Table of Contents:

Although the toxicity of thiourea is far less than that of cyanide (a lethal dosage of thiourea is 10 g/kg), it is not an entirely environmentally friendly reagent. This is a subject of debate because thiourea is used in human thyroid treatments as a non- carcinogenic reagent (IARC, 1974; Shubik 1975). The discharge of various degradation products of thiourea, including urea, ammonia, formamidine disulphide, sulphur, cyanamide, carbon dioxide, sulphate and nitrate ions, is problematic and proper effluent treatment is needed (Gupta 1963; Preisler and Berger 1947; Hiskey and DeVries 1992). Cyanamide and formamidine disulphide are unstable and short-lived. The half-life of thiourea decomposition in surface water and soil is up to 168 h under aqueous aerobic biodegradation, and up to 336 h in groundwater without biodegradation (Howard 1991). There is some evidence of heavy metals dissolution in thiourea from minerals/soils causing soil and water pollution.

It must be noted that in the absence of any oxidizing agent, thiourea alone in lix- iviant is less effective. Fe2(S04), is preferred as a cheaper reagent than H202, but it also increases thiourea consumption. An excess of Fe2(S04), suppresses the leaching of gold. An initial concentration of thiourea and Fe,(S04)3 along with the rate of oxidation of thiourea are the factors that most affect the leaching of gold. The formation of degradation products in successive oxidation stages of thiourea makes it difficult to control the leaching system. High consumption of reagents including SC(NH2)2, Fe2(S04)3 and H2S04 makes the process more expensive than using cyani- dation. Therefore, unless these complexities are handled carefully, thiourea leaching in gold extraction is quite difficult.

Commercial applications of thiourea in gold recovery processing have been hindered by the higher consumption of reagents and the complexity of the leaching system when treating various ores/concentrates and different recycled materials. At 154 pm. 90% Au and 50% Ag could be achieved. Further size reduction achieves full precious metal recovery. However, thiourea consumption is usually very high and it is more expensive than cyanide and thiosulfate lixiviants. There are still many challenges in the recovery of precious metal from electronic wastes, including low total recovery. In practice, <20% of the PMs from electronic wastes have been recovered and recycled. Precious metal loss during pre-treatment and multistep leaching should be minimized in electronic waste treatment.


This work was supported by the Brain Pool Programme through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant No. 2019H1D3A2A02101993) and the Basic Science Research Programme through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Project no. 2020R111 A1 AO 1074249).


Abbruzzese, C., Fornari, P.. Massidda. R., Veglio E, Ubaldini. S. (1995). Thiosulfate leaching for gold hydrometallurgy. Hydrometallurgy. 39(1): 265-276.

Anthony, E.Y.. Williams. P.A. (1994). Thiosulfate complexing of platinum group elements: Implications for supergene geochemistry. ACS' Publications.

Awadalla, F.. Ritcey, G. (1991). Recovery of gold from thiourea, thiocyanate, or thiosulfate solutions by reduction-precipitation with a stabilized form of sodium borohydride. Separation Science and Technology. 26(9): 1207-1228.

Aylmore, M.G. (2001). Treatment of a refractory gold—copper sulfide concentrate by copper ammoniacal thiosulfate leaching. Minerals Engineering. 14(6): 615-637.

Aylmore. M.G.. Muir. D.M. (2001). Thiosulfate leaching of gold—a review. Minerals Engineering. 14(2): 135-174.

Balaz, P„ Ficeriova, J., Leon. C.V. (2003). Silver leaching from a mechanochemically pretreated complex sulfide concentrate. Hydrometallurgy. 70(1): 113-119.

Batnasan, A.. Haga, K., Shibayama, A. (2018) Recovery of precious and base metals from waste printed circuit boards using a sequential leaching procedure. JOM 70(2): 124. doi: 10.1007/s 11837-017-2694-y

Bean. S.L., (1997). Thiosulfates. In Kroschwitz, J.I. (ed.), Kirk-Othmer Encyclopedia of Chemical Technology. . New York: Wiley, pp. 51-68.

Benedetti, M.. Boulegue, J. (1991). Mechanism of gold transfer and deposition in a supergene environment. Geochimica et Cosmochimica Acta. 55(6): 1539-1547.

Briones. R., Lapidus. G. (1998). The leaching of silver sulfide with the thiosulfate-ammonia- cupric ion system. Hydrometallurgy. 50(3): 243-260.

Byerley, J. J.. Fouda. S. A., and Rempel. G. L. (1973). Kinetics and mechanism of the oxidation of thiosulfate ions by copper (II) ions in aqueous ammonia solution. Journal of Ilie Chemical Society, Dalton Transactions, (8). 889-893.

