Summary and Outlook

The coral-dinoflagellate symbiosis is a well-studied system with high potential for understanding mechanisms of host-microbe interactions, controls, and co-evolution. The functional importance of bacteria, archaea, and other protists in this complex system has only recently started to emerge and the resulting picture is that of a holobiont where all partners depend on and interact with each other. These complex interdomain relationships are orchestrated and regulated by immune systems. It is therefore important to adopt a two-pronged approach, elucidating the immune responses of each individual partner (i.e., coral host, Symbiodiniaceae, bacteria, and other microbes), but also gaining a greater understanding of immunity at the holobiont scale. To elucidate this complex network of interactions, the Aiptasia model system may help to functionally interrogate the mechanistic underpinnings of the ecology, stress resilience, and environmental adaptation of cnidarian holobionts. For instance, the ability of genetic and microbiome manipulation of Aiptasia allows for detailed studies into the contribution of specific genes or microbes.

It is understood that productivity, structural complexity, and biodiversity of coral reef ecosystems critically depend on healthy coral holobionts, which in turn are linked to the diversity and identity of the associated microbes. This implies the need for a radically different approach to address the key questions of coral health and resilience in the face of climate change: one must examine the complexity of the coral holobiont in its entirety, that is, considering the diversity and function of all associated organisms. Gaining a holistic understanding of the biology and functioning of coral holobionts is of prime importance, given that coral reefs are at the brink of ecological collapse due to the effects of climate change and local stressors. New strategies to mitigate reef loss are now more important than ever. One such strategy may lie in the manipulation of holobiont immunity or associated microbes to enable ecological adaptation at a rate and scale that matches the pace of environmental change.

References

Agostini, S., Suzuki. Y.. Casareto. B.E.. Nakano, Y.. Michio, H„ and N. Badrun. 2009. Coral symbiotic complex: Hypothesis through vitamin B12 for a new evaluation. Galaxea, J. Coral Reef Stud. 11:1-11. https://doi.Org/10.3755/galaxea.l 1.1.

Ainsworth. T., Krause, L.. Bridge, T.. Torda, G., Raina, J-В.. Zakrzewski, M. et al. 2015. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISMEJ. 9:2261-2274. https://doi.org/10.1038/ismej.2015.39.

Ainsworth. T.D.. Fine, M., Blackall, L.L.. and O. Hoegh-Guldberg. 2006. Fluorescence In Situ Hybridization and spectral imaging of coral-associated bacterial communities. Appl. Environ. Microbiol. 72:3016-3020. https://doi.org/10.1128/AEM.72 4.3016- 3020.2006.

Alagely. A.. Krediet. C.J.. Ritchie, K.B.. and M. Teplitski. 2011. Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens. ISMEJ. 5:1609-1620. https://doi.org/10.1038/ismej.2011.45.

Apprill, A., Marlow, H.Q.. Martindale, M.Q.. and M.S. Rappe'. 2009. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 3:685-699. https://doi. org/10.1038/ismej.2009.3.

Aranda, M.. Li, Y., Liew, Y.J., Baumgarten, S., Siniakov, O., Wilson. M. et al. 2016. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6:39734. https://doi.org/10.1038/srep39734.

Bang. C., Dagan, T. Deines, R, Dubilier, N.. Duschl, W. J„ Fraune, S. et al. 2018. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127:1-19. https://doi.Org/10.1016/j.zool.2018.02.004.

Banin, E.. Israely, T., Fine, M.. Loya. Y., and E. Rosenberg. 2001. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol. Lett. 199:33-37. https://doi.Org/10.llll/j.1574-6968.2001. tbl0647.x.

Baumgarten. S.. Simakov, O., Esherick, L.Y., Liew, Y.J.. Lehnert, E.M., Michell. C.T. et al. 2015. The genome of Aiptasia. a sea anemone model for coral biology. Proc. Natl. Acad. Sci. 112:11893-11898. https://doi.org/10.1073/pnas.1513318112.

Bay. L.K., Cumbo. V.R., Abrego, D., Kool. J.T.. Ainsworth. T.D., and B.L. Willis. 2011. Infection dynamics vary between Symbiodinium types and cell surface treatments during establishment of endosymbiosis with coral larvae. Diversity 3:356-374. https:// doi.org/10.3390/d3030356.

Bayer, T., Neave, M.J.. Alsheikh-Hussain, A.. Aranda, M., Yum. L.K., Mincer, T. et al. 2013. The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue- associated Endozoicomonas bacteria. Appl. Environ. Microbiol. 79:4759-4762. https:// doi.org/10.1128/AEM.00695-13.

