KEYWORDS

  • • a-amino acids
  • • a
  • • co-amino acids
  • • thermodynamic properties
  • • transport properties
  • • aqueous solutions

REFERENCES

  • 1. Hardy, P. Chemistry and Biochemistry of the Amino Acids;. Barret Chapman. G. C. Ed.; Hall-Methuen: Loudon, 1985.
  • 2. Araki, K.; Ozeki, T. Amino Acids. Kirk-Othmer Encyclopedia of Chemical Technology-, 4th ed: Wiley-Interscience: Hoboken, New Jersey, 2003.
  • 3. Colm, E. J.; Edsall. J. T. Proteins, Amino Acids, and Peptides, Reiuhold Publishing Corporation, New York. 1943.
  • 4. Izuuii, Y.: Chibata, I.; Itoh, T. Production, and Utilization of Amino Acids. Angew. Chem. Int. Ed. 1978, 17, 176-183.
  • 5. Davis, J. Amino Acid Uses in Industry. News Medical Life Sciences, https://www.news- medical.net/life-sciences Amino-Acid-Uses-in-Industry.aspx. (Accessed 22 April 2019)
  • 6. Colm, E. J.; Edsall, J. T. Proteins, Amino Acids, and Peptides as Ions and Dipolar Ions. Hafher Publishing Company: New York; 1965.
  • 7. Pace, C. N.; Fu, H.; Fryar, K. L.; Landua, J.; Saul, R. T.; Shirley, B. A.; Hendricks, M. M.: Limura, S. K.; Scholtz, J. M. Contribution of Hydrophobic Interactions to Protein Stability. J. Mol. Biol. 2011, 408, 514-528.
  • 8. Schamagl, C.; Reif. M.; Friedrich, J. Stability of Proteins: Temperature. Pressure and the Role of the Solvent. Biochim. Biophys. Acta. 2005,1749, 187-213.
  • 9. Zweifel, M. E.: Barrick, D. Relationships between the Temperature Dependence of Solvent Denaturatiou and the Deuaturant Dependence of Protein Stability Curves. Biophys. Chem. 2002,101, 221-237.
  • 10. Cooper, A. Thermodynamics of Protein Folding and Stability. In Protein: A Comprehensive Treatise; Allen, G., Ed.,. JAI Press Inc: Stanford: 1999, Yol 2, pp. 217-270.
  • 11. Franks. F. Water: A Matrix of Life. Royal Society- of Chemistry, 2nd ed; Cambridge, 2000.
  • 12. Ben-Naim, A. Hydrophobic Interactions, Plenum Press: New York, 1980.
  • 13. Lilley, T. H. Interactions in Solutions: The Interplay Between Solute Solvation and Solute-Solute Interactions. PureAppl. Chem. 1994, 66,429-434.
  • 14. Lilley, T. H. The Chemistiy and Biochemistiy of Amino Acids-, Barret Chapman. G. C., Ed.: Hall-Methuen: London. 1985.
  • 15. Palecz. B. Enthalpic Homogeneous Pan Interaction Coefficients of L-a-Amino Acids as a Hydrophobicity Parameter of Amino Acid Side Chains. J. Am. Chem. Soc. 2002,124 (21), 6003-6008.
  • 16. Romero, С. M.; Cadeua, J. C.; Lamprecht, I. Effect of Temperature on the Dilution Enthalpies of a.co-Amino Acids in Aqueous Solutions. J. Chem. Thermodyn. 2011, 43, 1441-1445.
  • 17. Millero, F. J.; Lo Surdo, A.; Slim, C. The Apparent Molal Volumes and Adiabatic Compressibilities of Aqueous Amnio Acids at 25 Degree. J. Phys. Chem. 1978, 82, 784-792.