Byerley, J. J.. Fouda. S. A., and Rempel. G. L. (1975). Activation of copper (II) ammine complexes by molecular oxygen for the oxidation of thiosulfate ions. Journal of the Chemical Societ} Dalton Transactions, (13), 1329-1338.

Chen. J., Deng. T.. Zhu G., Zhao. J. (1996). Leaching and recovery of cold in thiosulfate based system-а research summary at ICM.

Deschenes. G., Ghali. E. (1988). Leaching of gold from a chalcopyrite concentrate by thiourea. Hydrometallurgy. 20(2): 179-202.

Fleming C.A. (1998). The potential role of anion exchange resins in the gold industry. EPD Congress 1998. Warrendale, PA: The Minerals. Metals and Materials Society, pp. 95-117.

Flett, D.. Derry, R.. Wilson, J. (1983). Chemical study of thiosulfate leaching of silver sulfide. Transactions of the Institution of Mining and Metallurgy Section С-Mineral Processing and Extractive Metallurgy. 92(DEC): C216-C223.

Genik-Sas-Berezowsky, R. M., Sefton, V. B., and Gormely, L. S. (1978). U.S. Patent No. 4.070,182. Washington. DC: U.S. Patent and Trademark Office.

Gmelin, L.E. (1965). Copper thiosulfate complexes. In: Gmelins Handbuch der

AnorganischenChemie. Berlin: VerlagChemie. pp. (Bl) 591: (B593) 998-1003, 1414-1415.

Gmelin, L.E. (1969). Mercury thiosulfate complexes. In: Gmelins Handbuch der AnorganischenChemie. Berlin: VerlagChemie, pp. (Bl) 52-55; (B53) 1030-1031; (B1034) 1406-1409.

Gmelin, L.E. (1972). Lead thiosulfate complexes. In Gmelins Handbuch der

AnorganischenChemie. Weinheim: VerlagChemie, pp. (Bl) 364-365; (C) 594-600.

Gmelin, L.E. (1973). Silver thiosulfate complexes. In Gmelins Handbuch der

AnorganischenChemie. Weinheim/Bergstrasse: VerlagChemie. pp. (B3) 110-133.

Gong, Q., Hu. J.. Cao, C. (1993). Kinetics of gold leaching from sulfide gold concentrates with thiosulfate solution. Transactions of the Nonferrous Metals Society of China! China). 3(4): 30-36.

Gos. S.. Rubo. A. (2000). Alternative lixiviants for gold leaching. A comparison. In: Randol Gold & Silver Forum, pp: 271-281.

Groenewald. T. (1976). The dissolution of gold in acidic solutions of thiourea. Hydrometallurgy. 1(3): 277-290.

Groudev, S. N.. Spasova, I. I., and Ivanov. I. M. (1996). Two-stage microbial leaching of a refractory gold-bearing pyrite ore. Minerals Engineering, 9(7): 707-713.

Groves, W. D., and Blackman, L. (1995). U.S. Patent No. 5.405,430. Washington. DC: U.S. Patent and Trademark Office.

Guerra, E„ and Dreisinger. D. B. (1999). A study of the factors affecting copper cementation of gold from ammoniacal thiosulfate solution. Hydrometallurgy, 51(2). 155-172.

Gupta. P.C. (1963). Analytical chemistry of thiocarbamides. Fresenius' Journal of Analytical Chemistry. 196(6): 412-431.

Gurung, M., Adhikari, B.B.. Kawakita. H., Ohto, K.. Inoue. K.. Alam. S. (2011). Recovery of Au(III) by using low cost adsorbent prepared from persimmon tannin extract. Chemical Engineering Journal. 174: 556-563.

Habashi, F. (1969). Extractive Metallurgy, vol. I, General Principles. New York: Gordon and Breach Science Publishers. Inc.

Hemmati. M.. Hendrix. J., Nelson, J., Milosavljevic, E. (1989). Extraction Metallurgy'89 symp. London: Institute of Mining and Metallurgy, 665-678.

Hiskey, J., DeVries, F. (1992). Emerging process technol. In: Cleaner Environ. Proc. Symp. pp: 73-80.

Howard, P.H. (1991). Handbook of environmental degradation rates. Boca Raton: CRC Press.

Hu. J.. Gong. Q. (1991). Substitute sulfate for sulfite during extraction of gold by thiosulfate solution. In: Randol Gold Forum'9]. Cairns, pp 333-336.

Hubin, A.. Vereecken. J. (1994). Electrochemical reduction of silver thiosulfate complexes part i: Thermodynamic aspects of solution composition. Journal of applied electrochemistry. 24(3): 239-244.