Bednarz, V.N., Grover, R.. Maguer, J.F., Fine, M.. and C. Ferrier-Pages. 2017. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their metabolic status. niBio 8:e02058-e02016. https://doi.org/10.1128/mBio.02058-16.

Beman. J.M., Roberts, K.J., Wegley, L„ Rohwer, F.. and C.A. Francis. 2007. Distribution and diversity of archaeal ammonia monooxygenase genes associated with corals. Appl. Environ. Microbiol. 73:5642-5647. https://doi.org/10.1128/AEM.00461-07.

Benavides, M., Bednarz, V.N.. and C. Ferrier-Pages. 2017. Diazotrophs: Overlooked key players within the coral symbiosis and tropical reef ecosystems? Front. Mar. Sci. 4:10. https://doi.org/10.3389/fmars.2017.00010.

Benavides. M.. Houlbreque. F., Camps. M., Lorrain, A., Grosso, 0„ and Bonnet, S. 2016. Diazotrophs: A non-negligible source of nitrogen for the tropical coral Stylophora pistillata. J. Exp. Biol. 219:2608-2612. https://doi.org/10.1242/jeb.139451.

Bentis, C.J., Kaufman, L.. and S. Golubic. 2000. Endolithic fungi in reef-building corals (Order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biol. Bull. 198:254-260. https://doi.org/10.2307/1542528.

Berkelmans. R.. and M.J.H. van Oppen. 2006. The role of zooxanthellae in the thermal tolerance of corals: A ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B. Biol. Sci. 273:2305-2312. https://doi.org/10.1098/rspb.2006.3567. Bernasconi. R., Stat. M.. Koenders, A., Paparini. A., Bunce. M.. and M.J. Huggett. 2019. IEstablishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front. Microbiol. 10:1529. https://doi.org/10.3389/fmicb.2019.01529. Berthelier, J., Schnitzler, C.E.. Wood-Charlson. E.M.. Poole, A.Z., Weis, V.M., and O. Detournay. 2017. Implication of the host TGF(3 pathway in the onset of symbiosis between larvae of the coral Fungia scutaria and the dinoflagellate Symbiodinium sp. (clade Clf). Coral Reefs 36:1263-1268. http://dx.doi.org/10.1007/s00338-017-1621-6. Bourne, D., Iida. Y., Uthicke, S., and C. Smith-Keune. 2008. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2:350-363. https://doi. org/10.1038/ismej.2007.112.

Cantin, N.E.. Van Oppen. M.J.H., Willis, B.L., Mieog, J.C., and A.P. Negri. 2009. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405-414. https://doi.org/10.1007/s00338-009-0478-8.

Cardenas, A.. Rodriguez-R, L.M.. Pizarro, V.. Cadavid, L.F., and C. Arevalo-Ferro. 2012. Shifts in bacterial communities of two Caribbean reef-building coral species affected by white plague disease. ISMEJ. 6:502-512. https://doi.org/10.1038/ismej.2011.123. Cardini, U., Bednarz. V.N., Foster, R.A., and C. Wild. 2014. Benthic N, fixation in coral reefs and the potential effects of human-induced environmental change. Ecol. Evol. 4:1706-1727. https://doi.org/10.1002/ece3.1050.

Cardini, U., Bednarz. V.N., Naumann, M.S.. Van Hoytema, N.. Rix. L., Foster. R.A. et al.

2015. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc. R. Soc. B. Biol. Sci. 282:20152257. https://doi. org/10.1098/rspb.2015.2257.

Cardini, U., Van Hoytema, N.. Bednarz, V.N., Rix. L„ Foster, R.A.. Al-Rshaidat. M.M.D. et al.

2016. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching. Environ. Microbiol. 18:2620-2633. https://doi.Org/10.l 111/1462-2920.13385.

Ceh. J.. Raina, J-В.. Soo, R.M., van Keulen, M., and D.G. Bourne. 2012. Coral-bacterial communities before and after a coral mass spawning event on Ningaloo Reef. PROS ONE 7:3-9. https://doi.org/10.1371/journal.pone.0036920.

Ceh, J., van Keulen, M., and D.G. Bourne. 2013. Intergenerational transfer of specific bacteria in corals and possible implications for offspring fitness. Microb. Ecol. 65:227-231. https://doi.org/10.1007/s00248-012-0105-z.

Certner, R.H.. and S.V. Vollmer. 2018. Inhibiting bacterial quorum sensing arrests coral disease development and disease-associated microbes. Environ. Microbiol. 20:645-657. https://doi.Org/10.l 111/1462-2920.13991.

