Summary

The last decade has seen great advances in the field of stimuli-responsive, smart polymers. New polymers that are responsive to different stimuli, such as temperature, pH, and light, are designed in the laboratories to satisfy the requirements of specific applications. The ability to tune the response of a polymer to a stimulus by tailoring the chemical or structural composition of the polymer significantly widens the application areas of these smart materials. From medicine to electronics, these polymers are slowly replacing the conventional materials.

One of the major applications in which these polymers have been widely utilized is controlled release, which is critical in the fields of drug delivery, cosmetics, food, and agriculture. Developments in the field of smart polymers had the highest impact on drug delivery. Depending on the specifics of the drug delivery application, such as the type of drug or target tissue, certain characteristics of the delivery platform can be tailored by the integration of the stimuli-responsive polymers into these delivery systems. The characteristics that need to be tailored include release rates and release amounts of the drugs, the duration of the release, and the target location. The degree of the physicochemical change that the polymer undergoes when triggered by a stimulus can be controlled by tuning the chemical composition of the polymer. Control of the physicochemical response of the polymer enables the researchers to directly address the needs of the delivery application. Current state-of-the-art delivery systems involve polymers with well-controlled release kinetics, which are responsive to multiple stimuli for more efficient activation.

Despite all these advances in the drug delivery field with the usage of stimuli-responsive polymers, new challenges arise each day with the development of new treatment methods. These challenges can be met by further research on stimuli-responsive polymers, which prove to be one of the most effective means of delivery.

References

  • 1. Abidjan, M. R., Kim, D. H. and Martin, D. C. (2006]. Conducting- polymer nanotubes for controlled drug release, Adv. Mater., 18(4], pp. 405-409.
  • 2. Aghabegi Moghanjoughi, A., Khoshnevis, D. and Zarrabi, A. (2016]. A concise review on smart polymers for controlled drug release, Drug Deliv. Transl. Res., 6(3], pp. 333-340.
  • 3. Al-Tahami, K. and Singh, J. (2007]. Smart polymer based delivery systems for peptides and proteins, Recent Pat. Drug Deliv. Formul., 1(1], pp. 65-71.
  • 4. Alvarez-Lorenzo, C., Bromberg, L. and Concheiro, A. (2009). Light-sensitive intelligent drug delivery systems, Photochem. PhotobioL, 85(4), pp. 848-860.
  • 5. Armagan, E. and Ozaydin Ince, G. (2015). Coaxial nanotubes of stimuli responsive polymers with tunable release kinetics, Soft Matter, 11(41), pp. 8069-8075.
  • 6. Armagan, E., Qureshi, P. and Ince, G. 0. (2015). Functional nanotubes for triggered release of molecules, Nanosci. Nanotechnol. Lett., 7(1), pp. 79-83.
  • 7. Bajpai, A. K., Shukla, S. K., Bhanu, S. and Kankane, S. (2008). Responsive polymers in controlled drug delivery, Prog. Polym. Sci., 33(11), pp. 1088-1118.
  • 8. Beebe, D.)., Moore, J. S., Bauer, J. M., Yu, Q., Liu, R. H., Devadoss, C. and Jo, B.-H. (2000). Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, 404(6778), pp. 588-590.
  • 9. Bravo, S. A., Lamas, M. C. and Salom6n, C. J. (2002). In-vitro studies of diclofenac sodium controlled-release from biopolymeric hydrophilic matrices,/. Pharm. Pharm. Sci., 5(3), pp. 213-219.
  • 10. Cai, K., Jiang, F., Luo, Z. and Chen, X. (2010). Temperature- responsive controlled drug delivery system based on titanium nanotubes, Adv. Eng. Mater., 12(9), pp. B565-B570.
  • 11. Chaterji, S., Kwon, I. K. and Park, K. (2007). Smart polymeric gels: Redefining the limits of biomedical devices, Prog. Polym. Sci., 32(8-9), pp. 1083-1122.
  • 12. Chen, G., Chen, R., Zou, C., Yang, D. and Chen, Z.-S. (2014). Fragmented polymer nanotubes from sonication-induced scission with a thermo-responsive gating system for anti-cancer drug delivery,/ Mater. Chem. B, 2(10), pp. 1327-1334.
  • 13. Choi, S., Baudys, M. and Kim, S. W. (2004). Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats, Pharm. Res., 21(5), pp. 827-831.
  • 14. Colombo, P., Sonvico, E, Colombo, G. and Bettini, R. (2009). Novel platforms for oral drug delivery, Pharm. Res., 26(3), pp. 601-611.
