Hyperspectral Satellites and System Design

Spaceborne Spectroscopy and ImagingHyperspectral Imaging ApproachesDispersive Elements Based ApproachWhiskbroom ModePushbroom ModeSpectral Filters Based ApproachLinear Variable FiltersOn-Chip Stepped Fabry-Pérot FiltersElectronically Tunable FiltersSnapshot Hyperspectral ImagersMulti-Aperture Filtered CameraCoded Aperture Snapshot Spectral ImagerImage Mapping SpectrometrySnapshot Hyperspectral Imaging Fourier Transform SpectrometerOn-Chip Fabry-Pérot FiltersHyperspectral Imaging from Aircraft to SpacecraftScientific Rationale for Hyperspectral Remote SensingHistory of Development of Airborne Hyperspectral ImagersFirst Airborne Hyperspectral Imager—AISAirborne Imaging Spectrometer Development Between the 80's and 90'sEarly Imaging Spectrometer Development in CanadaPlanned NASA Orbiting Imaging Spectrometers in the 1990sTwo Major Airborne Hyperspectral Sensor Developments Since the BeginningDifference Between Airborne and Spaceborne Hyperspectral ImagingAVIRIS and Its Next GenerationCASI and Its Spectrally and Spatially Extended SiblingsReferencesOverview of Hyperspectral Sensors on OrbitsSpaceborne Hyperspectral Sensors at a GlanceUltraviolet and Visible Imagers and Spectrographic ImagersHyperspectral Imager (HSI) for the LEWIS MissionModerate Resolution Imaging Spectroradiometer on Terra and Aqua SatellitesHyperion Onboard EO-1 MissionCompact High-Resolution Imaging Spectrometer (CHRIS) on PROBA SatelliteMedium-Resolution Imaging Spectrometer Onboard ESA’s ENVISATVisible and Infrared Thermal Imaging Spectrometer for Rosetta, Venus-Express, and NASA Dawn Planetary MissionsCompact Reconnaissance Imaging Spectrometer for MarsMoon Mineralogy MapperFourier Transform Hyperspectral Imager Onboard Chinese Environment Protection Satellite HJ-1AHyperspectral Imager Onboard Indian Mini Satellite-1Advanced Responsive Tactically Effective Military Imaging Spectrometer Onboard TacSat-3Hyperspectral Imager for the Coastal Ocean Onboard the International Space StationVisible and Near-Infrared Imaging Spectrometer Aboard Chang’E 3 SpacecraftOcean and Land Color Imager (OLCI) on Sentinel-3AMiniature High-Resolution Imaging Spectrometer on GHGSat-DAalto-1 Spectral Imager on a 3U NanosatelliteDLR Earth Sensing Imaging Spectrometer on the International Space StationHyperScout Hyperspectral Camera on a 6U Nanosatellite (GomX-4B)Advanced Hyperspectral Imager (AHSI) on Chinese Gaofen-5 SatelliteItalian Hyperspectral Satellite PRISMAHyperspectral Image Suite Aboard the International Space StationGerman Hyperspectral Imager for Environment Mapping and Analysis Program (EnMAP)Moons and Jupiter Imaging Spectrometer of ESA’s Jupiter Icy Moons ExplorerReferencesOverview of Applications of Hyperspectral Satellites in Earth ObservationsRemote Sensing Applications From Multispectral to Hyperspectral ImagingAgriculture and Precision FarmingCrop Stress Mitigation and Site Specific ManagementNutrient DeficienciesWater Content in Crop Canopy and SoilWeed Detection and MappingMapping of Crop Disease and Insect DamageCrop Productivity and YieldSoil Quality/ErosionAgro-Environmental Health Monitoring and ForecastingEnvironment and SustainabilityWetland ApplicationsEnvironmental GeologyLand Degradation and Soils MappingClimate ChangeMarine, Coastal, and Inland WatersApplications in Marine EnvironmentsImpacts of Land Use and River RunoffEutrophication and Harmful Algae Blooms in Lakes, Rivers and