Huyhua. J.. Zegarra, C., Gundiler, I. (1989). A comparative study of oxidants on gold and silver dissolution in acidic thiourea solutions. Precious Metals 89: 287-303.

Ilyas, S.. Lee. J.C. (2014). Biometallurgical recovery of metals from waste electrical and electronic equipment: A review. ChemBioEng Reviews. 1(4): 148-169.

Jiang, T., Chen. J.. Xu, S. (1993). A kinetic study of gold leaching with thiosulfate. Hydrometallurgy. Fundamentals, Technology and Innovations, 119-126.

Johnson. P. H., and Bhappu. R. B. (1969). Chemical Mining: A Study of Leaching Agents. State Bureau of Mines and Mineral Resources.

Johnson. J. A., and Davis, J. O. (1973). Effects of a specific competitive antagonist of angiotensin II on arterial pressure and adrenal steroid secretion in dogs. Circulation Research, 32(5): 1-159.

Langhans. J.. Lei, K.. Carnahan, T. (1992). Copper-catalyzed thiosulfate leaching of low-grade gold ores. Hydrometallurgy. 29(1-3): 191-203.

Lee, J.-C., Srivastava. R.R. (2016). Leaching of gold from the spent/end-of-life mobile phone- PCBs. In: The Recovery of Gold from Secondan• Resources. Imperial College Press, pp. 7-56.

Li. J., Miller. J.. Le-Vier M., Wan. R. (1995). The ammoniacal thiosulfate system for precious metal recovery. Society for Mining. Metallurgy, and Exploration, Inc., Littleton, CO. USA.

Livingstone, S.E. (1965). Metal complexes of ligands containing sulfur, selenium, or tellurium as donor atoms. Quarterly Reviews, Chemical Society. 19(4): 386-425.

Lulham. J.. Lindsay. D., InternationalPatent WO 91/11539. (1991). Separation process. Davy McKee (Stockton) Limited. ClevelandTS18 3RE, UK.

Marchbank. A.R..Thomas, K.G., Dreisinger, D., Fleming. C. (1996). Gold recovery from refractory carbonaceous ores by pressure oxidation and thiosulfate leaching. Google Patents.

Meng, X.. Han, K.N. (1993). The dissolution behavior of gold in ammoniacal solutions. In J.B. Hiskey and G.W. Warren (eds). Hydrometallurgy Fundamentals, Technology and Innovations. Colorado: Society for Mining. Metallurgy and Exploration, Inc.. 205-221.

Mountain. B.W., Wood, S.A. (1988). Solubility and transport of platinum-group elements in hydrothermal solutions: Thermodynamic and physical chemical constraints. In Geo- platinum 87. Dordrecht: Springer, pp. 57-82.

Muir, D.M., La Brooy, S.R., Deng, T.. Singh, P. (1993). The mechanism of the ammonia-cyanide system for leaching copper-gold ores. In J.B. Hiskey and G.W. Warren (eds). Hydrometallurgy: Fundamentals, Technology and Innovation. Colorado: Society for Mining, Metallurgy and Exploration. Inc.. 191-204.

Munoz, G.. Miller, J. (2000). Noncyanide leaching of an auriferous pyrite ore from ecuador. Minerals and Metallurgical Processing. 17(3): 198-204.

Naito, K.. Shieh. М.-C., Okabe. T. (1970). The chemical behavior of low valence sulfur compounds. V. Decomposition and oxidation of tetrathionate in aqueous ammonia solution. Bulletin of the Chemical Society' of Japan. 43(5): 1372-1376.

Novakovskii. M.S.. Ryazantseva. A.P. (1955) Cadmium complexes with thiosulfate.: Trudy Khim. Fak. 54 (12), 277-281 (In Russian).

O'Malley. G. (2001). The elution of gold from anion exchange resins. Australian Patent. WO. 123626.

Pedraza, A., Villegas, I.. Freund, P.. Chornik, B. (1988). Electro-oxidation of thiosulfate ion on gold: Study by means of cyclic voltammetry and auger electron spectroscopy. Journal of electroanalytical chemistry and interfacial electrochemistry. 250(2): 443-449.

Perez, A. E.. and Galaviz, H. D. (1987). U.S. Patent No. 4.654.078. Washington. DC: U.S. Patent and Trademark Office.

Plaskin. I. N.. M. Kozhukhova. (1960). Dissolution of gold and silver in solutions of thiourea. Sbornik Nauchnyhk Trudov, Institut Tsvetnykh Metallov, 33: 107-119.

Plimer, I.R., Williams, PA. (1988). New mechanisms for the mobilization of the platinum- group elements in the supergene zone. In: Geoplatinum 87. Dordrecht: Springer, pp. 83-92.