  • 15. Costa, P. and Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci., 13(2), pp. 123-133.
  • 16. Crespy, D. and Rossi, R. M. (2007). Temperature-responsive polymers with LCST in the physiological range and their applications in textiles, Polym. Int., 56(12), pp. 1461-1468.
  • 17. Dissanayake, T. D., Hu, A. R, Malpas, S., Bennet, L., Taberner, A., Booth, L. and Budgett, D. (2009). Experimental study of a TET system for implantable biomedical devices, IEEE Trans. Biomed. Circuits Syst., 3(6), pp. 370-378.
  • 18. Fleige, E., Quadir, M. A. and Haag, R. (2012). Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications, Adv. Drug Deliv. Rev., 64(9), pp. 866-884.
  • 19. Folkman, J. (1990). How the field of controlled-release technology began, and its central role in the development of angiogenesis research, Biomaterials, 11(9), pp. 615-618.
  • 20. Fuchiwaki, M., Martinez, J. G. and Otero, T. F. (2015). Polypyrrole asymmetric bilayer artificial muscle: driven reactions, cooperative actuation, and osmotic effects, Adv. Fund. Mater., 25(10), pp. 1535-1541.
  • 21. Gandhi, A., Paul, A., Sen, S. O. and Sen, К. K. (2015). Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications, Asian J. Pharm. Sci., 10(2), pp. 99-107.
  • 22. Gandhi, M. R„ Murray, P„ Spinks, G. M. and Wallace, G. G. (1995). Mechanism of electromechanical actuation in polypyrrole, Synth. Met., 73(3), pp. 247-256.
  • 23. Gao, W., Chan,). M. and Farokhzad, 0. C. (2010). pH-responsive nanoparticles for drug delivery, Mol. Pharmaceutics, 7(6), pp. 1913-1920.
  • 24. Gao, Y., Zhou, Y. and Yan, D. (2009). Temperature-sensitive and highly water-soluble titanate nanotubes, Polymer, 50(12), pp. 2572-2577.
  • 25. Ge, J., Neofytou, E., Cahill, T. J., Beygui, R. E. and Zare, R. N. (2012). Drug release from electric field responsive nanoparticles, ACS Nano, 6(1), pp. 227-233.
  • 26. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. and Reynolds,). R. (2000). Poly (3,4-ethylenedioxythiophene) and its derivatives: past, present, and future, Adv. Mater., 12(7), pp. 481-494.
  • 27. Guo, Z., Zhu, W„ Xiong, Y. and Tian, H. (2009). Multiple logic fluorescent thermometer system based on N-iso- propylmethacrylamide copolymer bearing dicyanomethylene- 4H-pyran moiety, Macromolecules, 42(5), pp. 1448-1453.
  • 28. Gupta, K. and Gangadharappa, H. (2011). pH sensitive drug delivery systems: a review, Am. J. Drug Discovery Dev., 1(1), pp. 24-48.
  • 29. Gupta, R, Vermani, K. and Garg, S. (2002). Hydrogels: from controlled release to pH-responsive drug delivery, Drug Discovery Today, 7(10), pp. 569-579.
  • 30. Hirotsu, S., Hirokawa, Y. and Tanaka, T. (1987). Volume-phase transitions of ionized N-isopropylacrylamide gels,/ Chem. Phys., 87(2), pp. 1392-1395.
  • 31. Hixson, A. W. and Crowell, J. H. (1931). Dependence of reaction velocity upon surface and agitation, Ind. Eng. Chem., 23(8), pp. 923-931.
  • 32. Hoffman, A. S. (2000). Bioconjugates of intelligent polymers and recognition proteins for use in diagnostics and affinity separations, Clin. Chem., 46(9), pp. 1478-1486.
  • 33. Hruby, M., Filippov, S. K. and Stepdnek, P. (2015). Smart polymers in drug delivery systems on crossroads: Which way deserves following? Eur. Polym.J., 65: 82-97.
  • 34. Huang, X. and Brazel, C. S. (2001). On the importance and mechanisms of burst release in matrix-controlled drug delivery systems,/ Control. Release, 73(2-3), pp. 121-136.
  • 35. Hurwitz, M. and Stauffer, P. (2014). Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care, Semin. Oncol., 41(6), pp. 714-729.