Coastal areasFisheries ApplicationsLand-Related Water ApplicationsCoastal Zone Environment and Change DetectionForestry ApplicationsHyperspectral Forest ProductsForest InventoryForest ChemistryKyoto ProductsGeology and Mineral ExplorationLithologic MappingGeobotanical MappingDefense and SecurityTarget DetectionSpectral Unmixing Based Target DetectionStochastic Detection AlgorithmsTerrain MappingSoil Characterization and DisturbanceMarine ApplicationsNear-Shore BathymetryDetection of LandminesUsing VNIR Hyperspectral ImageryUsing SWIR Hyperspectral ImageryUsing TIR Hyperspectral Imagery and Combined SensingReferencesMission Concept and Trade-Off StudyHyperspectral Satellite ConfigurationHyperspectral Satellite Earth OrbitsLow Earth OrbitsSun-Synchronous OrbitsGeosynchronous and Highly Elliptical OrbitsMission Development PhasesAnalysis of Users NeedsUnderstanding Users’ NeedsEnvironmentAtmospheric Quality MonitoringFreshwater Quality MonitoringWetlands Habitat MonitoringLand Reclamation MonitoringCoastal and Inland WatersEnhanced Water Quality MonitoringWater ClarityMonitoring and Assessing Harmful Algal BloomsAgricultureAnnual Crop Inventory ReportCrop Health MonitoringCrop InsurancePrecision FarmingNatural ResourceForest Inventory ManagementMonitoring and Management of Forest HealthForest Biomass EstimatesEnvironmental Impact Monitoring of Mining OperationsLithological and Mineral MappingDefense and SecurityA Hyperspectral Mission Concept Case StudyMission Description and RequirementsOrbit and Coverage Traded-OffOrbit SelectionNumber of SatellitesOrbit Altitude SelectionHyperspectral Imaging Technology Trade-OffTrade-Off of Data Collection, Compression, Storage, and DownlinkMission Concept OverviewSpace SegmentGround SegmentSystem CalibrationConcept of OperationPayload ConceptOptical UnitInstrument Control and Onboard Data HandlingSpacecraft ConceptSelection of Spacecraft PlatformSpacecraft Platform StructureAttitude and Orbit Control SubsystemPower SubsystemThermal Control SubsystemTelemetry/Telecommand and Data DownlinkOnboard Control and Data HandlingPropulsionLaunch OptionsLaunch Requirements-Level Launchers-Level LaunchersReferencesOptical System and DesignOptical System OverviewInstrument Front-End FunctionsInput Port CoverExternal BafflesPointing Mirrors and GimbalsSpectral Calibration SourceRadiometric Calibration SourceFore-OpticsTelescopeSlit AssemblyInternal BafflesSpectrometers and Associated Detector ArraysVNIR SpectrometerVNIR Detector Array(s)SWIR SpectrometerSWIR Detector Array(s)Overlapping Spatial and Spectral SamplingPreamplifiersFocal Plane CoolingPanchromatic CameraPanchromatic Linear DetectorReadout ElectronicsVNIR Array ReadoutSWIR Array ReadoutPanchromatic ReadoutInstrument StructureOptical Design ConsiderationsTelescope Design ConsiderationsSpectrometer Design ConsiderationsTelescope DesignRefracting TelescopesReflecting TelescopesCatadioptric TelescopesTelescope Design ExamplesTelescope A—A Non-Coaxial TMATelescope B—An On-Axis TMATelescope C—A Two-Mirror Compact TelescopeSlit Scan SpectrometersPrinciple of Dispersive SpectrometersGrating SpectrometersEbert-Fastie SpectrometerCzerny-Turner SpectrometerRowland Spectrometer and Paschen-Runge SpectrometerPrism SpectrometersTwo Typical Spectrometers Used in Spaceborne Hyperspectral ImagersOffner SpectrometersDyson SpectrometersDyson Spectrometer Versus Offner SpectrometerSpectrometer Design ExamplesA Dyson Spectrometer for VNIRA Dyson