Where to look for further information

  • • Congress on Gastrointestinal Function: https://www.congressgastro function.org/.
  • • Czerkawski, J. W. An Introduction to Rumen Studies. Pergamon Press. Exeter, UK.
  • • Greenhouse Gases and Animal Agriculture Conference: http://www. ggaa2019.org/.
  • • International Symposium on Ruminant Physiology: https://www.isrp2019. com/.
  • • Rumen Microbial Genomics Network: http://www.rmgnetwork.org/.
  • • RuminOmics project: http://www.ruminomics.eu/.
  • • Russell, J. B. 2002. Rumen Microbiology and Its Role in Ruminant Nutrition. James B. Russell, Ithaca, NY. https://www.ars.usda.gov/research/software/ download/?softwareid=409
  • • Russell, J. B. and Wallace, R. J. 1997. Energy-yielding and energy-consuming reactions. In: Hobson, P. N. and Stewart, C. S. (Eds), The Rumen Microbial Ecosystem (2nd edn.). Blackie Academic & Professional, London, UK.
  • • Rowett-INRA Conference: https://fems-microbiology.Org/opportunities/1 1th-rowett-inra-conference-gut-microbiology-no-longer-forgotten-organ- 11-14-june-2018-uk/.


Allen, M. S„ Bradford, B. J. and Oba, M. 2009. Board-invited review: the hepatic oxidation theory of the control of feed intake and its application to ruminants. Journal of Animal Science 87(10), 3317-34. doi:10.2527/jas.2009-1779.

Asanuma, N. and Hino, T. 2000. Activity and properties of fumarate reductase in ruminal bacteria. Journal of General and Applied Microbiology 46(3), 119-25. doi: 10.2323/ jgam.46.119.

Asanuma, N.. Iwamoto, M. and Hino, T. 1999a. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. Journal of Dairy Science 82(4), 780-7. doi: 10.3168/jds.S0022-0302(99)75296-3.

Asanuma, N., Iwamoto, M. and Hino, T. 1999b. The production of formate, a substrate for methanogenesis, from compounds related with the glyoxylate cycle by mixed ruminal microbes. Animal Science Journal 70(2), 67-73. doi:10.2508/chikusan.70.67.

Asanuma, N., Kawato, M., Ohkawara, S. and Hino, T. 2003. Characterization and transcription of the genes encoding enzymes involved in butyrate production in Butyrivibrio fibrisolvens. Current Microbiology 47(3), 203-7. doi: 10.1007/ S00284-002-3976-2.

Atasoglu, C„ Valdes, C„ Walker, N. D., Newbold, C. J. and Wallace, R. J. 1998. De novo synthesis of amino acids by the ruminal bacteria Prevotella bryantii B14, Selenomonas ruminantium HD4, and Streptococcus bovis ES1. Applied and Environmental Microbiology 64(8), 2836-43. doi:10.1128/AEM.64.8.2836-2843.1998.

Atasoglu, C, Newbold, C. J. and Wallace, R. J. 2001. Incorporation of [15N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succ/nogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17 .Applied and Environmental Microbiology 67(6), 2819-22. doi:10.1128/AEM.67.6.2819-2822.2001.

Avila, J. S., Chaves, A. V., Hernandez-Calva, M., Beauchemin, K. A., McGinn, S. M., Wang, Y., Harstad, О. M. and McAllister, T. A. 2011. Effects of replacing barley grain in feedlot diets with increasing levels of glycerol on in vitro fermentation and methane production. Animal Feed Science and Technology 166-167, 265-8. doi: 10.1016/j. anifeedsci.2011.04.016.

Bauchop, T. 1967. Inhibition of rumen methanogenesis by methane analogues. Journal of Bacteriology 94(1), 171-5. doi:10.1128/JB.94.1.171 -175.1967.

Bauchop, T. and Elsden, S. R. 1960. The growth of micro-organisms in relation to their energy supply. Journal of General Microbiology 23, 457-69. doi: 10.1099/00221287-23-3-457.

Bauchop, T. and Mountfort, D. O. 1981. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Applied and Environmental Microbiology 42(6), 1103-10. doi :10.1128/AEM.42.6.1103-1110.1981.

Beauchemin, K. A., Kreuzer, M., O'Mara, F. and McAllister, T. A. 2008. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture 48(2), 21-7. doi: 10.1071/EA07199.

Bergner, H., Kijora, C, Ceresnakova, Z. and Szakacs, J. 1995. In vitro studies on glycerol transformation by rumen microorganisms. Archiv fur Tierernahrung 48(3), 245-56. doi:10.1080/17450399509381845.

Bond, D. R. and Russell, J. B. 1996. A role for fructose 1,6-diphosphate in the ATPase- mediated energy-spilling reaction of Streptococcus bovis. Applied and Environmental Microbiology 62(6), 2095-9. doi: 10.1128/AEM.62.6.2095-2099.1996.

Bond, D. R.,Tsai, В. M. and Russell, J. B. 1998. The diversion of lactose carbon through the tagatose pathway reduces the intracellular fructose 1,6-bisphosphate and growth rate of Streptococcus bovis. Applied Microbiology and Biotechnology 49(5), 600-5. doi: 10.1007/s002530051220.

Broderick, G. A., Huhtanen, P„ Ahvenjarvi, S., Reynal, S. M. and Shingfield, K. J. 2010. Quantifying ruminal nitrogen metabolism using the omasal sampling technique in cattle-a meta-analysis. Journal of Dairy Science 93(7), 3216-30. doi:10.3168/ jds.2009-2989.

Buckel, W. and Thauer, R. K. 2013. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(*) translocating ferredoxin oxidation. Biochimica et Biophysica Acta 1827(2), 94-113. doi:10.1016/j.bbabio.2012.07.002.

Buckel, W. and Thauer, R. K. 2018a. Flavin-based electron bifurcation, a new mechanism of biological energy coupling. Chemical Reviews 118(7), 3862-86. doi:10.1021/acs. chemrev.7b00707.

Buckel, W. and Thauer, R. K. 2018b. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD" (Rnf) as electron acceptors: a historical review. Frontiers in Microbiology 9, 401. doi:10.3389/ fmicb.2018.00401.

Cabezas-Garcia, E. H., Krizsan, S. J., Shingfield, K. J. and Fluhtanen, P. 2017. Between- cow variation in digestion and rumen fermentation variables associated with methane production. Journal of Dairy Science 100(6), 4409-24. doi:10.3168/ jds.2016-12206.