Preisler. P.W., Berger, L. (1947). Oxidation-reduction potentials of thiol-dithio systems: Thiourea-formamidine disulfide 1. Journal of the American Chemical Society. 69(2): 322-325.

Roy. A.B., Trudinger, PA. (1970). The biochemistry of inorganic compounds of sulfur. Cambridge: Cambridge University Press.

Ryabchikov, D. I. (1943). On the structure of dithiosulphatoplatinite. In CR (Dokladv) Acad. Sci.URSS, 41 (5): 208-209.

Schulze, R.G. (1984). New aspects in thiourea leachins of precious metals. JOM. 36(6): 62-65.

Shieh. М.-C., Otsubo, H., Okabe, T. (1965). The chemical behavior of low valence sulfur compounds. I. Oxidation of elemental sulfur with compressed oxygen in aqueous ammonia solution. Bulletin of the Chemical Society of Japan. 38(10): 1596-1600.

Shubik. P. (1975). Potential carcinogenicity of food additives and contaminants. Cancer research. 35(11 Part 2): 3475-3480.

Smith. R.M., Martell, A.E. (1976). Inorganic ligands. In Critical Stability Constants. New York: Springer, pp. 1-129.

Songina, O.. Ospanov, K.K.. Muldagalieva, I.K., Sal'nikov, S. (1971). Dissolution of gold with the use of thiourea in a hydrochloric acid medium. Izyestiya Akademii Nauk Kazakhskoi SSR. Seriya Khimicheskaya. 21:9-11.

Ter-Arakelyan. K. (1984). On technological expediency of sodium thiosulfate usage for gold extraction from raw material. Izv. V. U. Z Tsvetn. Metall. (5): 72-76.

Tozawa, K.. Inui, Y.. Umetsu, Y. (1981). Dissolution of gold in ammoniacal thiosulfate solution. Metallurgical Society АШЕ. A8I-25: 1-12.

Tripathi, A., Kumar. M., Sau, D.C., Agrawal. A.. Chakravarty. S., Mankhand, T.R. (2012). Leaching of gold from the waste mobile phone printed circuit boards (PCBs) with ammonium thiosulfate. International Journal of Metallurgical Engineering. 1(2): 17-21.

Tykodi. R. (1990). In praise of thiosulfate. J. Chem. Educ. 67(2): 146.

Tyurin. N.G., Kakowski, i.A. (1960). Behaviour of gold and silver in oxidising zine of sulfide depositlzu.. Buz. Tsyv. Metallurgy 2: 6-13.(Russian).

Uri, N.(1947). 65. Thiosulfate complexes of the tervalent metals, iron, aluminium, and chromium. Journal of the Chemical Society. (Resumed) 65: 335-336.

Vasil'ev. A..Toropova, V.F., Busygina. A. A. (1953). The use of ion exchange for the separation of copper, cadmium and zinc from thiosulfate solutions.: Uch. Zap. Kazausk. Un-ta. 113(118): 91-102.

Vlassopoulos, D., Wood, S.A. (1990). Gold speciation in natural waters: I. Solubility and hydrolysis reactions of gold in aqueous solution. Geocliimica et Cosmochimica Acta. 54(1): 3-12.

White. D. (1900). The stratigraphic succession of the fossil floras of the Pottsville Formation in the Southern Anthracite Coal Field. Pennsylvania: US Government Printing Office.

Wilkinson, G., Gillard, R.D. (1987). Comprehensive coordination chemistry: The synthesis, reactions, properties and applications of coordination compounds. In Middle Transition Elements. Pergamon.

Williamson, M.A., Rimstidt, J.D. (1993). The rate of decomposition of the ferric-thiosulfate complex in acidic aqueous solutions. Geochi mica et Cosmochimica Ada. 57(15): 3555-3561.

Xu, Y., Schoonen, M.A. (1995). The stability of thiosulfate in the presence of pyrite in low- temperature aqueous solutions. Geocliimica et Cosmochimica Acta. 59(22): 4605-4622.

Zhang, H.. Dreisinger, D.B. (2002). The adsorption of gold and copper onto ion-exchange resins from ammoniacal thiosulfate solutions. Hydrometallurgy. 66( 1): 67-76.

Zhao. D.. Feng. J.. Huo. Q.. Melosh, N.. Fredrickson, G. H., Chmelka. B. F., and Stucky. G. D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 279(5350), 548-552.

Zipperian. D., Raghavan. S., & Wilson. J. P. (1988). Gold and silver extraction by ammoniacal thiosulfate leaching from a rhyolite ore. Hydrometallurgy, 19(3), 361-375.

< Prev   CONTENTS   Source   Next >