  • 18. Chalikian. T. V.; Sarvazyan. A. P; Breslauer, K. J. Partial Molar Volumes, Expansibilities, and Compressibilities of Alpha, Omega-Aminocarboxylic Acids in Aqueous Solutions Between 18 and 55 Degrees C. J. Phys. Chem. 1997, 97, 13017-13026.
  • 19. Kharakoz, D. P. Volumetric Properties of Proteins and their Analogs in Diluted Water Solutions: 1. Partial Volumes of Amino Acids at 15-55°C. Biophys. Chem. 1989, 34,115-125.
  • 20. Romero, С. M.; Cadena, J. C. Effect of Temperature on the Volumetric Properties of a,J. Sol. Chem. 2010, 39, 1474-1483.
  • 21. Romero, С. M; Esteso, M. A.; Trujillo, G. P. Effect of Tempera true on the Partial Molar Volumes, the Partial Molar Compressibilities and the Viscosities of a,co-Amino Acids in Water and in Aqueous Solutions of Sodium Chloride. J. Chew. Eng. Data 2018, 63, 4012-4019.
  • 22. Romero, С. M.; Rodriguez, D. M.; Ribeiro, A. C. F.; Esteso, M. A. Effect of Temperature on the Partial Molar Volume. Isentropic Compressibility and Viscosity of DL-2- Aminobutyric Acid in Water and m Aqueous Sodium Chloride Solutions. J. Chem. Thermodyn. 2017,104, 274-280.
  • 23. Romero, С. M.; Rodriguez, D. M.; Ribeiro, A. C. F.; Esteso, M. A. Effect of Temperature on the Partial Molar Volumes. Partial Molar Compressibilities and Viscosity В-Coefficients of DL-4-Aminobutyric Acid hi Water and hi Aqueous Sodium Chloride Solutions. J. Chem. Thermodyn. 2017,115, 98-105.
  • 24. Rodriguez, D. M.; Romero, С. M. Effect of Temperature on the Partial Molar Volumes and the Partial Molar Compressibilities of a-Amino Acids hi Water and in Aqueous Solutions of Strong Electrolytes. J. Molec. Liq. 2017, 233, 487-498.
  • 25. Hakin. A. W.: Duke, M. M.: Marty, J. L.; Preuss. K.E. Some Thermodynamic Properties of Aqueous Amino Acid Systems at 288.15, 298.15, 313.15, and 328.15 K: Group Additivity Analyses of Standard-state Volumes and Heat Capacities. J. Chem. Soc. Faraday Trans. 1994, 90, 2027-2035.
  • 26. Yau, Z.; Wang, J.; Liu, W.; Lu, J. Apparent Molar Volumes and Viscosity B-Coefficients of Some a-Amino Acids in Aqueous Solutions From 278.15 to 308.15 K. Thermochim. Acta. 1999, 334, 17-27.
  • 27. Ogawa, T.; Mizutani, K.: Yasuda, M. The Volume, Adiabatic Compressibility, and Viscosity of Amino Acids hi Aqueous Alkali-Chloride Solutions. Bull. Chem. Soc. Jpn. 1984, 57, 2064-2068.
  • 28. Romero, С. M.; Negrete, F. Effect of the Temperature on Partial Molar Volumes and Viscosities of Aqueous Solutions of a-DL-Aminobutanoic Acid, DL-Norvaline. and DL-Norleuchie. Phys. Chem. Liq. 2004, 42, 261-267.
  • 29. Ellertou, H. D.; Reinfelds, G.; Mulcahy, D. E.: Dunlop, P. J. Activity, Density, and Relative Viscosity Data for Several Amino Acids, Lactamide, and Raffinose hi Aqueous Solution at 25°. J. Phys. Chem. 1964, 68, 398-402.
  • 30. Cabani, S.: Gianni, P.: Mollica, Y.; Lepori. L. Group Contributions to the Thermodynamic Properties of Non-Ionic Organic Solutes in Dilute Aqueous Solution. J. Solution Chem. 1981, 10, 563-595.
