• Alzheimer disease
  • dementia
  • curcumin
  • Curcuma longa
  • green tea
  • epicatechin
  • Nigella sativa


Aggarwal, В. B.; Deb, L.; Prasad, S. Curcumin differs from tetraliydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules. 2014, 20,185-205.

Agostinho P; Cunha, R. A.; Oliveira, C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Cun: Pham. Des. 2010,16,2766-2778.

Ahmed, T.; Gilani, A. H.; Hosseinmardi, N.; Semnanian, S.; Enam, S. A.; Fathollahi, Y. Curcuminoids rescue long-term potentiation impaired by amyloid peptide in rat hippocampal slices. Synapse. 2011, 65, 572-582.

Aisen P. S.; Sclmeider L. S.; Sano, M.; Diaz-Arrastia, R.; van Dyck, С. H.; Weiner M. F.; Bottiglieri, T.; Jin, S.; Stokes, K.T.; Thomas, R.G.; Thai, L.J.: Alzheimer disease cooperative study. Fligh-dose В vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008, 300, 1774-1783.

Akram Khan, M.; Afzal, M. Chemical composition of Nigella sativa Linn: Part 2. Recent advances. Inflammopharmacology. 2016, 24, 67-79.

Al-Majed, A. A.; Al-Omar, F. A.; Nagi, M. N. Neuroprotective effects of thymoquinone against transient forebrain ischemia in the rat hippocampus. Eur. J. Pharmacol. 2006,543, 40-47.

Alhebshi, A. H.; Gotoh, M.; Suzuki, I. Thymoquinone protects cultured rat primary neurons against amyloid beta-induced neurotoxicity. Biochem. Biophys. Res. Commun. 2013, 433, 362-367.

Alhebshi, A. H.; Odawara, A.; Gotoh, M.; Suzuki, I. Thymoquinone protects cultured hippocampal and human induced pluripotent stem cells-derived neurons against alpha- synuclein-induced synapse damage. Neurosci. Lett. 2014, 570,126-131.

Aliev, G.; Shahida, K.; Gan, S. H.; Firoz, C.; Khan, A.; Abuzenadah, A. M.; Kamal, W.; Kamal, M. A.; Tan, Y.; Qu, X.; Reale, M. Alzheimer disease and type 2 diabetes mellitus: the link to tyrosine hydroxylase and probable nutritional strategies. CNS Neurol. Disord. Drug Targets. 2014,13, 461-411.

Andrade C.; Radhakrishnan, R. The prevention and treatment of cognitive decline and dementia: an overview of recent research on experimental treatments. Indian J. Psychiatty. 2009, 51, 12-25.

Azizi, Z.; Ebrahimi, S.; Saadatfar, E.; Kamalinejad, M; Majlessi, N. Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia. Behav. Pharmacol. 2012, 23, 241-249.

Azzubaidi, M. S.; Saxena, A. K.; Talib, N. A.; Ahmed, Q. U.; Dogarai, B. B.Protective effect of treatment with black cumin oil on spatial cognitive functions of rats that suffered global cerebrovascular hypoperfusion. Acta Neurobiol. Exp. 2012, 72,154-165.

Badary, O. A.; Taha, R. A.; Gamal el-Din, A. M.; Abdel-Wahab, M. H. Thymoquinone is a potent superoxide anion scavenger. Drug Chem. Toxicol. 2003,26, 87-98.

Balbaa, M.; Abdulmalek, S. A.; Khalil, S. Oxidative stress and expression of insulin signaling proteins in the brain of diabetic rats: role of Nigella sativa oil and antidiabetic drugs. PLoS One. 2017,12, e0172429. 10.1371/journal.pone.0172429

Balbaa, M.; El-Zeftawy, M.; Ghareeb, D.; Taha, N.; Mandour, A. W. Nigella sativa relieves the altered insulin receptor signaling in streptozotocin-induced diabetic rats fed with a high-fat diet. Oxid. Med. Cell. Longew 2016, 2016, 2492107. 10.1155/2016/2492107

Bargi, R.; Asgharzadeh, F.; Beheshti, F.; Hosseini, M; Sadeghnia, H. R.; Khazaei, M. The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine. 2017, 96,173-184.