Chen, M.. Cheng, Y„ Hong, M., and L. Fang. 2004. Molecular cloning of Rab5 (ApRab5) in Aiptasiapulcliella and its retention in phagosomes harboring live zooxanthellae. Biochent. Biophys. Res. Comm. 324:1024-1033. https://doi.Org/10.1016/j.bbrc.2004.09.151.

Chen, M., Cheng, Y., Sung, P. Kuo, C„ and L. Fang. 2003. Molecular identification of Rab7 (ApRab7) in Aiptasia pulcliella and its exclusion from phagosomes harboring zooxanthellae. Biochem. Biophys. Res. Comm. 308:586-595. https://doi.org/10.1016/ s0006-291 x(03)01428-1.

Cho, D.H.. Ramanan, R., Kim, B.H., Lee, J.. Kim. S., Yoo, C. et al. 2013. Novel approach for the development of axenic microalgal cultures from environmental samples. J. Phycol. 49:802-810. https://doi.org/10.llll/jpy.12091.

Clerissi, C„ Brunet. S., Vidal-Dupiol, J.. Adjeroud, M., Lepage, P.. Guillou, L. et al. 2018. Protists within corals: The hidden diversity. Front. Microbiol. 9:2043. https://dx.doi.org /10.3389%2Ffmicb.2018.02043.

Colley, N„ and R. Trench. 1983. Selectivity in phagocytosis and persistence of symbiotic algae by the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proc. R. Soc. B. Biol. Sci. 219d:61—82. https://doi.org/10.1098/rspb.1983.0059.

Connolly. S.R.. and A.H. Baird. 2010. Estimating dispersal potential for marine larvae: Dynamic models applied to scleractinian corals. Ecology 91:3572-3583. https://doi. org/10.1890/10-0143.1.

Cui, G., Liew, Y.J., Li, Y., Kharbatia. N.. Zahran, N.I.. Emwas, A-H. et al. 2019. Host- dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLOS Genet. 15:el008189. https://doi.org/10.1371/journal.pgen.1008189.

Cunning. R.. Bay, R.A.. Gillette, R. Baker. A.C.. and N. Traylor-Knowles. 2018. Comparative analysis of the Pocillopora damicornis genome highlights role of immune system in coral evolution. Sci. Rep. 8:16134. https://doi.org/10.1038/s41598-018-34459-8.

Cunning. R.. Muller, E.B., Gates, R.D., and R.M. Nisbet 2017. A dynamic bioenergetic model for coral-Symbiodinium symbioses and coral bleaching as an alternate stable state. J. Theor. Biol. 431:49-62. https://doi.org/10.1016/jjtbi.2017.08.003.

Damjanovic. K.. van Oppen, M.J.H.. Menendez, R. and L.L. Blackall. 2019. Experimental inoculation of coral recruits with marine bacteria indicates scope for microbiome manipulation in Acropora tennis and Platygyra daedalea. Front. Microbiol. 10:1702. https://doi.org/10.3389/fmicb.2019.01702. '

Darwin. C. 1842. Tlte Structure and Distribution of Coral Reefs. Smith. Elder and Co.

Davy, S.K., Allemand, D.. and V.M. Weis. 2012. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76:229-261. https://doi.org/10.1128/MMBR.05014-l 1.

de О Santos, E., Alves, N.. Jr.. Dias. G.M., Mazotto. A.M., Vermelho. A.. Vora. G.J. et al. 2011. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISMEJ. 5:1471—1483. https://doi.org/10.1038/ismej.2011.19.

Detournay, O.. Schnitzler, C.E.. Poole. A., and V.M. Weis. 2012. Regulation of cnidarian- dinoflagellate mutualisms: Evidence that activation of a host TGF(3 innate immune pathway promotes tolerance of the symbiont. Dev. Comp. Immunol. 38:525-537. https:// doi.org/10.1016/j.dci.2012.08.008.

Ding, J.Y., Shiu. J.H.. Chen. W.M.. Chiang, Y.R.. and S.L. Tang. 2016. Genomic insight into the host-endosymbiont relationship of Endozoicomonas montiporae CL-33 T with its coral host. Front. Microbiol. 7:251. https://doi.org/10.3389/fmicb.2016.00251.

Douglas, A.E. 2003. Coral bleaching - How and why? Mar. Pollut. Bull. 46:385-392. https:// doi.org/10.1016/S0025-326X(03)00037-7.

Dunn. S.R.. Schnitzler. C.E., and V.M. Weis. 2007. Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: Every which way you lose. Proc. R. Soc. B. Biol. Sci. 274:3079-3085. https://doi.org/10.1098/rspb.2007.0711.

Epstein. H.E.. Torda. G., Munday, P.L., and M.J.H. Van Oppen. 2019. Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME J. 13:1635-1638. https://doi.org/10.1038/s41396-019-0358-3.