Clapperton, J. L. 1974. The effect of trichloroacetamide, chloroform and linseed oil given into the rumen of sheep on some of the end-products of rumen digestion. British Journal of Nutrition 32(1), 155-61. doi:10.1079/bjn 19740065.

Cole, N. A. and McCroskey, J. E. 1975. Effects of hemiacetal of chloral and starch on the performance of beef steers. Journal of Animal Science 41(6), 1735-41. doi: 10.2527/ jasl 975.4161735x.

Cole, N. A. and Todd, R. W. 2008. Opportunities to enhance performance and efficiency through nutrient synchrony in concentrate-fed ruminants. Journal of Animal Science 86(14 Suppl.), E318-33. doi:10.2527/jas.2007-0444.

Collins, R. M. and Pritchard, R. H. 1992. Alternate day supplementation of corn stalk diets with soybean meal or corn gluten meal fed to ruminants. Journal of Animal Science 70(12), 3899-908. doi:10.2527/1992.70123899x.

Czerkawski, J. W. 1986. An Introduction to Rumen Studies. Pergamon Press, Exeter, UK.

Czerkawski, J. W. and Breckenridge, G. 1975. New inhibitors of methane production by rumen micro- organisms. Experiments with animals and other practical possibilities. British Journal of Nutrition 34(3), 447-57. doi: 10.1017/s0007114575000505.

Chen, M. and Wolin, M. J. 1977. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Applied and Environmental Microbiology 34(6), 756-9. doi: 10.1128/ AEM.34.6.756-759.1977.

Chowdhury, N. P, Kahnt, J. and Buckel, W. 2015. Reduction of ferredoxin or oxygen by flavin-based electron bifurcation in Megasphaera elsdenii. The FEBS Journal 282(16), 3149-60. doi:10.1111/febs.13308.

Chung, K.T. 1976. Inhibitory effects of H, on growth of Clostridium cellobioparum. Applied and Environmental Microbiology 31(3), 342-8. doi: 10.1128/AEM.31.3.342-348.1976.

Davies, A., Nwaonu, H. N.. Stanier, G. and Boyle, F. T. 1982. Properties of a novel series of inhibitors of rumen methanogenesis; in vitro and in vivo experiments including growth trials on 2,4-bis (trichloromethyl)-benzo [1, 3]dioxin-6-carboxylic acid. The British Journal of Nutrition 47(3), 565-76. doi:10.1079/bjn19820068.

De Vries, W., Van Wyck-Kapteyn, W. M. and Stouthamer, A. H. 1973. Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. Journal of General Microbiology 76(1), 31-41. doi:10.1099/00221287-76-1 -31.

Dijkstra, J., Boer, H., Van Bruchem, J., Bruining, M. and Tamminga, S. 1993. Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume. The British Journal of Nutrition 69(2), 385-96. doi:10.1079/bjn 19930041.

Ebrahimi, S. H., Mohinia, M., Singhala, К. K., Miria, V. H. and Tyagi, A. K. 2011. Evaluation of complementary effects of 9,10-anthraquinone and fumaric acid on methanogenesis and ruminal fermentation in vitro. Archives of Animal Nutrition 65(4), 267-77. doi: 10 .1080/1745039x.2011.594345.

Eckard, R. J., Grainger, C. and De Klein, С. A. M. 2010. Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Science 130(1-3), 47-56. doi:10.1016/j.livsci.2010.02.010.

Enzmann, F., Mayer, F., Rother, M. and Holtmann, D. 2018. Methanogens: biochemical background and biotechnological applications. AMB Express 8(1), 1-. doi: 10.1186/ s13568-017-0531-x.

Farmer, C. G., Woods, В. C., Cochran, R. C., Heldt, J. S., Mathis, C. P., Olson, К. C., Titgemeyer, E. C. and Wickersham, T. A. 2004. Effect of supplementation frequency and supplemental urea level on dormant tallgrass-prairie hay intake and digestion by beef steers and prepartum performance of beef cows grazing dormant tallgrass- prairie. Journal of Animal Science 82(3), 884-94, doi:10.2527/2004.823884x.

Firkins, J. L„ Yu, Z. and Morrison, M. 2007. Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy. Journal of Dairy Science 90(Suppl. 1), E1-E16. doi:10.3168/jds.2006-518.

Geier, R. R., Kwon, I. H., Сапп, I. K. and Mackie, R. I. 2016. Interspecies hydrogen transfer and its effects on global transcript abundance in Ruminococcus albus, a predominant fiber-degrading species in the rumen. The FASEB Journal 30, 1102.1-.

Gill, M., Siddons, R. C., Beever, D. E. and Rowe, J. B. 1986. Metabolism of lactic acid isomers in the rumen of silage-fed sheep. The British Journal of Nutrition 55(2), 399- 407. doi:10.1079/bjn 19860046.

Greening, C., Geier, R., Wang, C., Woods, L. C., Morales, S. E„ Mcdonald, M. J., Rushton- Green, R„ Morgan, X. C„ Koike, S., Leahy, S. C., Kelly, W. J., Сапп, I., Attwood, G. T., Cook, G. M. and Mackie, R. I. 2019. Diverse hydrogen production and consumption pathways influence methane production in ruminants. The ISME Journal 13(10), 2617-32. doi:10.1038/s41396-019-0464-2.

Guo, W. S„ Schaefer, D. M., Guo, X. X., Ren, L. P. and Meng, Q. X. 2009. Use of nitrate- nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. Asian-Australasian Journal of Animal Sciences 22(4), 542-9. doi:10.5713/ajas.2009.80361.

Hackmann, T. J. and Firkins, J. L. 2015a. Electron transport phosphorylation in rumen butyrivibrios: unprecedented ATP yield for glucose fermentation to butyrate. Frontiers in Microbiology 6, 622. doi: 10.3389/fmicb.2015.00622.

Flackmann.T. J. and Firkins, J. L. 2015b. Maximizing efficiency of rumen microbial protein production. Frontiers in Microbiology 6, 465. doi:10.3389/fmicb.2015.00465.

Plackmann, T. J., Diese, L. E. and Firkins, J. L. 2013a. Quantifying the responses of mixed rumen microbes to excess carbohydrate. Applied and Environmental Microbiology 79(12), 3786-95. doi:10.1128/AEM.00482-13.