  • 36. Jaafar, M., Razak, K. A., Ariff, Z. M., Zabidi, H., Hilmi, B., Hamid, Z. A. A., Akil, H. M. and Yahaya, В. H. (2016). 5th international conference on recent advances in materials, minerals and environment (RAMM) & 2nd international postgraduate conference on materials, mineral and polymer (MAMIP). The characteristics of the smart polymeras temperature or pH-responsive hydrogel, Procedia Chem., 19, pp. 406-409.
  • 37. James, J. R., Gao, Y., Soon, V. C., Topper, S. M., Babsky, A. and Bansal, N. (2010). Controlled radio-frequency hyperthermia using an MR scanner and simultaneous monitoring of temperature and therapy response by 1H, 23Na and 31P magnetic resonance spectroscopy in subcutaneously implanted 9L-gliosarcoma, lnt. ]. Hyperther., 26(1), pp. 79-90.
  • 38. Janssen, M., Mihov, G., Welting, T, Thies, J. and Emans, P. (2014). Drugs and polymers for delivery systems in OA joints: clinical needs and opportunities, Polymers, 6(3), p. 799.
  • 39. Jones, E., Thrall, D., Dewhirst, M. W. and Vujaskovic, Z. (2006). Prospective thermal dosimetry: the key to hyperthermia's future, Int.J. Hyperther., 22(3), pp. 247-253.
  • 40. Kamaly, N., Yameen, B., Wu, J. and Farokhzad, 0. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release, Chem. Rev., 116(4), pp. 2602-2663.
  • 41. Kang, H., Trondoli, A. C., Zhu, G., Chen, Y., Chang, Y.-J., Liu, H., Huang, Y.-F., Zhang, X. and Tan, W. (2011). Near-infrared light- responsive core-shell nanogels for targeted drug delivery, ACS Nano, 5(6), pp. 5094-5099.
  • 42. Kim, D., Kim, S., Park, J., Baek, J., Kim, S., Sun, K., Lee, T. and Lee, S. (2007). Hydrodynamic fabrication and characterization of a pH-responsive microscale spherical actuating element, Sens. Actuators, A, 134(2), pp. 321-328.
  • 43. Kochba, M., Gambash, S. and Avnimelech, Y. (1990). Studies on slow release fertilizers: 1. effects of temperature, soil moisture, and water vapor pressure, Soil Sci., 149(6), pp. 339-343.
  • 44. Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, R and Peppas, N. A. (1983). Mechanisms of solute release from porous hydrophilic polymers, Int.J. Pharm., 15(1), pp. 25-35.
  • 45. Kungwatchakun, D. and Irie, M. (1988). Photoresponsive polymers. Photocontrol of the phase separation temperature of aqueous solutions of poly-[N-isopropylacrylamide-co-N- (4-phenylazophenyl)acrylamide], Makromol. Chem. Rapid Com- тип., 9(4), pp. 243-246.
  • 46. Lendlein, A. and Shastri, V. P. (2010). Stimuli-sensitive polymers, Adv. Mater., 22(31), pp. 3344-3347.
  • 47. Li, Y. Y„ Zhang, X. Z„ Zhu, J. L„ Cheng, H„ Cheng, S. X. and Zhuo, R. X. (2007). Self-assembled, thermoresponsive micelles based on triblock PMMA-b-PNIPAAm-b-PMMA copolymer for drug delivery, Nanotechnology, 18(21), p. 215605.
  • 48. Li, Z., Tang, Y.-H., Li, X. and Karniadakis, G. E. (2015). Mesoscale modeling of phase transition dynamics of thermoresponsive polymers, Chem. Commun., 51(55), pp. 11038-11040.
  • 49. Liu, Y., Wang, W., Yang, J., Zhou, C. and Sun, J. (2013). pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery, Asian J. Pharm. Sci., 8(3), pp. 159-167.
  • 50. Lowman, A. M., Morishita, M., Kajita, M., Nagai, T. and Peppas, N. A. (1999). Oral delivery of insulin using pH-responsive complexation gels,/ Pharm. Sci., 88(9), pp. 933-937.
  • 51. Mahajan, A. and Aggarwal, G. (2011). Smart polymers: innovations in novel drug delivery, Int.J. Drug Dev. Res., 3(3), pp. 16-30.
  • 52. Manchun, S., Dass, C. R. and Sriamornsak, P. (2012). Targeted therapy for cancer using pH-responsive nanocarrier systems, Life Sci., 90(11-12), pp. 381-387.
  • 53. Matejka, L., Ilavsky, M., Dusek, K. and Wichterle, 0. (1981). Photomechanical effects in crosslinked photochromic polymers, Polymer, 22(11), pp. 1511-1515.