Ezzat. L.. Maguer, J-F., Grover. R„ and C. Ferrier-Pages. 2015. New insights into carbon acquisition and exchanges within the coral - dinoflagellate symbiosis under NH4+ and NO, supply. Proc. R. Soc. B. Biol. Sci. 282:20150610. https://doi.org/10.1098/rspb.2015.0610.'

Fadlallah, Y.H. 1983. Coral reefs sexual reproduction, development and larval biology in scleractinian corals: A review. Coral Reefs 2:129-150. https://doi.org/10.1007/ BF00336720.

Falkowski, P.G.. Dubinsky, Z., Muscatine, L.. and L. McCloskey. 1993. Population control in symbiotic corals. Bioscience 43:606-611. https://doi.org/10.2307/1312147.

Ferrer, L.M., and A.M. Szmant. 1988. Nutrient regeneration by the endolithic community in coral skeletons. Proceedings of the 6th International Coral Reef Symposium 2:1-4.

Fine. M„ and Y. Loya. 2002. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc. R. Soc. B. Biol. Sci. 269:1205-1210. https://doi.org/10.1098/rspb.2002.1983.

Fisher, R„ O'Leary. R.A., Low-Choy, S.. Mengersen. K.. Knowlton, N.. Brainard, R.E. et al. 2015. Species richness on coral reefs and the pursuit of convergent global estimates. Cun. Biol. 25:500-505. https://doi.Org/10.1016/j.cub.2014.12.022.

Freudenthal. H.D. 1962. Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: Taxonomy, life cycle, and morphology. J. Protozool. 9:45-52. https://doi. org/10.111 l/j,1550-7408.1962.tb02579.x.

Garren, M., Son, K., Raina. J-В., Rusconi. R., Menolascina, F., Shapiro, O.H. et al. 2014. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISMEJ. 8:999-1007. https://doi.org/10.1038/ismej.2013.210.

Gates. R.D., Baghdasarian, G., and L. Muscatine. 1992. Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol. Bull. 182:324-332. https://doi.org/10.2307/1542252.

Gignoux-Wolfsohn, S.A., Aronson. F.M.. and S.V. Vollmer. 2017. Complex interactions between potentially pathogenic, opportunistic, and resident bacteria emerge during infection on a reef-building coral. FEMS Microbiol. Ecol. 93:fix080. https://doi.org/10.1093/femsec/ fix080.

Glasl, B., Herndl. G.J.. and P.R. Frade. 2016. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 10:2280- 2292. https://doi.Org/10.1038/ismej.2016.9.

Glynn. RW. 1983. Extensive “bleaching” and death of reef corals on the Pacific coast of Panama. Environ. Conserv. 10:149-154. https://doi.org/10.1017/S0376892900012248.

Gochfeld. D.J.. and G.S. Aeby. 2008. Antibacterial chemical defenses in Hawaiian corals provide possible protection from disease. Mar. Ecol. Prog. Ser. 362:119-128. https:// doi.org/10.3354/meps07418.

Golberg, K., Eltzov. E.. Shnit-Orland. M„ Marks, R.S., and A. Kushmaro. 2011. Characterization of quorum sensing signals in coral-associated bacteria. Microb. Ecol. 61:783-792. https://doi.org/10.1007/s00248-011-9848-l.

Golberg, K., Pavlov, V.. Marks, R.S.. and A. Kushmaro. 2013. Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669-682. https://doi.org/10.1080/08927014.2013.796939.

Golubic, S., Radtke, G.. and T. Le Campion-Alsumard. 2005. Endolithic fungi in marine ecosystems. Trends Microbiol. 13:229-235. https://doi.Org/10.1016/j.tim.2005.03.007.

Grottoli, A.G., Rodrigues, L.J., and J. E. Palardy. 2006. Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186-1189. https://doi.org/10.1038/nature04565.

Hadaidi, G.. Rothig. T, Yum, L.K.. Ziegler, M.. Arif, C„ Roder, C. et al. 2017. Stable mucus- associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas. Sci. Rep. 7:45362. https://doi.org/10.1038/srep45362.

Harrington, L., Fabricius, K.. De'Ath, G., and A. Negri. 2004. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85:3428- 3437. https://doi.org/10.1890/04-0298.

Hatcher. B.G. 1990. Coral reef primary productivity. A hierarchy of pattern and process. Trends Ecol. Evol. 5:149-155. https://doi.org/10.1016/0169-5347(90)90221-X.

Hernandez-Agreda, A., Leggat, W.. Bongaerts, P. and T. Ainsworth. 2016. The microbial signature provides insight into the mechanistic basis of coral success across reef habitats. mBio 7:e00560-e00516. https://doi.Org/10.l 128/mBio.00560-16.