Begum, A.N.; Jones, M.R.; Lim, G. R; Morihara, T.; Kim, P.; Heath, D. D.; Rock, C. L.: Pruitt, M. A.; Yang, F.; Hudspeth, B.; Hu, S.; Faull. K. F.; Teter. B.; Cole, G.M.; Frautschy, S. A. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Phannacol. Exp. Ther. 2008, 326: 196-208.

Biasibetti, R.; Tramontina, A. C.; Costa, A. P; Dutra, M. F.; Quincozes-Santos, A.; Nardin, P.; Bernardi, C. L.; Wartchow, К. M.; Lunardi, P. S.; Goncalves, C. A. Green tea (-) epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav. Brain Res. 2013, 236, 186-193.

Bieschke, J.; Russ, J.; Friedrich, R. P.; Ehrnhoefer, D. E., Wobst, H.; Neugebauer, K.; Wanker, E. E. EGCG remodels mature a-synuclein and amyloid-p fibrils and reduces cellular toxicity. Proc. Natl. Acad. Sci. USA. 2010,107, 7710-7715.

Bimonte, S.; Barbieri, A.; Leongito, M.; Piccirillo, M.; Giudice, A.; Pivonello, C.; de Angelis, C; Granata, V.; Palaia, R.; Izzo, F. Curcumin anticancer studies in pancreatic cancer. Nutrients. 2016,8,433.

Bimonte, S.; Cascella, M.; Schiavone, V.; Mehrabi-Kermani, F.; Cuomo, A. The roles of epigallocatechin-3-gallate in the treatment of neuropathic pain: an update on preclinical in vivo studies and future perspectives. Drug. Des. De’el. They. 2017,11, 2737-2742.

Bin Sayeed, M. S.; Asaduzzaman, M.; Morshed H., Hossain, M. M; Kadir, M. F.; Rahman, M. R. The effect of Nigella sativa Linn, seed on memory, attention and cognition in healthy human volunteers. J. Ethnopharmacol. 2013,14$, 780-786.

Bin Sayeed, M. S.; Shams, T; Faliim Hossain, S.; Rahman, M. R.; Mostofa, A.; Fahim Kadir, M., Mahmood, S.; Asaduzzaman, M. Nigella sativa L. seeds modulate mood, anxiety and cognition in healthy adolescent males. J. Ethnopharmacol. 2014,152,156-162.

Cascella, M.; Bimonte, S.; Barbieri, A.; Del Vecchio, V.; Muzio, M. R.; Vitale, A.; Benincasa, G.; Ferriello, A. B.; Azzariti, A.; Arra, C.; Cuomo, A. Dissecting the potential roles of Nigella sativa and Its constituent thymoquinone on the prevention and on the progression of Alzheimer’s disease. Front. Aging Neurosci. 2018,10, 16. 10.3389/fnagi.2018.00016.

Cascella M.; Bimonte S.; Muzio M. R.; Schiavone V; Cuomo A. The efficacy of epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect. Agents Cancer. 2017,12:36.

Cascella, M.; Palma, G.; Barbieri, A.; Bimonte, S.; Amruthraj, N. J.; Muzio, M. R.; del Vecchio, V.; Rea, D.; Falco, M.; Luciano, A.; Cuomo, A. Role of Nigella sativa and its constituent thymoquinone on chemotherapy-induced nephrotoxicity: evidences from experimental animal studies. Nutiients. 2017, 9(6), 625. 10.3390/nu9060625.

Chang, X.: Rong, C.; Chen. Y.; Yang, C.; Hu, Q.; Mo, Y.; Zhang, C.; Gu, X.; Zhang, L.; He, W.; Cheng, S.; Hou, X.; Su, R.; Liu, S.; Dun, W.; Wang, Q.; Fang, S. (-)-Epigallocatechin- 3-gallate attenuates cognitive deterioration in Alzheimer’s disease model mice by upregulating neprilysin expression. Exp. Cell. Res. 2015, 334, 136-145.

Cheng-Chung Wei, J.; Huang, H. C.; Chen. W. J.; Huang, C. N.; Peng. С. H.; Lin, C. L. Epigallocatechin gallate attenuates amyloid p-induced inflammation and neurotoxicity in EOC 13.31 microglia. Eur. J. Pharmacol. 2016, 770, 16-24.

Chesser, A. S.; Ganeshan, V; Yang, J.; Johnson, G. V. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutt: Neurosci. 2016,19, 21-31.

Cianciulli, A.; Calvello, R.; Porro, C.; Trotta, T.; Salvatore, R.; Panaro, M. A. PI3k'Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. Int. Imnnmopharmacol. 2016,36, 282- 290.