Plackmann, T. J., Keyser, B. L. and Firkins, J. L. 2013b. Evaluation of methods to detect changes in reserve carbohydrate for mixed rumen microbes. Journal of Microbiological Methods 93(3), 284-91. doi: 10.1016/j.mimet.2013.03.025.

Plackmann, T. J., Ngugi, D. K„ Firkins, J. L. and Tao, J. 2017. Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids. Environmental Microbiology 19(11), 4670-83. doi: 10.1111/1462-2920.13929.

Flail, M. B. and Huntington, G. B. 2008. Nutrient synchrony: sound in theory, elusive in practice. Journal of Animal Science 86(14) (Suppl.), E287-92. doi:10.2527/ jas.2007-0516.

Hall, M. B., Nennich, T. D., Doane, P. H. and Brink, G. E. 2015. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo. Journal of Dairy Science 98(6), 3988-99. doi:10.3168/ jds.2014-8854.

Hamar, D. and Borchers, R. 1967. Glycolytic pathway in rumen microorganisms. Journal of Animal Science 26(3), 654-7. doi:10.2527/jas1967.263654x.

Harfoot, C. G. and Hazlewood, G. P. 1997. Lipid metabolism in the rumen. In: Hobson, P. N. and Stewart, C. S. (Eds), The Rumen Microbial Ecosystem. Blackie Academic & Professional, London, UK, pp. 382-426.

Hartinger, T„ Gresner, N. and Sudekum, К. H. 2018. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. Journal of Animal Science and Biotechnology 9, 33. doi: 10.1186/s40104-018-0249-x. Henderson, C. 1980. The influence of extracellular hydrogen on the metabolism of Bacteroides rurninicola, Anaerovibrio lipolytica and Selenomonas ruminantiurn. Journal of General Microbiology 119(2), 485-91. doi: 10.1099/00221287-119-2-485. Henderson, G„Cox, F.,Ganesh,S., Jonker, A., Young, W., Global Rumen Census, C.,Abecia, L„ Angarita, E., Aravena, P„ Nora Arenas, G., Ariza, C., Attwood, G. T., Mauricio Avila,

J. , Avila-Stagno, J., Bannink, A., Barahona, R., Batistotti, M., Bertelsen, M. F., Brown- Kav, A., Carvajal, A. M., Cersosimo, L„ Vieira Chaves, A., Church, J., Clipson, N., Cobos-Peralta, M. A., Cookson, A. L., Cravero, S., Cristobal Carballo, O., Crosley, K., Cruz, G„ Ceron Cucchi, M., De La Barra, R., De Menezes, A. B., Detmann, E., Dieho,

K. , Dijkstra, J., Dos Reis, W. L. S., Dugan, M. E. R., Hadi Ebrahimi, S„ Eythorsdottir, E., Nde Fon, F., Fraga, M„ Franco, F., Friedeman, C., Fukuma, N„ Gagic, D., Gangnat,

  • 1., Javier Grilli, D., Guan, L. L., Heidarian Miri, V., Hernandez-Sanabria, E., Gomez, A. X. I., Isah, O. A., Ishaq, S„ Jami, E., Jelincic, J., Kantanen, J., Kelly, W. J., Kim, S.-H., Klieve, A., Kobayashi, Y., Koike, S„ Kopecny, J., Nygaard Kristensen, T„ Julie Krizsan,
  • 5., Lachance, H„ Lachman, M., Lamberson, W. R„ Lambie, S., Lassen, J., Leahy, S. C, Lee, S.-S., Leiber, F., Lewis, E., Lin, B., Lira, R., Lund, P, Macipe, E., Mamuad, L. L., Cuquetto Mantovani, H., Marcoppido, G. A., Marquez, C., Martin, C., Martinez, G., Eugenia Martinez, M., Lucia Mayorga, O., Mcallister, T. A., McSweeney, C., Mestre, L., Minnee, E., Mitsumori, M., Mizrahi, I., Molina, I., Muenger, A., Munoz, C, Murovec, B., Newbold, J., Nsereko, V, O'Donovan, M., Okunade, S„ et al. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports 5, 14567.

Hersom, M. J. 2008. Opportunities to enhance performance and efficiency through nutrient synchrony in forage-fed ruminants. Journal of Animal Science 86(14 Suppl.), E306-17. doi:10.2527/jas.2007-0463.

Hino, T. and Russell, J. B. 1985. Effect of reducing-equivalent disposal and NADH/NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts. Applied and Environmental Microbiology 50(6), 1368-74. doi: 10.1128/ AEM.50.6.1368-1374.1985.

Hristov, A. N., Oh, J., Giallongo, F„ Frederick, T. W., Harper, M. T., Weeks, H. L., Branco, A. F., Moate, P. J., Deighton, M. H., Williams, S. R„ Kindermann, M. and Duval, S. 2015. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Acadademy of Sciences of the United States of America 112(34), 10663-8. doi: 10.1073/ pnas.1504124112.

Hungate, R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. Archiv fur Mikrobiologie 59(1), 158-64. doi: 10.1007/bf00406327.

Hungate, R. E., Smith, W., Bauchop, T., Yu, I. and Rabinowitz, J. C. 1970. Formate as an intermediate in the bovine rumen fermentation. Journal of Bacteriology 102(2), 389- 97. doi: 10.1128/JB. 102.2.389-397.1970.

Huston, J. E„ Lippke, H., Forbes, T. D. A., Holloway, J. W. and Machen, R. V. 1999. Effects of supplemental feeding interval on adult cows in western Texas. Journal of Animal Science 77(11), 3057-67. doi:10.2527/1999.77113057x.

Isaacson, H. R., Hinds, F. C„ Bryant, M. P. and Owens, F. N. 1975. Efficiency of energy utilization by mixed rumen bacteria in continuous culture. Journal of Dairy Science 58(11), 1645-59. doi:10.3168/jds.S0022-0302(75)84763-1.

Janssen, P. H.2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology 160(1-2), 1-22. doi:10.1016/j.anifeedsci. 2010.07.002.

Jenkins, T. C, Wallace, R. J., Moate, P. J. and Mosley, E. E. 2008. Board-invited review: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science 86(2), 397-412. doi: 10.2527/ jas.2007-0588.