Hoegh-Guldberg, 0.1999. Climate Change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50:839-866. https://doi.org/10.1071/MF99078.

Hoegh-Guldberg, O. 2011. Coral reef ecosystems and anthropogenic climate change. Reg. Environ. Chang. 11:215-227. https://doi.org/10.1007/sl0113-010-0189-2.

Hughes, T.P.. Anderson, K.D., Connolly, S.R.. Heron. S.F.. Kerry, J.T., Lough. J.M. et al. 2018a. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80-83. https://doi.org/10-l 126/science.aan8048.

Hughes, T.P.. Baird, A.H., Bellwood, D.R.. Card. M., Connolly, S.R., Folke. C. et al. 2003. Climate change, human impacts, and the resilience of coral reefs. Science 301:929-933. https://doi.org/10.1126/science.1085046.

Hughes, T.P., Kerry, J.T., Alvarez-Noriega, M., Alvarez-Romero, J.G., Anderson. K.D., Baird, A.H. et al. 2017. Global warming and recurrent mass bleaching of corals. Nature 543:373-377. https://doi.org/10.1038/nature21707.

Hughes, T.P.. Kerry. J.T., and T. Simpson. 2018b. Large-scale bleaching of corals on the Great Barrier Reef. Ecology 99:501. https://doi.org/10.1002/ecy.2092.

Hume. B.C.C.. Voolstra, C.R.. Arif, C.. D'Angelo, C.. Burt. J.A., Eyal. G. et al. 2016. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to holocene climate change. Proc. Natl. Acad. Sci. 113:4416-4421. https://doi. org/10.1073/pnas.1601910113.

IPCC. 2018. Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www. ipcc. ch/srl5/. Accessed 10/2019.

Janouskovec. J„ Horak, A.. Barott, K.L., Rohwer, F.L.. and P.J. Keeling. 2012. Global analysis of plastid diversity reveals apicomplexan-related lineages in coral reefs. Curr. Biol. 22:R518-R519. https://doi.Org/10.1016/j.cub.2012.04.047.

Janouskovec. J.. Horak, A., Barott, K.L., Rohwer. F.L.. and P.J. Keeling. 2013. Environmental distribution of coral-associated relatives of apicomplexan parasites. ISME J. 7:444-447. https://doi.org/10.1038/ismej.2012.129.

Jaspers, C„ Fraune. S.. Arnold. A.E., Miller, D.J., Bosch, T.C.G., and C.R. Voolstra. 2019. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133:81-87. https://doi. org/10.1016/j.zool.2019.02.007.

Jones, A.M., Berkelmans, R.. Van Oppen, M.J.H.. Mieog, J.C., and W. Sinclair. 2008. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: Field evidence of acclimatization. Proc. R. Soc. B. Biol. Sci. 275:1359-1365. https://doi.org/10.1098/rspb.2008.0069.

Jones, R.J.. Hoegh-Guldberg. O.. Larkum, A.W.D.. and U. Schreiber. 1998. Temperature- induced bleaching of corals begins with impairment of the CO, fixation mechanism in zooxanthellae. Plant, Cell Environ. 21:1219-1230. https://doi. org/10.1046/j. 1365-3040.1998.00345.x.

Kellogg, C.A. 2004. Tropical Archaea: Diversity associated with the surface microlayer of corals. Mar. Ecol. Prog. Ser. 273:81-88. https://ui.adsabs.harvard.edu/ 1 ink_gateway/2004M EPS. .273... 81 K/doi: 10.3354/meps273081.

Kelman, D„ Kashman, Y„ Rosenberg. E.. Kushmaro, A., and Y. Loya. 2006. Antimicrobial activity of Red Sea corals. Mar. Biol. 149:357-363. https://doi.org/10.1007/ S00227-005-0218-8.

Kitchen. S.A., Poole, A.Z.. and V.M. Weis. 2017. Sphingolipid metabolism of a sea anemone is altered by the presence of dinoflagellate symbionts. Biol. Bull. 233:242-254. https:// doi.org/10.1086/695846.

Kitchen, S.A., and V.M. Weis. 2017. The sphingosine rheostat is involved in the cnidarian heat stress response but not necessarily in bleaching. J. Exp. Biol. 220:1709-1720. https:// doi.org/10.1242/jeb.153858.

Klinges. J.G.. Rosales, S.M., McMinds. R., Shaver, E.C.. Shantz. A.A.. Peters, E.C. et al. 2019. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite. Candidatus Aquarickettsia rohweri, gen. nov„ sp. nov. ISMEJ. 13:2938-2953. https://doi.org/10.1038/s41396-019-0482-0.