  • 54. Mclnnes, S. ). P., Szili, E. J., Al-Bataineh, S. A., Xu, J., Alf, M. E., Gleason, К. K., Short, R. D. and Voelcker, N. H. (2012). Combination of iCVD and porous silicon for the development of a controlled drug delivery system, ACS Appl. Mater. Interfaces, 4(7), pp. 3566- 3574.
  • 55. Mittal, V., Matsko, N. B„ Butt6, A. and Morbidelli, M. (2007). Synthesis of temperature responsive polymer brushes from polystyrene latex particles functionalized with ATRP initiator, Eur. Polym.J., 43(12), pp. 4868-4881.
  • 56. Mura, S., Nicolas, J. and Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery, Nat. Mater., 12(11), pp. 991- 1003.
  • 57. Natansohn, A. and Rochon, P. (2002). Photoinduced motions in azo-containing polymers, Chem. Rev., 102(11), pp. 4139-4176.
  • 58. Nguyen, T. M., Lee, S. and Lee, S. B. (2014). Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery, Nanomedicine, 9(15), pp. 2263-2272.
  • 59. O’Neill, В. E. and Li, К. С. P. (2008). Augmentation of targeted delivery with pulsed high intensity focused ultrasound, Int. J. Hyperther., 24(6), pp. 506-520.
  • 60. Okano, T., Bae, Y. H„ Jacobs, H. and Kim, S. W. (1990). Thermally on-off switching polymers for drug permeation and release, ]. Control. Release, 11(1), pp. 255-265.
  • 61. Ozaydin-Ince, G., Gleason, К. K. and Demirel, M. C. (2011). A stimuli-responsive coaxial nanofilm for burst release, Soft Matter, 7(2), pp. 638-643.
  • 62. Palasis, M. (2003). Implantable or insertable therapeutic agent delivery device, Google Patents.
  • 63. Peppas, N. A. (1985). Analysis of Fickian and non-Fickian drug release from polymers, Pharm. Acta Helv., 60(4), pp. 110-111.
  • 64. Peppas, N. A., Bures, P, Leobandung, W. and Ichikawa, H.
  • (2000). Hydrogels in pharmaceutical formulations, Eur J. Pharm. Biopharm., 50(1), pp. 27-46.
  • 65. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. and Langer, R. (2006). Hydrogels in biology and medicine: from molecular principles to bionanotechnology, Adv. Mater., 18(11), pp. 1345-1360.
  • 66. Priya, B., Viness, P., Yahya, E. C. and Lisa, C. d. T. (2009). Stimuli- responsive polymers and their applications in drug delivery, Biomed. Mater., 4(2), p. 022001.
  • 67. Priya James, H., John, R., Alex, A. and Anoop, K. R. (2014). Smart polymers for the controlled delivery of drugs - a concise overview, Acta Pharm. Sin. B, 4(2), pp. 120-127.
  • 68. Qiu, H., Wan, M., Matthews, B. and Dai, L. (2001). Conducting polyaniline nanotubes by template-free polymerization, Macromolecules, 34(4), pp. 675-677.
  • 69. Qiu, Y. and Park, K. (2001). Environment-sensitive hydrogels for drug delivery, Adv. Drug Deliv. Rev., 53(3), pp. 321-339.
  • 70. Robert, С. C. R., Buri, P. A. and Peppas, N. A. (1985). Effect of degree of crosslinking on water transport in polymer microparticles,/ Appl. Polym. Sci., 30(1), pp. 301-306.
  • 71. Shakya, A. K., Kumar, A. and Nandakumar, K. S. (2011). Adjuvant properties of a biocompatible thermo-responsive polymer of N-isopropylacrylamide in autoimmunity and arthritis,). R. Soc. Interface, 8(65), pp. 1748-1759.
  • 72. Shen, Z„ Wei, W„ Zhao, Y„ Ma, G„ Dobashi, T, Maki, Y„ Su, Z. and Wan, J. (2008). Thermosensitive polymer-conjugated albumin nanospheres as thermal targeting anti-cancer drug carrier, Eur. J. Pharm. Sci. 35(4), pp. 271-282.
  • 73. Siegel, R. A. (1993). Hydrophobic weak polyelectrolyte gels: studies of swelling equilibria and kinetics. In Responsive Gels: Volume Transitions, ed. Dusek, I. K., Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 233-267.
