Hurricane Sandy

In October 2012, Hurricane Sandy advanced toward the eastern seaboard of the United States. At the time of landfall near Atlantic City, New Jersey (NJ) on October 29, Hurricane Sandy measured over 1,770 km in wind field diameter and was classified as a post-tropical storm (NOAA 2012; Blake et al. 2013). Combining with a nor'easter, Hurricane Sandy affected 17 states, producing storm surges of up to 2.6 m, high precipitation including nearly 1 m of snow in areas of Maryland and West Virginia, and over 8.5 million households without power (Department of Energy 2012; Blake et al. 2013; US Geological Survey 2013).

Multiple dimensions of Sandy have required – and continue to require – tactical interdisciplinary science to support response efforts. Atmospheric scientists and meteorologists played a critical role in monitoring and assessing the formation and evolution of Sandy as it moved through the Caribbean, making landfall in Cuba before slowly progressing northward to pick up speed again before making its second landfall in New Jersey (Blake et al. 2013). Hydrologists deployed over 150 stream gauges to monitor storm surge while oceanographers evaluated potential damage to protective dunes and barrier islands (US Geological Survey 2013). In the aftermath of the storm, engineers were called upon to assess structural damage caused by flooding and wind. Public health experts, toxicologists, and chemists continue to assess health threats posed by mold in flooded houses, asbestos released from destroyed buildings, and other contaminants mobilized during fires that broke out during the storm.

Beginning days before Sandy's landfall and during the storm, social science efforts focused on providing necessary psychological and mental health services to the affected region. FEMA and American Red Cross deployed mental health professionals to the area days before the storm in preparation for supporting the citizens of the affected area. In the aftermath of the storm, multiple organizations launched social science studies to assess different dimensions – ranging from post-traumatic stress to the use of social media – of the storm's impacts on the social fabric of the region. FEMA awarded $82 million to the state of New York to “deliver immediate mental health outreach, crisis, and education services” to 200,000 individuals in the region through its Immediate Services Crisis Counseling Assistance and Training Program (Sederer 2012). The Pew Research Center Project for Excellence in Journalism analyzed the public's use of social media from October 29–31, 2012 to examine how individuals interacted with one another and with news and information. The study found that “fully 34 % of the Twitter discourse about the storm involved news organizations providing content, government sources offering information, people sharing… eye witness accounts, and still more passing along information posted by others” (Pew Research Center's Project for Excellence in Journalism 2013). At the organizational scale, one study examined the development of new partnerships in disaster relief operations, using Sandy as a case study and showing that 66 % of the partnerships that were relied on during Sandy response were new (Coles and Zhuang 2013). Other ongoing social science studies have examined how volunteer organizations have played a critical role in stabilizing communities, and how the mental and physical stress of disruption and displacement may impact local citizens and health care providers.

In the aftermath of Hurricane Sandy, strategic science was used to support recovery efforts. In January 2013, the Secretary of the Interior directed the Strategic Sciences Group (SSG, formerly the Strategic Sciences Working group described above) to stand up a crisis science team to support the Department's role on the cabinet-level Hurricane Sandy Rebuilding Task Force. In response, the SSG assembled a team of experts from government, academia, and non-governmental institutions to develop scenarios for the Task Force. The team was to examine the shortand long-term impacts of Hurricane Sandy and future major storms (such as another major hurricane) on the ecology, economy, and people of the affected New York/ New Jersey region.

The SSG's Operational Group Sandy identified 13 primary or “first-tier” consequences of Sandy on coastal communities and ecosystems – from ecological change and changes in coastal geomorphology to altered storm preparedness and response activity and altered perception of risk (Department of the Interior 2013). Together, these consequences and their cascading consequences span a broad and complex range of environmental, economic, and social effects. Similar to the work completed during the Deepwater Horizon oil spill, the Hurricane Sandy scenarios used the human ecosystem model as an organizing framework; the scenarios are interdisciplinary and the impacts on the environment, infrastructure, and society are integrated throughout the scenarios.

One example of the SSG's work is shown in Fig. 3.3, which illustrates the cascading consequences resulting from Hurricane Sandy's flood damage to the built environment. This chain of consequences shows multiple dimensions of this damage, including the creation of hazardous and non-hazardous debris, new challenges in transportation, and downstream impacts to the local economy.

Using the results of the scenario, the SSG identified potential interventions, defined as institutional actions that support recovery and increase the resilience of the coupled human-natural system to future storms. The 17 interventions included several recommendations to bolster research in different areas, including ecosystem services, environmental contamination, social services, and risk education and communication (Department of the Interior 2013).

Fig. 3.3 Example chain of consequences from the SSG's Hurricane Sandy scenarios, showing the cascading consequences resulting from flood damage to the built environment in coastal communities. The numbers in the figure reflect the uncertainties associated with each consequence, with 5 being certain and lower numbers reflecting less certainty (Department of the Interior 2013)

< Prev   CONTENTS   Next >