Cobourne-Duval, M. К.; Taka, E.; Mendonca, P.; Bauer, D.; Soliman, K. F. The antioxidant effects of thymoquinone in activated BV-2 murine microglial cells. Neurochem. Res. 2016, 41, 3227-3238.

De Domenico S.; Giudetti, A. M. Nutraceutical intervention in ageing brain. J.G.G., 2017, 65, 79-92.

de la Monte, S. M. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Cun: Alzheimer Res. 2012,9, 35-66.

de la Torre, J. C. The vascular hypothesis of Alzheimer’s disease: bench to bedside and beyond. Neurodegener. Dis. 2010, 7, 116-21.

Doolaanea, A. A.; Mansor, N.; Mohd Nor, N. H.; Mohamed, F. Co-encapsulation of Nigella sativa oil and plasmid DNA for enhanced gene therapy of Alzheimer’s disease. J. Microencapsul. 2016, 33, 114-126.

Elmaci, I.; Altinoz, M. A. Thymoquinone: an edible redox-active quinone for the pharmacotherapy of neurodegenerative conditions and glial brain tumors. A short review. Biomed. Pharmacother. 2016, S3, 635-640.

Feng, W. Y. Metabolism of green tea catechins: an overview. Cun: Drug. Metab. 2006, 7, 755-809.

Frautschy, S. A.; Hu, W.; Kim, P.; Miller, S. A.; Chu, T.; Harris-White, M. E.; Cole, G. M. Phenolic anti-inflammatory antioxidant reversal of Ар-induced cognitive deficits and neuropathology. NeurobioI. Aging. 2001, 22, 993-1005.

Garcia-Alloza, M.; Borrelli, L. A.; Rozkalne, A.; Hyman, В. T; Bacskai, B. J. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem. 2007,102,1095-104.

Garcia-Alloza, M.; Robbins, E. M.; Zhang-Nunes, S. X.; Purcell, S. M.; Betensky, R. A.; Raju, S.; Prada, C.; Greenberg, S. M.; Bacskai, B. J.; Frosch, M. P. Characterization of amyloid deposition in the APPswe/PSldE9 mouse model of Alzheimer disease. Neurobiol. Dis. 2006, 24, 516-524.

Gibellini, L.; Bianchini, E.; De Biasi, S.; Nasi, M.; Cossarizza, A; Pinti, M. Natural compounds modulating mitochondrial functions. End. Based Complement. Alternat. Med. 2015, 1-13.

Giunta, В.; Hou, H.; Zhu, Y.; Salemi, J.; Ruscin, A.; Shytle, R. D.; Tan, J. Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice. Neurosci. Lett. 2010, 471, 134-138.

Goozee, K. G.; Shah, T. M.; Sohrabi, H. R.; Rainey-Smith, S. R.; Brown, B.; Verdile, G.; Martins, R. N. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. Br. J. Nutr. 2016,115,449-65.

Ehrnhoefer, D. E.; Bieschke, J.; Boeddrich, A., Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E. E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol. 2008,15, 558-566.

Eng, Q. Y.; Thanikachalam, P. V.; Ramamurthy, S. Molecular understanding of Epigallo- catechin gallate (EGCG) in cardiovascular and metabolic diseases. J. Ethnopharmacol. 2018, 210, 296-310.

Hamaguchi, T.; Ono, K.; Murase, A.; Yamada, M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-p aggregation pathway. Am. J. Pathol. 2009,175, 2557-2565.

He, M.; Liu. M. Y.; Wang, S.; Tang, Q. S.; Yao, W. F.; Zhao, H. S.; Wei, M. J. Research on EGCG improving the degenerative changes of the brain in AD model mice induced with chemical drugs. Zhong Yao Cai. 2012, 35, 1641-1644.

Hosseinzadeh, H.; Parvardeh, S.; Asl, M. N.; Sadeghnia, H. R.; Ziaee, T. Effect of thymoquinone and Nigella sativa seed oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. Phytomedicine. 2007,14, 621-627.

Huang, Y.; Cao, S.; Zhang, Q.; Zhang, H.; Fan, Y.; Qiu, F.; Kang, N. Biological and pharmacological effects ofhexahydrocurcumin, a metabolite of curcumin. Arch. Biochem. Biophys. 2018, 646, 31-37.