  • 74. Singhvi, G. and Singh, M. (2011). Review: in-vitro drug release characterization models, Int. J. Pharm. Stud. Res., 2(1), pp. 77-84.
  • 75. Smela, E. (1999). A microfabricated movable electrochromic "pixel" based on polypyrrole, Adv. Mater., 11(16), pp. 1343-1345.
  • 76. Smela, E. (2003). Conjugated polymer actuators for biomedical applications, Adv. Mater., 15(6), pp. 481-494.
  • 77. Smela, E., Inganas, 0. and Lundstrom, I. (1995). Controlled folding of micrometer-size structures, Science, 268(5218), pp. 1735-1738.
  • 78. Soppimath, K. S., Kulkarni, A. R. and Aminabhavi, T. M.
  • (2001). Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems: preparation and characterization, ]. Control. Release, 75(3), pp. 331-345.
  • 79. Srinivasan, G. (2006). Biosensing and drug delivery by polypyrrole, Anal. Chim. Acta, 568(1-2), pp. 119-125.
  • 80. Suh, Y., Kil, D., Chung, K., Abdullayev, E., Lvov, Y. and Mongayt, D. (2011). Natural nanocontainer for the controlled delivery of glycerol as a moisturizing agent, / Nanosci. Nanotechnol., 11(1), pp. 661-665.
  • 81. Svirskis, D., Travas-Sejdic, }., Rodgers, A. and Garg, S. (2010). Electrochemically controlled drug delivery based on intrinsically conducting polymers,/ Control. Release, 146(1), pp. 6-15.
  • 82. Tibbitt, M. W., Dahlman, J. E. and Langer, R. (2016). Emerging frontiers in drug delivery, /. Am. Chem. Soc., 138(3), pp. 704-717.
  • 83. Tonhauser, C., Alkan, A., Schomer, M., Dingels, C., Ritz, S., Mailander, V., Frey, H. and Wurm, F. R. (2013). Ferrocenyl glycidyl ether: a versatile ferrocene monomer for copolymerization with ethylene oxide to water-soluble, thermoresponsive copolymers, Macromolecules, 46(3), pp. 647-655.
  • 84. Wichterle, 0. and Lim, D. (1960). Hydrophilic gels for biological use, Nature, 185(4706), pp. 117-118.
  • 85. Xiao, W., Zeng, X., Lin, H., Han, K., Jia, H.-Z. and Zhang, X.-Z. (2015). Dual stimuli-responsive multi-drug delivery system for the individually controlled release of anti-cancer drugs, Chem. Commun., 51(8), pp. 1475-1478.
  • 86. Yamato, M., Konno, C., Utsumi, M., Kikuchi, A. and Okano, T.
  • (2002). Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture, Biomaterials, 23(2), pp. 561-567.
  • 87. Zhang, ). and Misra, R. D. K. (2007). Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: coreshell nanoparticle carrier and drug release response, Acta Biomater., 3(6), pp. 838-850.
  • 88. Zhang, X.-Z., Wu, D.-Q. and Chu, C.-C. (2004). Synthesis, characterization and controlled drug release of thermosensitive IPN- PNIPAAm hydrogels, Biomaterials, 25(17), pp. 3793-3805.
  • 89. Brannon-Peppas, L. (1993). Controlled release in the food and cosmetics industries, polymeric delivery systems, Am. Chem. Soc., 520, pp. 42-52.
  • 90. Graham, N. (1992). Poly (ethylene glycol) gels and drug delivery. In Poly (Ethylene Glycol) Chemistry, ed. Harris, J. M., Springer, Boston, MA, pp. 263-281.
  • 91. Liu, L., Kost, J., Fishman, M. L. and Hicks, К. B. (2008). A review: controlled release systems for agricultural and food applications, new delivery systems for controlled drug release from naturally occurring materials, Am. Chem. Soc., 992, pp. 265-281.
  • 92. Mu, L. and Kong, J. (2007). Smart Hydrogels, Smart Polymers, CRC Press, Boca Raton, FL, pp. 247-268.
  • 93. Urban, M. W. (2011). Handbook of Stimuli-Responsive Materials, Wiley Online Library.
  • 94. Weber, C., Hoogenboom, R. and Schubert, U. S. (2012). Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s, Prog. Polym. Sci., 37(5), pp. 686- 714.
  • 95. Zeisberger, E., Schonbaum, E. and Lomax, P. (1994). Thermal Balance in Health and Disease: Recent Basic Research and Clinical Progress, Birkhauser Basel.
 
Source
< Prev   CONTENTS   Source   Next >