Spectrometer for SWIRA Grating Spectrometer for VNIRA Grating Spectrometer for SWIRA Prism Spectrometer for SWIRA Dyson Spectrometer for VNIR with a Larger Entrance PupilComparison of the Design ExamplesSlit Assembly and Beam SplitterDistributing Light Using a Slit AssemblyDistributing Light Using a Beam SplitterDepolarizerPolarization SensitivityMERIS Type DepolarizerDual Babinet Depolarizer and VariantExamples of Depolarizers in Space MissionsImaging Spectrometer Optical Design ExamplesImaging Spectrometer System 1System 1 OverviewSystem 1 VNIR Grating SpectrometerSystem 1 SWIR Prism SpectrometerImaging Spectrometer System 2System 2 OverviewSystem 2 VNIR Grating SpectrometerSystem 2 SWIR SpectrometerImaging Spectrometer System 3System 3 OverviewSystem 3 VNIR SpectrometerSystem 3 SWIR SpectrometerSummary of Three Designed Imaging Spectrometer SystemsReferencesFocal Plane ArraysFrom Instrument Requirements to Focal Plane Array SpecificationCCD FPAsCMOS FPAsMonolithic CMOS FPAsHybrid CMOS FPAsComparison CCD Versus CMOS FPAsSwir FPAsHgCdTe FPAsInGaAs FPAsHgCdTe Versus InGaAs for SWIR FPAsHyperspectral FPAsConsiderations of FPA SelectionDetector Pixel SizeQuantum EfficiencyDark CurrentDark Current NonuniformityPhoto-Response NonuniformityReadout NoiseReferencesHyperspectral Imager System Performance ModelingConfiguration of Exemplary Hyperspectral Imaging SystemsTelescopeSpectrometersDetector ArraysSignal-to-Noise Ratio SimulationSignal-to-Noise ModelSignal ModelNoise ModelSaturation Signal ModelAssumptions for SNR SimulationInput RadianceQuantum EfficiencyDetector ParametersGrating EfficiencyOptical ThroughputSpectral Dispersion/f Noise and Electronics NoiseAgeing DegradationResults of SNR SimulationDual Dyson Hyperspectral ImagersDual Offner Hyperspectral ImagersDual Prism Hyperspectral Imagers—Case 1Dual Prism Hyperspectral Imagers—Case 2Dual Prism Hyperspectral Imagers—Case 3Summary of SNR SimulationModeling Modulation Transfer FunctionMTF ModelAssumptions for MTF ModelingMTF ResultsModeling Spectral ResponseSpectral Response ModelSpectral Response ResultsPoint Spread Function AnalysisPoint Spread Function ModelPoint Spread Function Modeling ResultsReferencesBasics of Thermal and Mechanical DesignThermal and Mechanical DesignThermal EnvironmentSunlightAlbedoEarth InfraredInterplanetary EnvironmentsPassive Thermal ControlSurface FinishInsulationRadiatorActive Thermal ControlHeatersThermoelectric CoolerStirling Cryocooler and Pulse Tube CryocoolerHeat PipeThermal Design AnalysisThermal Design Process OverviewHyperspectral Satellites Thermal Design ConsiderationsHyperspectral Sensor Thermal Design ExamplesHyperion Thermal DesignCRISM Thermal DesignEnMAP Thermal DesignStructure Analysis and ConsiderationMechanismsThermal and Structure Design ExamplesVIRTIS for Three Planetary MissionsVIRTIS Thermal DesignVIRTIS Structure DesignPRISMA Hyperspectral ImagerMAJIS for Exploring Galilean Moons of JupiterMAJIS Thermal DesignMAJIS Structure DesignReferencesIn-Flight Calibration DesignImportance of Onboard CalibrationIn-Flight Calibration for Monitoring Instrument BehaviorInstrument Calibration and ValidationRelationship Between Spectral and Radiometric CalibrationReview of Onboard Calibration SystemsMERISHyperionMODISSCIAMACHYVIRTISPRISMAEnMAPHISUIOnboard Radiometric Calibration TechniquesSolar-Based CalibrationSolar DiffuserSolar Diffuser with Ratioing RadiometerIntegrating Sphere with Solar IlluminationRadiative