  • 31. Gianni. P: Lepori, L. Group Contributions to the Partial Molar Volume of Ionic Organic Solutes in Aqueous Solution. J. Solution Chem. 1996, 25, 1-42.
  • 32. Sedlbauer, J.; Jakubu, P. Application of Group Additivity Approach to Polar and Polyfunctional Aqueous Solutes. Ind. Eng. Chem. Res. 2008, 47, 5048-5062.
  • 33. Marcus, Y. Electrostriction hi Electrolyte Solutions. Chem. Rev 2011, 111, 2761-2783.
  • 34. Marcus, Y. Viscosity В-Coefficients, Structural Entropies and heat Capacities, and the Effects of Ions on the Structure of Water. J. Sol. Chem. 1994, 23, 831-848.
  • 35. Pierotti, R. A. A Scaled Particle Theory of Aqueous and Nonaqueous Solutions. Chem. Rev 1976, 76, 717-726.
  • 36. Devine, W.; Lowe, В. M. Viscosity В-Coefficients at 15 and 25°C for Glycine. В-Alanine,
  • 4- Amino-N-butyric Acid, and б-Amino-n-hexanoic Acid in Aqueous Solution. J. Chem. Soc. A: Inorg. Phys. Theor. 1971,1971, 2113-2116.
  • 37. Jenkins, H. D. B.: Marcus, Y. Viscosity В-Coefficients of Ions in Solution. Chem. Rev 1995, 95, 2695-2724.
  • 38. Yau, Z.; Wang, J.; Liu, W. Lu, J. Apparent Molar Volumes and Viscosity В Coefficients of Some A-Amino Acids in Aqueous Solutions from 278.15 to 308.15 K, Thermochim. Ada 1999, 334, 17-27.
  • 39. Tsangaris, J. M.; Martin, R. B. Viscosities of Aqueous Solutions of Dipolar Ions. Arch. Biochem. Biophys. 1965,112, 267-272.
  • 40. Mason. L. S.: Kampmeyer, P. M.; Robinson, A. L. The Viscosities of Aqueous Solutions of Amino Acids at 25 and 35°. J. Am. Chem. Soc. 1952, 74, 1287-1290.
  • 41. Romero, С. M.; Beltran, A. Effect of Temperature and Concentration on the Viscosity of Aqueous Solutions of 3-Amiuopropanoic Acid, 4-Aminobutanoic Acid,
  • 5- Aminopentanoic Acid, 6-Aminohexanoic Acid. Rev. Colomb. Ouim. 2012, 41, 123-131.
  • 42. Daniel, J.; Colm, E. J. Studies in the Physical Chemistry of Amino Acids, Peptides and Related Substances: ЛТ. The Densities and Viscosities of Aqueous Solutions of Amino Acids. J. Am. Chem. Soc. 1936, 58, 415-423.
  • 43. Zhao, H.; Viscosity В-Coefficients and Standard Partial Molar Volumes of Amino Acids, and Their Roles in Interpreting the Protein (enzyme) Stabilization. Biophys. Chem. 2006, 122, 157-183.
  • 44. Mirikar, S. A.; Pawar, P. P; Bichile, G. K. Ultrasonic Velocity. Density, and Viscosity Measurement of Ammo Acid in Aqueous Electrolytic Solutions at 308.15K. 2015, 2, 19-25.
  • 45. Tyrrel, H. J. V; Harris, K. R. Diffusion in Liquids, Butterworths, London, 1984.
  • 46. Tyrrel, H. J. V. The Origin and Present Status of Fick's Diffusion Law. J. Chem. Ed. 1964, 41, 397-400.
  • 47. Taylor. G. Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube. Proc. R. Soc. London A 1953, 219, 186-203.