Jeong, H. S„ Kim, H. Y., Ahn, S. H., Oh, S. C, Yang, I. and Choi, I. G. 2014. Optimization of enzymatic hydrolysis conditions for extraction of pectin from rapeseed cake (Brassica napus L.) using commercial enzymes. Food Chemistry 157, 332-8. doi: 10.1016/j. foodchem.2014.02.040.

Johnson, D. E. 1972. Effects of a hemiacetal of chloral and starch on methane production and energy balance of sheep fed a pelleted diet. Journal of Animal Science 35(5), 1064-8. doi: 10.2527/jas1972.3551064x.

Johnson, D. E. 1974. Adaptational responses in nitrogen and energy balance of lambs fed a methane inhibitor. Journal of Animal Science 38(1), 154-7. doi:10.2527/ jas1974.381154x.

Johnson, K. A. and Johnson, D. E. 1995. Methane emissions from cattle. Journal of Animal Science 73(8), 2483-92. doi: 10.2527/1995.7382483x.

Jouany, J.-P. and Thivend, P. 1972a. Evolution postprandiale de la composition glucidique des corps microbiens du rumen en fonction de la nature des glucides du regime. I.

- les protozoaires. Annales de BiologieAnimale Biochimie Biophysique 12(4), 673-7. doi:10.1051/rnd: 19720414.

Jouany, J.-P. and Thivend, P. 1972b. Evolution postprandiale de la composition glucidique des corps microbiens du rumen en fonction de la nature des glucides du regime. II.

- les bacteries. Annales de Biologie Animale Biochimie Biophysique 12(4), 679-83. doi: 10.1051/rnd: 19720415.

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research 45(D1), D353-61. doi:10.1093/nar/gkw1092.

Kelly, W. J., Leahy, S. C., Altermann, E., Yeoman, C. J., Dunne, J. C., Kong, Z., Pacheco, D. M., Li, D„ Noel, S. J., Moon, C. D., Cookson, A. L. and Attwood, G.T. 2010.The glycobiome of the rumen bacterium Butyrivibrio proteoclasticus B316(T) highlights adaptation to a polysaccharide-rich environment. PLoS ONE 5(8), e11942. doi: 10.1371/journal. pone.0011942.

Kennedy, P. M. and Milligan, L. P. 1978. Effects of cold exposure on digestion, microbial synthesis and nitrogen transformations in sheep. The British Journal of Nutrition 39(1), 105-17. doi: 10.1079/bjn 19780017.

Kim, S. H„ Mamuad, L. L„ Kim, D. W., Kim, S. K. and Lee, S. S. 2016. Fumarate reductase- producing enterococci reduce methane production in in vitro rumen fermentation. Journal of Microbiology and Biotechnology 26(3), 558-66. doi:10.4014/ jmb.1512.12008.

Kohn, R. and Boston, R. 2000. The role of thermodynamics in controlling rumen metabolism. In: McNamara, J. P, France, J. and Beever, D. E. (Eds), Modelling Nutrient Utilization in Farm Animals. CABI, Wallingford, UK, pp. 11 -24.

Kroger, A,, Biel, S., Simon, J., Gross, R., Unden, G. and Lancaster, C. R. D. 2002. Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. Biochimica et Btophysica Acta 1553(1-2), 23-38. doi:10.1016/ s0005-2728(01 >00234-1.

Krueger, N. A., Anderson, R. C., Tedeschi, L. O., Callaway, T. R., Edrington, T. S. and Nisbet, D. J. 2010. Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro. Bioresource Technology 101(21), 8469-72. doi: 10.1016/j.biortech.2010.06.010.

Leedle, J. A., Bryant, M. P. and Hespell, R. B. 1982. Diurnal variations in bacterial numbers and fluid parameters in ruminal contents of animals fed low- or high- forage diets. Applied and Environmental Microbiology 44(2), 402-12. doi: 10.1128/ AEM.44.2.402-412.1982.

Leng, R. A. 2014. Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation. Animal Production Science 54(5), 519-43. doi:10.1071/AN13381.

Le Van,T. D„ Robinson, J. A., Ralph, J., Greening, R. C., Smolenski, W. J., Leedle, J. A. Z. and Schaefer, D. M. 1998. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis. Applied and Environmental Microbiology 64(9), 3429-36. doi:10.1128/AEM.64.9.3429-3436.1998.

Lopes, J. C., de Matos, L. F., Harper, M. T., Giallongo, F„ Oh, J., Gruen, D., Ono, S., Kindermann, M., Duval, S. and Hristov, A. N. 2016. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows. Journal of Dairy Science 99(7), 5335-44. doi:10.3168/ jds.2015-10832.

Lopez, S., McIntosh, F. M., Wallace, R.J. and Newbold.C.J. 1999. Effect of add ingacetogenic bacteria on methane production by mixed rumen microorganisms. Animal Feed Science and Technology 78(1-2), 1-9. doi: 10.1016/S0377-8401 (98)00273-9.

Lourenco, M., Ramos-Morales, E. and Wallace, R. J. 2010. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4(7), 1008-23. doi: 10.1017/S175173111000042X.

Lovendahl, P, Difford, G. F„ Li, B., Chagunda, M. G. G„ Huhtanen, P, Lidauer, M. H., Lassen, J. and Lund, P. 2018. Review: Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal 12(s2), s336-49. doi: 10.1017/ S1751731118002276.

Mamuad, L„ Kim, S. H., Jeong, C. D., Choi, Y. J., Jeon, C. O. and Lee, S. S. 2014. Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity. Journal of Microbiology 52(2), 120-8. doi:10.1007/ s12275-014-3518-1.

Marounek, M. and Petr, 0.1995. Fermentation of glucose and xylose in ruminal strains of Butyrivibrio fibrisolvens. Letters in Applied Microbiology 21(4), 272-6. doi: 10.1111/ j.1472-765x.1995.tb01058.x.

Martin, S. A. and Macy, J. M. 1985. Effects of monensin, pyromellitic diimide and 2-bromoethanesulfonic acid on rumen fermentation in vitro. Journal of Animal Science 60(2), 544-50. doi:10.2527/jas1985.602544x.

Martin, C., Morgavi, D. P. and Doreau, M. 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4(3), 351-65. doi: 10.1017/S1751731109990620.