Koren. O., and E. Rosenberg. 2006. Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl. Environ. Microbiol. 72:5254-5259. https://doi.org/10.1128/AEM.00554-06.

Kornmann, P., and P. Sahling. 1980. Ostreobium quekettii (Codiales, Chlorophyta). Helgolander Meeresuntersuchungen 34:115-122.

Krueger. T. 2017. Concerning the cohabitation of animals and algae - an English translation of K. Brandt’s 1881 presentation “Ueber das Zusammenleben von Thieren und Algen". Symbiosis 71:167-174. https://doi.org/10.1007/sl3199-016-0439-2

Kvennefors, E.C.E.. Sampayo, E.. Kerr. C„ Vieira, G., Roff, G., and A.C. Barnes. 2012. Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microb. Ecol. 63:605-618. https://doi.org/10.1007/s00248-011-9946-0.

Kwong. W.K.. del Campo. J.. Mathur, V.. Vermeij, M.J.A., and P.J. Keeling. 2019. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568:103-107. https://doi.org/10.1038/s41586-019-1072-z.

LaJeunesse. T.C.. Bhagooli, R.. Hidaka. M., DeVantier, L., Done, T, Schmidt, G.W. et al. 2004. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar. Ecol. Prog. Set: 284:147-161.

LaJeunesse, T.C., Loh, W.K.W., Van Woesik, R.. Hoegh-Guldberg. O.. Schmidt, G.W., and W.K. Fitt. 2003. Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol. Oceanogr. 48:2046-2054. https://doi.org/10.4319/ lo.2003.48.5.2046.

LaJeunesse, T.C., Parkinson, J.E.. Gabrielson. P.W.. Jeong, H.J.. Reimer, J.D.. Voolstra, C.R. et al. 2018. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Chit. Biol. 28:2570-2580. https://doi.Org/10.1016/j.cub.2018.07.008.

Lawson, C.A.. Raina. J.B.. Kahlke. T., Seymour. J.R.. and D.J. Suggett. 2018. Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium. Environ. Microbiol. Rep. 10:7-11. https://doi.org/10.llll/1758-2229.12599.

Le Campion-Alsumard, T., Golubic, S., and K. Priess. 1995. Fungi in corals: symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biomineralization. Mar. Ecol. Prog. Ser. 117:137-147. https://ui.adsabs.harvard.edu/ link_gateway/1995MEPS..117..137L/doi:10.3354/mepsl 17137.

Lee, S.T.M., Davy, S.K.. Tang, S.L., Fan, T.Y., and P.S. Kench. 2015. Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiol. Ecol. 91:fivl42. https://doi.org/10.1093/ femsec/fivl42.

Lee. S.T.M.. Davy, S.K., Tang. S.L., and P.S. Kench. 2016. Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata. Front. Microbiol. 7:371. https://doi.org/10.3389/fmicb.2016.00371.

Lema, K.A., Bourne. D.G., and B.L. Willis. 2014. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol. Ecol. 23:4682-4695. https://doi.org/10.llll/mec.12899.

Lesser, M.P. 1997. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187-192. https://doi.org/10.1007/s003380050073.

Lesser, M.P.. Falcon, L.I.. Rodriguez-Roman. A.. Enriquez, S., Hoegh-Guldberg, O., and R. Iglesias-Prieto. 2007. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346:143-152. https://doi.org/10.3354/rneps07008.

Lin. S.. Cheng, S., Song, B.. Zhong. X., Lin, X.. Li, W. et al. 2015. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 350:691-694. https://doi.Org/10.l 126/science.aad0408.

Little, A.F.. Van Oppen. M.J.H., and B.L. Willis. 2004. Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492-1494. https://doi.org/10.1126/ science. 1095733.

Magnusson. S.H.. Fine, M„ and M. Kiihl. 2007. Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Mar. Ecol. Prog. Ser. 332:119-128. https://doi.org/10.3354/meps332119.

Mansfield, K.M., Carter, N.M., Nguyen, L., Cleves, P.A.. Alshanbayeva, A., Williams, L.M. et al. 2017. Transcription factor NF-кВ is modulated by symbiotic status in a sea anemone model of cnidarian bleaching. Sci. Rep. 7: https://doi.org/10.1038/ s41598-017-16168-w.

Marcelino, V.R., Morrow, K.M.. van Oppen, M.J.H., Bourne, D.G., and H. Verbruggen. 2017. Diversity and stability of coral endolithic microbial communities at a naturally high pCO, reef. Mol. Ecol. 26:5344-5357. https://doi.org/10.llll/mec.14268.