Huang, H-С.; Tang, D.; Xu, K.; Jiang, Z-F. Curcumin attenuates amyloid-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/ GSIC-3 signaling pathway. J. Recept. Signal. Transduct. Res. 2014,34,26-37.

Iadecola, C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 2010,120, 287-296.

Ibrahim AbdEl Fattah, L.; Zickri, M. B.; Aal, L. A.; Heikal, O.; Osama, E. The effect of thymoquinone, alpha7 receptor agonist and alpha7 receptor allosteric modulator on the cerebral cortex in experimentally induced Alzheimer’s disease in relation to MSCs activation. Int. J. Stem Cells. 2016, 9, 230-238.

Ismail, N.; Ismail, M.; Latiff, L. A.; Mazlan, M.; Mariod, A. A. Black cumin seed (Nigella sativa linn.) oil and its fractions protect against beta amyloid peptide-induced toxicity in primary cerebellar granule neurons. J. Food Lipids. 2008,15, 519-533.

Ismail, N.; Ismail, M.; Mazlan, M.; Latiff, L. A.; Imam, M. U.; Iqbal, S.; Azmi, N. H.; Ghafar, S. A.; Chan, K. W. Thymoquinone prevents beta-amyloid neurotoxicity in primary cultured cerebellar granule neurons. Cell Mol. Neurobiol. 2013,33,1159-1169.

Ismail, N.; Ismail, M.; Azmi, N. H.; Bakar, M. F. A.; Yida, Z.; Stanslas, J.;Sani, D.; Basri, H.; Abdullah, M. A. Beneficial effects of TQRF and TQ nano- and conventional emulsions on memory deficit, lipid peroxidation, total antioxidant status, antioxidants genes expression and soluble Ap levels in high fat-cholesterol diet-induced rats. Chem. Biol. Interact. 2017a, 275, 61-7359.

Ismail, N.; Ismail, M.; Azmi, N. H.; Bakar, M. F. A.; Yida, Z.; Abdullah, M. A.; Basri, H. Thymoquinone-rich fraction nanoemulsion (TQRFNE) decreases Ap40 and Ap42 levels by modulating APP processing, up-regulating IDE and LRP1, and down-regulating BACE1 and RAGE in response to high fat/cholesterol diet-induced rats. Biomed. Pharmacother. 2017b, 95, 780-788.

Jia,N.; Han, K.; Kong, J. J.; Zhang, X. M.; Sha, S.; Ren, G. R.; Cao, Y. P. (-)-Epigallocatechin- 3-gallate alleviates spatial memory impairment in APP/PS1 mice by restoring IRS-1 signaling defects in the hippocampus. Mol. Cell. Biochem. 2013, 380, 211-218.

Joseph, A. I.; Edwards, R. L.; Luis, P. B.; Presley, S. H.; Porter, N. A.; Schneider, C. Stability and anti-inflammatory activity of the reduction-resistant curcumin analog, 2,6-dimethyl- curcumin. Org. Biomol. Chem. 2018,16, 3273-3281.

Kennedy, K.; Tucci M. A.; Benghuzzi, H. A. Comparison of potential preventive therapeutic agents green tea, thymoquinone, and dilinoleoylphosphatidylcholine on human neuroblastoma cells. Biomed. Sci. Instrum. 2014,50,132-139.

Khan, A.; Vaibhav, K.; Javed, H.; Khan, M. M.; Tabassum, R.; Ahmed, M. E.; Srivastava, P; Khuwaja, G.; Islam, F.; Siddiqui, M. S.; Safhi, M. M.; Islam, F. Attenuation of Abeta- induced neurotoxicity by thymoquinone via inhibition of mitochondrial dysfunction and oxidative stress. Mol. Cell. Biochem. 2012, 369, 55-65.

Kundu, J.; Chun, К.-S.; Aruoma, O. I.; Kundu J. K. Mechanistic perspectives on cancer chemoprevention'chemotherapeutic effects of thymoquinone. Mutat. Res. 2014,768,22-34.

Lee, H.; Bae, J. H.; Lee, S. R. Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils. J. Neurosci. Res. 2004, 77, 892-900.

Lee, Y.J.; Choi. D.Y.; Yun, Y. R, Han, S. B.; Oh,K. W„ Hong, J. T. Epigallocatechm-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J. Nutr. Biochem. 2013,24, 298-310.

