyacharee, P, Sriwattana, S., Sangsuwan, J., & Prinyawiwatkul, W, (2018). Antimicrobial activity of garlic (Allium sativum L.) and holy basil (Ocimum sanctum L.) essential oils applied by liquid vs. vapor phases. International Journal of Food Science and Technology’, 53(9), 2119-2128.
  • 140. Turgis, M., Han, J., Millette, M., Sahnieri, S., Borsa, J., & Lacroix, M., (2009). Effect of selected antimicrobial compounds on the radiosensitization of Salmonella Typhi in ground beef. Letters in Applied Microbiology, 48(6), 657-662.
  • 141. Ultee, A., Bennik, M. H. J., & Moezelaar, R., (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561-1568.
  • 142. Ultee, A., Slump, R. A., Steging, G., & Smid, E. J., (2000). Antimicrobial activity of carvacrol toward Bacillus cereus on rice. Journal of Food Protection, 63(5), 620-624.
  • 143. Valero, M., & Frances, E., (2006). Synergistic bactericidal effect of carvacrol, cinnamaldehyde or thymol and refrigeration to inhibit Bacillus cereus in carrot broth. Food Microbiology, 23(1), 68-73.
  • 144. Viazis, S., Akhtar, M., Feirtag, J., & Diez-Gonzalez, F., (2011). Reduction of Escherichia coli 0157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiology’, 25(1), 149-157.
  • 145. Wang, L. H., Zhang, Z. H„ Zeng. X. A., Gong, D. M., & Wang, M. S„ (2017). Combination of microbiological, spectroscopic, and molecular docking teclmiques to study the antibacterial mechanism of thymol against Staphylococcus aureus : Membrane damage and genomic DNA binding. Analytical and Bioanalytical Chemistry, 409(6), 1615-1625.
  • 146. Xavier, V. B., Vargas, R. M. F., Cassel, E., Lucas, A. M., Santos, M. A., Mondin, C. A., Santarem, E. R., et al., (2011). Mathematical modeling for extraction of essential oil from Baccharis spp. by steam distillation. Industrial Crops and Products, 33(3), 599-604.
  • 147. Yamazaki, K., Yamamoto, T., Kawai, Y., & Inoue, N., (2004). Enhancement of anti- listerial activity of essential oil constituents by nisin and diglycerol fatty acid ester. Food Microbiology, 21(3), 283-289.
  • 148. Yemi, P. G., Pagotto, F., Bach, S., & Delaquis, P, (2011). Effect of vanillin, ethyl vanillin, and vanillic acid on the growth and heat resistance of Cronobacter species. Journal of Food Protection, 74(12), 2062-2069.
  • 149. Yoon, J. I., Bajpai, V. K., & Kang, S. C., (2011). Synergistic effect of nisin and cone essential oil of Metasequoia glyptostroboides Miki ex Hu against Listeria monocytogenes in milk samples. Food and Chemical Toxicology’, 49(1), 109-114.
  • 150. Yuste, J., & Fung, D. Y. C., (2004). Inactivation of Salmonella typhimurium and Escherichia coli 0157:H7 in apple juice by a combination of nisin and cinnamon. Journal of Food Protection, 67(2), 371-377.
  • 151. Zhao, X., Shi, C„ Meng, R., Liu, Z„ Huang, Y„ Zhao, Z„ & Guo, N„ (2016). Effect of nisin and perilla oil combination against Listeria monocytogenes and Staphylococcus aureus in milk. Journal of Food Science and Technology, 53(6), 2644-2653.
  • 152. Zhou, F„ Ji. B„ Zhang, H„ Jiang, H„ Yang, Z„ Li, J., Ren, Y„ & Yan, W„ (2007). Synergistic effect of thymol and carvacrol combined with chelators and organic acids against Salmonella typhimurium. Journal of Food Protection, 70(1), 1704-1709.
  • 153. Zouhir, A. M., Klieadr, E., Tahiri, I., Benhamida, J., & Fliss, I., (2008). Combination with plant extracts improves the inhibitory action of divergicinM35 against Listeria monocytogenes. Journal of Food Quality, 37(1), 13-33.
 
Source
< Prev   CONTENTS   Source   Next >