Marcelino, V.R., Van Oppen, M.J.H., and H. Verbruggen. 2018. Highly structured prokaryote communities exist within the skeleton of coral colonies. ISME J. 12:300-303. https:// doi.org/10.1038/ismej.2017.164.

Marcelino, V.R., and H. Verbruggen. 2016. Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Sci. Rep. 6:31508. https://doi.org/10.1038/srep31508.

Masse, A., Domart-Coulon. I., Golubic. S.. Duche. D., and A. Tribollet. 2018. Early skeletal colonization of the coral holobiont by the microboring Ulvophyceae Ostreobium sp. Sci. Rep. 8:2293. https://doi.org/10.1038/s41598-018-20196-5.

Meron, D.. Efrony, R„ Johnson, W.R., Schaefer, A.L., Morris. P.J., Rosenberg, E. et al. 2009. Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 75:5704-5707. https://doi.org/10.1128/AEM.00198-09.

Meyer, J.L., Gunasekera, S.R, Scott, R.M., Paul. V.J.. and M. Teplitski. 2016. Microbiome shifts and the inhibition of quorum sensing by Black Band Disease cyanobacteria. ISME J. 10:1204-1216. https://doi.org/10.1038/ismej.2015.184.

Meyer, J.L., Paul, V.J.. and M. Teplitski. 2014. Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions. PLOS ONE 9: el00316. https://doi. org/10.1371/journal.pone.0100316.

Moberg, F., and C. Folke. 1999. Ecological goods and services of coral reef ecosystems. Ecol.

Econ. 29:215-233. https://doi.org/10.1016/S0921-8009(99)00009-9.

Mohamed. A.R.. Cumbo, V„ Harii. S„ Shinzato. C., Chan. C.X.. Ragan, M.A. et al. 2016. The transcriptomic response of the coral Acropora digitifera to a competent Symbiodinium strain: the symbiosome as an arrested early phagosome. Mol. Ecol. 5:3127-3141. Mohamed. A.R., Cumbo. V.R.. Harii. S.. Shinzato, C„ Chan, C.X.. Ragan, M.A. et al. 2018. Deciphering the nature of the coral-Chromera association. ISMEJ. 12:776-790. https:// doi.org/10.1038/s41396-017-0005-9.

Moore. R.B., Obornik, M., Janouskovec, J., Chrudimsky, T., Vancova, M., Green. D.H. et al. 2008. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959-963. https://doi.org/10.1038/nature06635.

Morris, L.A.. Voolstra. C.R., Quigley. K.M.. Bourne. D.G., and L.K. Bay 2019. Nutrient availability and metabolism affect the stability of coral-Symbiodiniaceae symbioses. Trends Microbiol. 27:678-689. https://doi.Org/10.1016/j.tim.2019.03.004.

Morrow, K.M., Bourne. D.G., Humphrey. C„ Botte, E.S., Laffy, P„ Zaneveld, J. et al. 2015. Natural volcanic CO, seeps reveal future trajectories for host-microbial associations in corals and sponges. ISMEJ. 9:894-908. https://doi.org/10.1038/ismej.2014.188.

Muscatine, L. 1990. The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z. (eds) Ecosystems of the World: Coral Reefs. Elsevier, Amsterdam, pp. 75-87.

Muscatine, L.. Falkowski. P.G., Dubinsky, P.A., Cook. C.A.. and L.R.R. McCloskey. 1989. The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc. R. Soc. London Ser В Biol. Sci. 236:311-324. https://doi.org/10.1098/ rspb. 1989.0025.

Muscatine, L., and J.W. Porter. 1977. Reef corals: Mutualistic symbioses adapted to nutrient- poor environments. Bioscience 27:454-460. https://doi.org/10.2307/1297526.

Neave, M.J.. Apprill. A., Ferrier-Pages, C., and C.R. Voolstra. 2016a. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol 100: 8315-8324. https://doi.org/104007/s00253-016-7777-0.

Neave. M.J.. Michell, C.T.. Apprill, A., and C.R. Voolstra. 2014. Whole-genome sequences of three symbiotic Endozoicomonas strains. Genome Annotate. 2:e00802-e00814. https:// doi.org/10.1128/genomeA.00802-14.

Neave, M.J., Michell, C.T., Apprill, A., and C.R. Voolstra. 2017. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci. Rep. 7:40579. https://doi.org/10.1038/srep40579.

Neave. M.J., Rachmaw'ati, R.. Xun. L., Michell, C.T., Bourne. D.G., Apprill. A. et al. 2016b. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. 1SME J. 11:186-200. https://doi.org/10.1038/ ismej.2016.95.