Martinez-Fernandez, G., Abecia, L., Arco, A., Cantalapiedra-Hijar, G., Marti'n-Garci'a, A.

I., Molina-Alcaide, E., Kindermann, M., Duval, S. and Yanez-Ruiz, D. R. 2014. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. Journal of Dairy Science 97(6), 3790-9. doi:10.3168/jds.2013-7398.

Martinez-Fernandez,G., Denman, S. E., Yang, C., Cheung, J.,Mitsumori, M.and McSweeney,

C. S. 2016. Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Frontiers in Microbiology 7, 1122. doi:10.3389/fmicb.2016.01122.

Martinez-Fernandez, G., Denman, S. E„ Cheung, J. and McSweeney, C. S. 2017. Phloroglucinol degradation in the rumen promotes the capture of excess hydrogen generated from methanogenesis inhibition. Frontiers in Microbiology 8, 1871. doi:10.3389/fmicb.2017.01871.

Martinez-Fernandez, G., Duval, S., Kindermann, M., Schirra, H. J., Denman, S. E. and McSweeney, C. S. 2018. 3-NOP vs. Plalogenated compound: methane production, ruminal fermentation and microbial community response in forage fed cattle. Frontiers in Microbiology 9, 1582. doi: 10.3389/fmicb.2018.01582.

Marvin-Sikkema, F. D., Richardson, A. J., Stewart, C. S., Gottschal, J. C. and Prins, R. A. 1990. Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Applied and Environmental Microbiology 56(12), 3793-7. doi: 10.1128/ AEM. 56.12.3793-3797.1990.

Matte, A., Forsberg, C. W. and Gibbins, A. M. V. 1992. Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85. Canadian Journal of Microbiology 38(5), 370-6. doi: 10.1139/m92-063.

Matulova, M., Delort, A. M., Nouaille, R„ Gaudet, G. and Forano, E. 2001. Concurrent maltodextrin and cellodextrin synthesis by Fibrobacter succinogenes S85 as identified by 2D NMR spectroscopy. European Journal of Biochemistry 268(14), 3907-15. doi:10.1046/j. 1432-1327.2001,02300.x.

McAllan, A. B. and Smith, R. H. 1974. Carbohydrate metabolism in the ruminant. Bacterial carbohydrates formed in the rumen and their contribution to digesta entering the duodenum. The British Journal of Nutrition 31(1), 77-88. doi:10.1079/bjn19740010.

Miller, T. L. and Jenesel, S. E. 1979. Enzymology of butyrate formation by Butyrivibrio fibrisolvens .Journal of Bacteriology 138( 1 ),99-104. doi: 10.1128/JB.138.1.99-104.1979.

Mitsumori, M.,Matsui,H.,Tajima, K.,Shinkai,T.,Takenaka,A., Denman,S.E.and McSweeney, C. S. 2014. Effect of bromochloromethane and fumarate on phylogenetic diversity of the formyltetrahydrofolate synthetase gene in bovine rumen. Animal Science Journal = Nihon Chikusan Gakkaiho 85(1), 25-31. doi: 10.1111/asj. 12072.

Mohammed, N., Lila, Z. A., Ajisaka, N., Нага, K„ Mikuni, К., Нага, К., Kanda, S. and Itabashi, H. 2004. Inhibition of ruminal microbial methane production by p-cyclodextrin iodopropane, malate and their combination in vitro. Journal of Animal Physiology and Animal Nutrition 88(5-6), 188-95. doi:10.1111/j.1439-0396.2004.00456.X.

Montzka, S. A., Dlugokencky, E. J. and Butler, J. H. 2011. Non-СО, greenhouse gases and climate change. Nature 476(7358), 43-50. doi: 10.1038/naturel 0322.

Morgavi, D. P, Forano, E., Martin, C. and Newbold, C. J. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4(7), 1024-36. doi: 10.1017/


Moss, A. R„ Jouany, J.-P. and Newbold, J. 2000. Methane production by ruminants: its contribution to global warming. Annales de Zootechnie 49(3), 231-53. doi: 10.1051/ animres:2000119.

Nagaraja, T. G. and Titgemeyer, E. C. 2007. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. Journal of Dairy Science 90(Suppl. 1), E17- 38. doi:10.3168/jds.2006-478.

Nagaraja, T. G., Newbold, C. J., Van Nevel, C. J. and Demeyer, D. I. 1997. Manipulation of rumen fermentation. In: Hobson, P. N. and Stewart, C. S. (Eds), The Rumen Microbial Ecosystem (2nd edn.). Blackie Academic & Professional, London, UK, pp. 524-632.

Nelson, D. L. and Cox, M. M. 2017. Lehninger Principles of Biochemistry. W.H. Freeman, Macmillan Learning, New York.

Newbold, J. R. and Rust, S. R. 1992. Effect of asynchronous nitrogen and energy supply on growth of ruminal bacteria in batch culture. Journal of Animal Science 70(2), 538-46. doi:10.2527/1992.702538x.

Newbold, C. J., De La Fuente, G., Belanche, A., Ramos-Morales, E. and Mcewan, N. R. 2015. The role of ciliate protozoa in the rumen. Frontiers in Microbiology 6, 1313. doi: 10.3389/fmicb.2015.01313.

Nocek, J. E. and Russell, J. B. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. Journal of Dairy Science 71(8), 2070-107. doi:10.3168/jds. S0022-0302(88)79782-9.

Nolan, J. V., Hegarty, R. S„ Hegarty, J., Godwin, I. R. and Woodgate, R. 2010. Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep. Animal Production Science 50(8), 801-6. doi:10.1071/AN09211.

Nollet, L., Demeyer, D. I. and Verstraete, W. 1997. Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis. Applied and Environmental Microbiology 63(1), 194-200. doi:10.1128/AEM.63.1.194-200.1997.

Nouaille, R., Matulova, M., Delort, A. M. and Forano, E. 2005. Oligosaccharide synthesis in Fibrobacter succinogenes S85 and its modulation by the substrate. The FEBS Journal 272(10), 2416-27. doi:10.1111/j.1742-4658.2005.04662.X.

NRC. 2001. Nutrient Requirements of Dairy Cattle. National Research Council, Washington DC.

Offner, A. and Sauvant, D. 2006. Thermodynamic modeling of ruminal fermentations. Animal Research 55(5), 343-65. doi: 10.1051/animres:2006021.