  • 48. Umecky, X; Kuga, X; Fuuazukuri, X Infinite Dilution Binary Diffusion Coefficients of Several a-Amiuo Acids in Water over a Temperature Range from (293.2 to 333.2) К with the Taylor Dispersion Technique. J. Chem. Eng. Data 2006, 51, 1705-1710.
  • 49. Ma. Y.; Zhu, С.; Ma, P: Yu. К. X Infinite Dilution Binary Diffusion Coefficients of Several a-Amiuo Acids in Water over a Temperature Range from (293.2 to 333.2) К with the Taylor Dispersion Technique. J. Chem. Eng. Data 2005, 50, 1192-1196.
  • 50. Longsworth, L. G. Diffusion Measurements, at 25° of Aqueous Solutions of Amino Acids. Peptides and Sugars. J. Am. Chem. Soc. 1953, 75, 5705-5709.
  • 51. Ellertou, H. D.; Reinfelds, G.; Mulcahy, D. E.; Dunlop, P. J. The Mutual Frictional Coefficients of Several Amino Acids hi Aqueous Solution at 25°. J. Phys. Chem. 1964, 68, 403^08.
  • 52. Ribeiro, A. C. F.; Rodrigo, M. M.; Banos. M. C. F.; Verissimo. L. M. P; Romero, С. M.; Yalente, A. J. M.; Esteso. M. A. Mutual Diffusion Coefficients of L-Glutamic Acid and Mouosodium L-Glutamate in Aqueous Solutions at T = 298.15 K. J. Chem. Thermodyn. 2014, 74, 133-137.
  • 53. Rodrigo, M. M.; Yalente, A. J. M.; Banos, M. C. F.; Verissimo, L. M. P.; Romero. С. M.; Esteso, M. A.; Ribeiro, A. C. F. Mutual Diffusion Coefficients of L-lysine in Aqueous Solutions. J. Chem. Thentiodyn. 2014, 74, 227-230.
  • 54. Rodrigo, M. M.; Esteso, M. A.; Banos, M. C. F.; Verissimo, L. M. P.: Romero, C. M.: Suarez, A. F.; Ramos. M. L.; Yalente, A. J. M.; Burrows, H. D.: Ribeiro, A. C. F. The Structure and Diffusion Behavior of the Neurotransmitter Г-Aminobutyric Acid (GABA) in Neutral Aqueous Solutions. J. Chem. Thentiodyn. 2017,104,110-117.
  • 55. Rodriguez, D. M.; Verissimo, L. M. R; Banos, M. C. F.; Rodrigues, D. F. S. L.; Rodrigo, M. M.; Esteso, M. A.; Romero, С. M.: Ribeiro, A. C. F. Limiting Values of Diffusion Coefficients of Glycine, Alanine, -Aminobutyric Acid, Norvaline and Norleucine in a Relevant Physiological Aqueous Medium. Em: Phys. J. E. 2017, 40, 21-25.
  • 56. Rodrigo, M. M.; Esteso, M. A.; Yerissimo, L. M. R; Romero, С. M.; Ramos, M. L.; Justino, L. L. G.; Burrows, H. D.; Ribeiro, A. C. F. Diffusion and Stmctural Behavior of the DL-2-Aminobutyric Acid. J. Chem. Thentiodyn. 2019,135 (2019), 60-67.
  • 57. Savage, J. J.; Wood, R. H. Enthalpy of Dilution of Aqueous Mixtures of Amides. Sugars, Urea, Ethylene Glycol, and Pentaerythritol at 25°C: Enthalpy of Interaction of the Hydrocarbon. Amide, and Hydroxyl Functional Groups in Dilute Aqueous Solutions. J. Sol. Chem. 1976, 5, 733-750.
  • 58. Desnoyers, J. E.; Penon. G.: Avedikian. L.; Morel, J.-P. Enthalpies of the Urea-Tert- Butanol-Water System at 25°C. J. Sol. Chem. 1976, 5 (1976), 631-644.
 
Source
< Prev   CONTENTS   Source   Next >