Li, Q.; Gordon, M.; Tan, J., Morgan, D. Oral administration of green tea epigallocatechin- 3-gallate (EGCG) reduces amyloid beta deposition in transgenic mouse model of Alzheimer’s disease. Exp. Neurol. 2006,198, 576.

Lim, G. P.; Chu, X; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G. M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 2001, 27, 8370-8377.

Lin, C. L.; Chen, T. F.; Chiu, M. J.; Way, T. D.; Lin, J. K. Epigallocatechin gallate (EGCG) suppresses beta-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 beta activation. Neurobiol. Aging. 2009, 30, 81-92.

Ma, Q. L.; Yang, F.; Rosario, E. R.; Ubeda, O. J.; Beech, W.; Gant, D. J.; Chen, P. P.; Hudspeth, B.; Chen, C.; Zhao, Y.; Vinters, H. V; Frautschy, S. A.; Cole, G. M. Beta- amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci. 2009, 29, 9078-9089.

Miyasaka, X; Xie, C; Yoshimura, S.; Shinzaki, Y.; Yoshina, S.; Kage-Nakadai, E.; Mitani, S.; Ihara, Y. Curcumin improves tau-induced neuronal dysfunction of nematodes. Neurobiol. Aging. 2016, 39, 69-81.

Mosher K. I.; Wyss-Coray, X Microglial dysfunction in brain aging and Alzheimer’s disease. J. Biochemical. Pharmacol. 2014, 88, 594-604.

Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s p-amyloid fibrils in vitro. J. Neurosci. Res. 2004, 75, 742-750.

Park, S.-Y.; Kim, H.-S.; Cho, E.-K.; Kwon, B. Y.; Phark, S.; Hwang. K. W.; Sul, D. Curcumin protected PC 12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem. Toxicol. 2008, 46, 2881-2887.

Park, S. Y.; Kim, Y. H.; Kim, Y.; Lee, S. J. Aromatic-turmerone’s anti-inflammatory effects in microglial cells are mediated by protein kinase A and heme oxygenase-1 signaling. Neurochem. Int. 2012, 61, 767-77.

Quinn, J. F.; Raman, R.; Thomas, R. G.; Yurko-Mauro, K.; Nelson, E. B.; Van Dyck, C.; Galvin, J. E.; Emond, J.; Jack, C. R.; Weiner, M.; Shinto, L.; Aisen, P. S. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA, 2010,304, 1903-1911.

Ragheb, A.; Attia, A.; Eldin, W.; Elbarbry, E; Gazarin, S.; Shoker A. The protective effect of thymoquinone, an anti-oxidant and anti-inflammatory agent, against renal injury: a review. Saudi J. Kidney Dis. Transpl. 2009, 20, 741-752.

Rahmani, A. H.; Al shabrmi Fahad, M.; Allemailem, K. S.; Aly, S. M.; Khan, M. A. Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. Biomed. Res. Int. 2015; 2675:925640. doi:10.1155/2015/925640.

Rezai-Zadeh, K.; Arendash, G. W.; Hou, H.; Fernandez, E; Jensen, M.; Runfeldt, M.; Shytle, R. D.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008,1214, 177-187.

Rezai-Zadeh, K.; Shytle, D.; Sun,N.; Mori, X; Hou, H.; Jeanniton, D.; Ehrhart, J.; Townsend, K.; Zeng, J.; Morgan, D.; Hardy, J.; Town, X; Tan, J. Green tea epigallocatechin-3- gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci. 2005, 25, 8807-14.

Rizzi, L.; Rosset, I.; Roriz-Cruz, M. Global epidemiology of dementia: Alzheimer’s and vascular types. Biomed. Res. Int. 2014; 2074:908915.

Shi, L. Y.; Zhang, L.; Li, H.; Liu, T. L.; Lai, J. C.; Wu, Z. B.; Qin, J. Protective effects of curcumin on acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. J Pharmacol Rep. 2018, 70, 1040-1046.

Shytle, R. D.; Bickford, P.C.; Rezai-zadeh, K.; Hou, L.; Zeng, J.; Tan, J.; Sanberg, P. R.; Sanberg, C. D.; Roschek, B. Jr.; Fink, R. C.; Alberte, R. S. Optimized turmeric extracts have potent anti-amyloidogenic effects. Cun: Alzheimer Res. 2009, 6, 564-571.