Oldick, B. S„ Firkins, J. L. and Kohn, R. A. 2000. Compartmental modeling with nitrogen-15 to determine effects of degree of fat saturation on intraruminal N recycling. Journal of Animal Science 78(9), 2421-30. doi:10.2527/2000.7892421x.

Olijhoek, D. W., Hellwing, A. L. F., Brask, M., Weisbjerg, M. R., Hojberg, O., Larsen, M. K„ Dijkstra, J., Erlandsen, E. J. and Lund, P. 2016. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. Journal of Dairy Science 99(8), 6191-205. doi:10.3168/ jds.2015-10691.

Pavlostathis, S. G., Miller, T. L. and Wolin, M. J. 1990. Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Applied Microbiology and Biotechnology 33(1), 109-16. doi: 10.1007/BF00170581.

Pazur, J. H„ Shuey, E. W. and Georgi, С. E. 1958. The conversion of d-xylose into volatile organic acids by rumen bacteria. Archives of Biochemistry and Biophysics 77(2), 387-94. doi: 10.1016/0003-9861 (58)90086-9.

Petzel, J. P., Mcelwain, M. C, Desantis, D., Manolukas, J., Williams, M. V., Hartman, P. A., Allison, M. J. and Pollack, J. D. 1989. Enzymic activities of carbohydrate, purine, and pyrimidine metabolism in the Anaeroplasmataceae (class Mollicutes). Archives of Microbiology 152(4), 309-16. doi:10.1007/bf00425166.

Pol, A. and Demeyer, D. I. 1988. Fermentation of methanol in the sheep rumen. Applied and Environmental Microbiology 54(3), 832-4. doi: 10.1128/AEM.54.3.832-834.1988.

Preiss, J.and Romeo.T. 1990. Physiology, biochemistry and genetics of bacterial glycogen synthesis. In: Rose, A. H. and Tempest, D. W. (Eds), Advances in Microbial Physiology (vol. 30). Academic Press, pp. 183-238. doi:10.1016/s0065-2911(08)60113-7.

Roberton, A. M. and Glucina, P. G. 1982. Fructose 6-phosphate phosphorylation in Bacteroides species. Journal of Bacteriology 150(3), 1056-60. doi: 10.1128/ JB.150.3.1056-1060.1982.

Rooke, J. A., Wallace, R. J., Duthie, C. A., McKain, N., De Souza, S. M., Hyslop, J. J., Ross,

D. W., Waterhouse, T. and Roehe, R. 2014. Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. The British Journal of Nutrition 112(3), 398-407. doi: 10.1017/ S0007114514000932.

Russell, J. B. 1986. Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy. Journal of Bacteriology 168(2), 694-701. doi: 10.1128/jb.168.2.694-701.1986.

Russell, J. B. 1993. Effect of amino acids on the heat production and growth efficiency of Streptococcus bovis: balance of anabolic and catabolic rates. Applied and Environmental Microbiology 59(6), 1747-51. doi: 10.1128/AEM. 59.6.1747-1751.1993.

Russell, J. B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. Journal of Dairy Science 81(12), 3222-30. doi: 10.3168/jds.S0022-0302(98)75886-2.

Russell, J. B. 2002. Rumen Microbiology and Its Role in Ruminant Nutrition. James B. Russell, Ithaca, NY.

Russell, J. B. 2007a. Can the heat of ruminal fermentation be manipulated to decrease heat stress? Proceedings of the Southwest Nutrition Conference, pp. 109-15.

Russell, J. B. 2007b. The energy spilling reactions of bacteria and other organisms. Journal of Molecular Microbiology and Biotechnology 13(1-3), 1-11 .doi: 10.1159/000103591.

Russell, J. B. and Cook, G. M. 1995. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiological Reviews 59(1), 48-62. doi: 10.1128/ MMBR.59.1.48-62.1995.

Russell, J. B. and Jeraci, J. L. 1984. Effect of carbon monoxide on fermentation of fiber, starch, and amino acids by mixed rumen microorganisms in vitro. Applied and Environmental Microbiology 48(1), 211-7. doi:10.1128/AEM.48.1.211-217.1984.

Russell, J. B. and Martin, S. A. 1984. Effects of various methane inhibitors on the fementation of amino acids by mixed rumen microorganisms in vitro. Journal of Animal Science 59(5), 1329-38. doi: 10.2527/jas1984.5951329x.

Russell, J. B. and Wallace, R. J. 1997. Energy-yielding and energy-consuming reactions. In: Hobson, P. N. and Stewart, C. S. (Eds), The Rumen Microbial Ecosystem (2nd edn.). Blackie Academic & Professional, London, UK, pp. 246-82.

Satter, L. D. and Esdale, W. J. 1968. In vitro lactate metabolism by ruminal ingesta.Applied Microbiology 16(5), 680-8. doi:10.1128/AEM. 16.5.680-688.1968.

Sauer, F. D. and Teather, R. M. 1987. Changes in oxidation reduction potentials and volatile fatty acids production by rumen bacteria when methane synthesis is inhibited. Journal of Dairy Science 70(9), 1835-40. doi:10.3168/jds. S0022-0302(87)80222-9.

Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P, Canadell, J. G„ Dlugokencky,

E. J., Etiope, G„ Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S„ Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Bergamaschi, P, Blake, D. R., Brailsford, G., Brovkin, V., Bruhwiler, L., Crevoisier, C., Crill, P, Covey, K., Curry, C., Frankenberg, C., Gedney, N., Floglund-lsaksson, L., Ishizawa, M., Ito, A., Joos, F„ Kim, FI. S., Kleinen.T., Krummel, P, Lamarque, J. F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., Mcdonald, К. C„ Marshall, J., Melton, J. R., Morino,

I., Naik, V., O'Doherty, S„ Parmentier, F. W., Patra, P. K„ Peng, C„ Peng, S., Peters,

G. P, Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W. J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J., Spahni, R., Steele, P, Takizawa, A., Thornton, B. F., Tian,

H. , Tohjima, Y., Viovy, N., Voulgarakis, A., Van Weele, M., Van Der Werf, G. R., Weiss, R., Wiedinmyer, C„ Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, D„ Xu, X., Yoshida, Y., Zhang, B„ Zhang, Z. and Zhu, Q. 2016a. The global methane budget 2000-2012. Earth System Science Data 8(2), 697-751. doi:10.5194/essd-8-697-2016.