Source-Based CalibrationDiffuser Panel with LampsIntegrating Sphere with Lamp IlluminationLight Emitting Diodes and Laser DiodesBlackbodyVicarious CalibrationAdvances of Vicarious CalibrationGround-Based Vicarious CalibrationLunar CalibrationStable DesertsSun GlintHigh Altitude CloudsMolecular Scattering Over OceansOffset CorrectionOffset Signal of Detector ArraysFrame MethodMasked Pixel MethodSummary of Radiometric Calibration TechniquesOnboard Spectral Calibration TechniquesOnboard Spectral Calibration StrategiesFiltered QTH Spectral Line SourcesMonochromatorDoped Spectralon DiffuserAtmospheric/Solar LinesLED Spectral Line SourcesEtalonSummary of Spectral Calibration TechniquesConcept Design Examples of Onboard Calibration SystemConcept Design 1Concept Design 2Concept Design 3ReferencesInstrument Control and Onboard Data HandlingFunctions of Instrument Control and Onboard Data Handling SubsystemConfiguration of Instrument Control and Onboard Data Handling SubsystemProcessing, Formatting, and Control UnitArchitecture of the PFCUData AcquisitionInstrument Data AcquisitionAncillary DataVirtual Channel MultiplexingOnboard Data CompressionVIRTIS Lossless and Lossy Data CompressionCRISM Data Editing and Lossless CompressionM3 Lossless Data CompressionHISUI Onboard Lossless Data CompressionEnMAP Onboard Data Compression.Vector Quantization Based Near-Lossless Data CompressionCCSDS Recommended Data Compression StandardsTransmission ChainControl and MonitoringTiming GenerationRedundancy and PackagingMass Memory UnitProximity Electronics and Service Module ElectronicsFPAs Proximity ElectronicsService Module ElectronicsElectrical InterfacesCross-StrappingInstrument InterfacesMMU InterfacesX-/Ka-Band Downlink InterfacesSpacecraft Bus InterfacesReferencesGround SegmentOverview of the Ground SegmentGround StationsMission Control CentersGround NetworksRemote TerminalsHyperspectral Data Product LevelGround Segment ContextInterface to Space SegmentSpacecraft CommandsImagery and Ancillary DataInstrument Calibration ParametersTelemetryInterface to Calibration Support Data SourcesInterface to CustomersBrowsing DialogueData OrdersProduct OrdersOrder AcknowledgmentLevel 1B ProductsOrder ResultsGround Segment Functional DecompositionOrder ManagementAcquisition PlanningCommand and ControlControl Communication LinkData Communication LinkPreprocessingArchiveCalibrationProduct ProcessingCatalogingCatalogueOperation and Data Flow Between FunctionsOrder Management to Acquisition PlanningFeasibility CheckFeasibility ResultCollection OrderCollection Order ResultAcquisition Planning to Command and ControlAcquisition PlanAcquisition Plan ResultResource ConstraintsPredicted EphemerisCommand and Control to the Control Communication LinkContact Setup DialogueSpacecraft Commands.Instrument Calibration ParametersTelemetryAcquisition Planning to Data Communication LinkReception Setup DialogueReception ResultAcquisition Planning to PreprocessingDownlink PlanData Communication Link to PreprocessingFramed Imagery and Ancillary DataPreprocessing to ArchivePreprocessed DataArchive to CatalogingPreprocessed DataCalibration ParametersCataloging to Acquisition PlanningArchive ReportCataloging to CatalogueCatalogue UpdateArchive to Product ProcessingPreprocessed DataCalibration ParametersOrder Management to Product ProcessingProduct OrderProduct Order ResultProduct Processing to CalibrationLevel 1A ProductCalibration to Command and ControlInstrument