Shytle, R. D.; Tan, J.; Bickford, P. C.; Rezai-Zadeh, K.; Hou, L.; Zeng, J.; Sanberg, P. R.; Sanberg, C. D.; Alberte, R. S.; Fink, R. C.; Roschek, B. Jr. Optimized turmeric extract reduces p-amyloid and phosphorylated Tau protein burden in Alzheimer’s transgenic mice. Cun: Alzheimer Res. 2012, 9, 500-506.

Sinha, S.; Lieberburg, I. Cellular mechanisms of beta-amyloid production and secretion. Proc. Natl. Acad. Sci. USA. 1999,96, 11049-11053.

Small, G. W.; Siddarth, P; Li, Z.; Miller, K. J.; Ercoli, L.; Emerson, N. D.; Martinez, J.; Wong, К. P, Liu, J.; Merrill, D. A.; Chen, S. T.; Henning, S. M.; Satyamurthy, N.; Huang, S. C.; Heber, D.; Barrio, J. R. Memory and brain amyloid and Tau effects of a bioavailable form of curcumin in non-demented adults: a double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatiy. 2018, 26, 266-277.

Smith, A.; Giunta, B.; Bickford, P. C.; Fountain, M.; Tan, J.; Shytle, R. D. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin- 3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int. J. Phann. 2010, 3S9, 207-212.

Tang, M.; Taghibiglou, C. The mechanisms of action of curcumin in Alzheimer’s disease. J. Alzheimer'sDis. 2017, 58, 1003-1016.

Thomas, P; Wang, Y. J.; Zhong, J. H.; Kosaraju, S., O’Callaghan, N. J.; Zhou, X. F.; Fenech, M. Grape seed polyphenols and curcumin reduce genomic instability events in a transgenic mouse model for Alzheimer’s disease. Mutat. Res. 2009; 661, 25-34.

Wang, J. Y. Nucleo-cytoplasmic communication in apoptotic response to genotoxic and inflammatory stress. Cell Res. 2005,15, 43-48.

Wang, Y. J.; Thomas, P; Zhong, J. H.; Bi, F. F.; Kosaraju, S.; Pollard, A.; Fenech, M.; Zhou, X. F. Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox. Res. 2009,15, 3-14.

Xiong, Z.; Hongmei, Z.; Lu, S.; Yu, L. Curcumin mediates presenilin-1 activity to reduce -amyloid production in a model of Alzheimer’s disease. Pharmacol. Rep. 2011, 63, 1101-1108.

Yan, R. Physiological functions of the p-site amyloid precursor protein cleaving enzyme 1 and 2. Front. Mol. Neurosci. 2017,10, 97.

Yang, F.; Lim, G. P; Begum, A. N.; Ubeda, O. J.; Sirmnons, M. R.; Ambegaokar, S. S.; Chen, P. P; Kayed, R.; Glabe, C. G.; Frautschy, S. A.; Cole, G. M. Curcumin inhibits formation of amyloid p oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280, 5892-5901.

Zhang, C.; Browne, A.; Child, D.; Tanzi, R. E. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. J. Biol. Chem. 2010, 285, 28472-28480.

Zhang, F.; Kang, Z.; Li, W.; Xiao, Z.; Zhou, X. Roles of brain-derived neurotrophic factor/ tropomyosin-related kinase В (BDNF/TrkB) signalling in Alzheimer’s disease. J. Clin. Neurosci. 2012,19, 946-949.

Zhang, L.; Fiala, M.; Cashman, J.; Sayre, J.; Espinosa, A.; Mahanian, M.; Zaghi, J.; Badmaev, V; Graves, M. C.; Bernard, G.; Rosenthal, M. Curcuminoids enliance amyloid-p uptake by macrophages of Alzheimer’s disease patients. J. Alzheimers Dis. 2006,10,1-7. Zhang, Z. X.; Li, Y. B.; Zhao, R. R Epigallocatechin Gallate Attenuates p-Amyloid Generation and Oxidative Stress Involvement of PPARy in N2a APP695 Cells. Neurochem. Res. 2017,42,468-480.

Zhang, X.; Li, Y.; Xu, H.; Zhang, Y. The y-secretase complex: from structure to function. Front. Cell Neurosci. 2014, S, 427.

Zotova, E.; Nicoll, J. A.; Kalaria, R.; Hohnes, C.; Boche, D. Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimers Res. Ther. 2010,2(1), 1.

< Prev   CONTENTS   Source   Next >