Saunois, M., Jackson, R. B., Bousquet, P, Poulter, B. and Canadell, J. G. 2016b. The growing role of methane in anthropogenic climate change. Environmental Research Letters 11 (12). doi: 10.1088/1748-9326/11 /12/120207.

Scardovi, V. 1965. The fructose-6-phosphate shunt as a peculiar pattern of hexose degradation in the genus Bifidobacterium. Annals of Microbiology and Enzymology 15, 19-29.

Scheller, H. V. and Ulvskov, P. 2010. Flemicelluloses. Annual Review of Plant Biology 61, 263-89. doi:10.1146/annurev-arplant-042809-112315.

Schoelmerich, M. C„ Katsyv, A., Donig, J., Hackmann, T. J., and Muller, V. 2019. Energy conservation involving 2 respiratory circuits. Proceedings of the National Academy of Sciences of the United States of America 117, 1167-73. doi:10.1073/ pnas.1914939117.

Schuchmann, K. and Muller, V. 2014. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nature Reviews. Microbiology 12(12), 809-21. doi: 10.1038/nrmicro3365.

Seeliger, S., Janssen, P. FI. and Schink, B. 2002. Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiology Letters 211(1), 65-70. doi: 10.1111/j.1574-6968.2002.tb11204.x.

Sollinger, A., Tveit, A. T, Poulsen, M., Noel, S. J., Bengtsson, M., Bernhardt, J., Frydendahl Hellwing, A. L., Lund, P, Riedel, K., Schleper, C., Hojberg, O. and Urich, T. 2018. Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. mSystems 3(4). doi: 10.1128/mSystems.00038-18.

Sondergaard, D., Pedersen, C. N. and Greening, C. 2016. HydDB: A web tool for hydrogenase classification and analysis. Scientific Reports 6, 34212. doi:10.1038/ srep34212.

Stanier, G. and Davies, A. 1981. Effects of the antibiotic monensin and an inhibitor of methanogenesis on in vitro continuous rumen fermentations. The British Journal of Nutrition 45(3), 567-78. doi: 10.1079/bjn19810135.

Stewart, C. S., Flint, H. J. and Bryant, M. P. 1997. The rumen bacteria. In: Hobson, P. N. and Stewart, C. S. (Eds), The Rumen Microbial Ecosystem (2nd edn.). Blackie Academic & Professional, London, UK, pp. 10-72.

Storm, A, C, Kristensen, N. B. and Hanigan, M. D. 2012. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows. Journal of Dairy Science 95(6), 2919-34. doi:10.3168/jds.2011-4239.

Stouthamer, A. H. 1973. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39(3), 545-65. doi:10.1007/ bf02578899.

Tatsuoka, N., Нага, K„ Mikuni, К., Нага, К., Hashimoto, H. and Itabashi, H. 2008. Effects of the essential oil cyclodextrin complexes on ruminal methane production in vitro. Animal Science Journal 79(1), 68-75. doi: 10.1111 /j. 1740-0929.2007.00499.x.

Teixeira, C. R. V., Lana, R. P, Tao, J. and Hackmann, T. J. 2017. Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate. FEMS Microbiology Ecology 93(6). doi: 10.1093/femsec/fix060.

Thauer, R. K., Jungermann, K. and Decker, K. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews 41(1), 100-80. doi: 10.1128/


Thauer, R. K., Kaster, A. K„ Seedorf, H„ Buckel, W. and Hedderich, R. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews. Microbiology 6(8), 579-91. doi: 10.1038/nrmicro1931.

Thiele, J. H. and Zeikus, J. G. 1988. Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in floes. Applied and Environmental Microbiology 54(1), 20-9. doi:10.1128/AEM.54.1.20-29.1988.

Thurston, B., Dawson, K. A. and Strobel, H. J. 1993. Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus. Applied and Environmental Microbiology 59(8), 2631 -7. doi: 10.1128/AEM.59.8.2631 -2637.1993.

Thurston, B., Dawson, K. A. and Strobel, H. J. 1994. Pentose utilization by the ruminal bacterium Ruminococcus albus. Applied and Environmental Microbiology 60(4), 1087-92. doi:10.1128/AEM.60.4.1087-1092.1994.

Ungerfeld, E. M. 2013. A theoretical comparison between two ruminal electron sinks. Frontiers in Microbiology 4, 319. doi: 10.3389/fmicb.2013.00319.

Ungerfeld, E. M. 2015a. Limits to dihydrogen incorporation into electron sinks alternative to methanogenesis in ruminal fermentation. Frontiers in Microbiology 6, 1272. doi:10.3389/fmicb.2015.01272.

Ungerfeld, E. M. 2015b. Shifts in metabolic hydrogen sinks in the methanogenesis- inhibited ruminal fermentation: a meta-analysis. Frontiers in Microbiology 6, 37. doi:10.3389/fmicb.2015.00037.

Ungerfeld, E. M. 2018. Inhibition of rumen methanogenesis and ruminant productivity: a meta-analysis. Frontiers in Veterinary Science 5, 113. doi:10.3389/ fvets.2018.00113.

Ungerfeld, E. M. and Kohn, R. A. 2006. The role of thermodynamics in the control of ruminal fermentation. In: Sejrsen, K., Hvelplund.T.and Nielsen, M.O. (Eds), Ruminant Physiology. Wageningen Academic Publishers, Wageningen, The Netherlands, pp. 55-85.

Ungerfeld, E. M., Rust, S. R. and Burnett, R. 2007. Increases in microbial nitrogen production and efficiency in vitro with three inhibitors of ruminal methanogenesis. Canadian Journal of Microbiology 53(4), 496-503. doi: 10.1139/W07-008.

Ungerfeld, E. M., Aedo, M. F„ Martinez, E. D. and Saldivia, M. 2019. Inhibiting methanogenesis in rumen batch cultures did not increase the recovery of metabolic hydrogen in microbial amino acids. Microorganisms 7(5), 115. doi:10.3390/ microorganisms7050115.

Valkeners, D., Thewis, A., Amant, S. and Beckers, Y. 2006. Effect of various levels of imbalance between energy and nitrogen release in the rumen on microbial protein synthesis and nitrogen metabolism in growing double-muscled Belgian Blue bulls fed a corn silage-based diet. Journal of Animal Science 84(4), 877-85. doi: 10.2527/2006.84487 7x.