Calibration ParametersCalibration to ArchiveCalibration ParametersOperational ScenariosOrdering New DataPreliminary EventsCustomer InteractionPlanning, Command, and ControlSpace Segment ControlData ReceptionPreprocessing, Archiving, and CatalogingCompleting the OrderOrdering Level 1B Data ProductCustomer InteractionProduct ProcessingCompleting the OrderOnboard Instrument Calibration and Generating Calibration CoefficientsReferencesOn-Ground Calibration and CharacterizationRationale of on-Ground Calibration and CharacterizationCalibration and Characterization Types of Hyperspectral SensorsRadiometricSpectralGeometricSpatial Co-RegistrationSpatial Resolution and Modulation Transfer FunctionLinearity/NonlinearityUniformityRectilinearityPolarization SensitivityStray LightSignal-to-Noise RatioAnalysis of Spectral and Spatial Error SourcesBackground of Spectral and Spatial Error SourcesThermal DriftsMirror Substrates and PrismThin Film Coating InstabilitiesGratingsRadiationMirror SubstratesPrism GlassGratingsColor Glass Filters and Thin Film CoatingsContamination and Atomic OxygenMicrometeorite DamageSpectral Calibration Requirement AnalysisSpectral LinearityTemperature SensitivitySimulation of Spectral CalibrationAn Example of Scene-Based Spectral CalibrationPrelaunch CalibrationConsiderations with Respect to Ground-Based Absolute CalibrationAn Example—MODIS Prelaunch CalibrationAbsolute and Relative Radiometric CalibrationReferencesRadiometric Conversion and Data CorrectionConversion to at-Sensor Radiance and Top-of-Atmosphere ReflectanceProcess of Conversion from Raw Data to Radiance and ReflectanceRadiometric Response Modeling of a Hyperspectral SensorConversion to At-Sensor RadianceMERIS Conversion to At-Sensor RadianceHyperion Levels 0 and 1 Processing to Generate At-Sensor RadianceEnMAP Levels 0 and 1 Processing to Generate At-Sensor RadianceConversion to Top-of-Atmosphere ReflectanceSmile Detection and CorrectionSpectral Distortion—SmileSmile Correction Using Atmospheric Absorption Feature MatchingKeystone Detection and CorrectionSpatial Distortion—KeystoneMeasuring Keystone Using Interband Correlation of Spectral FeaturesDe-Striping and Noise ReductionDe-stripingRandom Noise ReductionA Case Study of Data Correction and its EffectivenessTest Data SetData Processing ProcedureEvaluation Results of Statistical MeasuresEvaluation Results Using a Target Detection ApplicationReferencesAtmospheric CorrectionAtmospheric Effects on Hyperspectral DataStatistics-Based Atmospheric Correction ApproachesEmpirical Line MethodInternal Average Relative ReflectanceFlat-Field CorrectionCloud Shadow MethodDense Dark Vegetation AlgorithmRadiative Transfer Modeling for Physics-Based Atmospheric CorrectionRadiative Transfer Modeling Based Methods for Land ScenesAtmosphere Removal Algorithm (ATREM)Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)High-Accuracy Atmospheric Correction for Hyperspectral Data (HATCH)Atmosphere Correction Now (ACORN)D LUT Approach in Imaging Spectrometer Data Analysis System (ISDAS)Atmospheric and Topographic Correction (ATCOR)Radiative Transfer Modeling Based Methods for Water ScenesAtmospheric Correction Over Optically Complex Water SceneBlack-Pixel Assumption NIR AlgorithmNIR Similarity Spectrum AlgorithmNIR-SWIR Algorithm with Turbid Water IndexSelf-Contained Atmospheric Parameters EstimationModified NIR Black-Pixel MethodDirect Inversion Approach Using Neural NetworkReferences
Next >