Van Kessel, J. S. and Russell, J. B. 1996. The effect of amino nitrogen on the energetics of ruminal bacteria and its impact on energy spilling. Journal of Dairy Science 79(7), 1237-43. doi:10.3168/jds.S0022-0302(96)76476-7.

Van Lingen, H. J., Plugge, С. M., Fadel, J. G., Kebreab, E., Bannink, A. and Dijkstra, J. 2016. Thermodynamic driving force of hydrogen on rumen microbial metabolism: a theoretical investigation. PLoS ONE 11(10), e0161362. doi: 10.1371/journal. pone.0161362.

Van Lingen, H. J., Edwards, J. E., Vaidya, J. D„ Van Gastelen, S., Saccenti, E., Van Den Bogert, B., Bannink, A., Smidt, H., Plugge, С. M. and Dijkstra, J. 2017. Diurnal dynamics of gaseous and dissolved metabolites and microbiota composition in the bovine rumen. Frontiers in Microbiology 8, 425. doi: 10.3389/fmicb.2017.00425.

Van Lingen, H. J., Fadel, J. G., Moraes, L. E., Bannink, A. and Dijkstra, J. 2019. Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen. Journal of Theoretical Biology 480, 150-65. doi: 10.1016/j.jtbi.2019.08.008.

Veneman, J. B., Muetzel, S., Flart, K. J., Faulkner, C. L., Moorby, J. M., Perdok, FI. B. and Newbold, C. J. 2015. Does dietary mitigation of enteric methane production affect rumen function and animal productivity in dairy cows? PLoS ONE 10(10), e0140282. doi: 10.1371 /journal, pone.0140282.

Vyas, D., McGeough, E. J., Mcginn, S. M., McAllister, T. A. and Beauchemin, K. A. 2014a. Effect of Propionibacterium spp. on ruminal fermentation, nutrient digestibility, and methane emissions in beef heifers fed a high-forage diet. Journal of Animal Science 92(5), 2192-201. doi:10.2527/jas.2013-7492.

Vyas, D., McGeough, E. J., Mohammed, R., McGinn, S. M., McAllister.T. A. and Beauchemin, K. A. 2014b. Effects of Propionibacterium strains on ruminal fermentation, nutrient digestibility and methane emissions in beef cattle fed a corn grain finishing diet. Animal 8(11), 1807-15. doi:10.1017/S1751731114001657.

Vyas, D., Alazezeh, A., McGnn, S. M., McAllister, T. A., Harstad, О. M., Plolo, H. and Beauchemin, K. A. 2015. Enteric methane emissions in response to ruminal inoculation of Propionibacterium strains in beef cattle fed a mixed diet. Animal Production Science 56(7). doi: 10.1071/AN 14801.

Vyas, D., McGinn, S. M., Duval, S. M., Kindermann, M. and Beauchemin, K. A. 2016. Effects of sustained reduction of enteric methane emissions with dietary supplementation of 3-nitrooxypropanol on growth performance of growing and finishing beef cattle. Journal of Animal Science 94(5), 2024-34. doi: 10.2527/jas.2015-0268.

Vyas, D., Alemu, A. W., McGinn, S. M., Duval, S. M., Kindermann, M. and Beauchemin, K. A. 2018a. The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets. Journal of Animal Science 96(7), 2923-38. doi:10.1093/jas/sky174.

Vyas, D„ McGinn, S, M., Duval, S. M., Kindermann, M. K. and Beauchemin, K. A. 2018b. Optimal dose of 3-nitrooxypropanol for decreasing enteric methane emissions from beef cattle fed high-forage and high-grain diets. Animal Production Science 58(6) doi: 10.1071 /AN 15705.

Walker, D. J. and Monk.P. R. 1971. Fate of carbon passing through the glucose pool of rumen digesta .Applied Microbiology 22(5), 741-7. doi:10.1128/AEM.22.5.741-747.1971.

Wallace, R. J. 1996. Ruminal microbial metabolism of peptides and amino acids. The Journal of Nutrition 126(4 Suppl.), 1326S-34S. doi:10.1093/jn/126.suppl_4.1326S.

Wallace, R. J., Onodera, R. and Cotta, M. A. 1997. Metabolism of nitrogen-containing compounds. In: Hobson, P. N. and Stewart, C. S. (Eds), The Rumen Microbial Ecosystem (2nd edn.). Blackie Academic & Professional, London, UK, pp. 283-328.

Wallnofer, P, Baldwin, R. L. and Stagno, E. 1966. Conversion of C-labeled substrates to volatile fatty acids by the rumen microbiota. Applied Microbiology 14(6), 1004-10. doi:10.1128/AEM. 14.6.1004-1010.1966.

Wang, R., Wang, M., Ungerfeld, E. M., Zhang, X. M., Long, D. L., Мао, H. X., Deng, J. P, Bannink, A. and Tan, Z. L. 2018. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet. Journal of Dairy Science 101(11), 9789-99. doi: 10.3168/jds.2018-14904.

Wells, J. E. and Russell, J. B. 1996. Why do many ruminal bacteria die and lyse so quickly? Journal of Dairy Science 79(8), 1487-95. doi:10.3168/jds.S0022-0302(96)76508-6.

Wells, J. E., Russell, J. B., Shi, Y. and Weimer, P. J. 1995. Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Applied and Environmental Microbiology 61(5), 1757-62. doi:10.1128/AEM.61.5.1757-1762.1995.

Wolf, P. G., Biswas, A., Morales, S. E., Greening, C. and Gaskins, H. R. 2016. H, metabolism is widespread and diverse among human colonic microbes. Gut Microbes 7(3), 235- 45. doi:10.1080/19490976.2016.1182288.

Wolin, M. J., Miller,T. L. and Stewart, C. S. 1997. Microbe-microbe interactions. In: Hobson, P. N. and Stewart, C. S. (Eds), The Rumen Microbial Ecosystem (2nd edn.). Blackie Academic & Professional, London, UK, pp. 467-91.

Zheng, Y„ Kahnt, J., Kwon, I. H., Mackie, R. I. and Thauer, R. K. 2014. Hydrogen formation and its regulation in Ruminococcus albus: involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]-hydrogenase. Journal of Bacteriology 196(22), 3840-52. doi: 10.1128/JB.02070-14.

Chapter 14_

< Prev   CONTENTS   Source   Next >