Neubauer, E-F., Poole, A.Z., Detournay, O., Weis. V.M.. and S.K. Davy. 2016. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian- dinoflagellate symbiosis. PeerJ. 4:e2692. https://doi.org/10.7717/peerj.2692.

Neubauer, E-R. Poole, A.Z., Neubauer, R, Detournay, O., Tan, K., Davy, S.K. et al. 2017. A diverse host thrombospondin-type-l repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis. Elife 6:e24494. https://doi.org/10.7554/eLife.24494

Nissimov, J.. Rosenberg. E„ and C.B. Munn. 2009. Antimicrobial properties of resident coral mucus bacteria of Oculinapatagonica. FEMS Microbiol. Lett. 292:210-215. https://doi. org/10.111 l/j,1574-6968.2009.01490.x.

Obornik. M.. Modry. D.. Lukes. M., Cernotlkova-Stnbrna. E„ Cihlar, J., Tesarova, M. et al. 2012. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163:306-323. https://doi. org/10.1016/j.protis.2011.09.001.

Ochsenkiihn, M.A., Schmitt-Kopplin, P, Harir, M.. and S.A. Amin. 2018. Coral metabolite gradients affect microbial community structures and act as a disease cue. Commun Biol. 1:184. https://doi.org/10.1038/s42003-018-0189-l.

Palmer, C.V. 2018. Immunity and the coral crisis. Commun Biol. 1:91. https://doi.org/10.1038/ S42003-018-0097-4.

Parkinson. J.E.. Tivey. T.R., Mandelare. P.E., Adpressa, D.A.. Loesgen. S., and V.M. Weis 2018. Subtle differences in symbiont cell surface glycan profiles do not explain species- specific colonization rates in a model cnidarian-algal symbiosis. Front. Microbiol. 9:842. https://doi.org/10.3389/fmicb.2018.00842.

Peixoto. R.S., Rosado, P.M.. Leite, D.C. de A.. Rosado. A.S., and D.G. Bourne. 2017. Beneficial microorganisms for corals (BMC): Proposed mechanisms for coral health and resilience. Front. Microbiol. 8:341. https://doi.org/10.3389/fmicb.2017.00341.

Pereira, L.B., Palermo, B.R.Z.. Carlos. C., and L.M.M Ottoboni. 2017. Diversity and antimicrobial activity of bacteria isolated from different Brazilian coral species. FEMS Microbiol. Lett. 364:fnxl64. https://doi.org/10.1093/femsle/fnxl64.

Pernice, M., Meibom. A.. Van Den Heuvel. A.. Kopp, C„ Domart-Coulon, I.. Hoegh-Guldberg, O. et al. 2012. A single-cell view of ammonium assimilation in coral-dinoflagellate symbiosis. ISMEJ. 6:1314-1324. https://doi.org/10.1038/ismej.2011.196.

Pernice. M., Raina. J-B.. Radecker, N.. Cardenas, A.. Pogoreutz, C„ and Voolstra. C.R. 2019. Down to the Bone: the role of overlooked endolithic microbiomes in reef coral health. ISMEJ. 14: 325-334. https://doi.org/10.1038/s41396-019-0548-z.

Pettay. D.T.. Wham. D.C., Smith, R.T., Iglesias-Prieto, R.. and T.C. LaJeunesse. 2015. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc. Nall. Acad. Sci. 112:7513-7518. https://doi.org/10.1073/pnas.1502283112.

Piekarski, T.. Buchholz, I., Drepper. T, Schobert. M.. Wagner-Doebler, I.. Tielen, P. et al. 2009. Genetic tools for the investigation of Roseobacter clade bacteria. BMC Microbiol. 9:265. https://doi.org/10.1186/1471-2180-9-265.

Pogoreutz, C„ Radecker. N.. Cardenas. A., Gardes. A.. Voolstra, C.R., and C. Wild. 2017a. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob. Chang. Biol. 23:3838-3848. https://doi.org/10.llll/gcb.13695.

Pogoreutz. C., Radecker. N.. Cardenas. A., Gardes, A.. Wild, C., and C.R. Voolstra. 2017b. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front. Microbiol. 8:1187. https://doi.org/10.3389/ fmicb.2017.01187.

Pogoreutz. C.. Radecker, N.. Cardenas, A.. Gardes, A.. Wild. C.. and C.R. Voolstra. 2018. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol. Evol. 8:2240-2252. https://doi.org/10.1002/ece3.3830.

Pogoreutz. C., and C.R. Voolstra. 2018. Isolation, culturing, and cryopreservation of Endozoicomonas (Gammaproteobacteria: Oceanospirillales: Endozoicomonadaceae) from reef-building corals. Protocols.io https://doi.org/10.17504/protocols.io.t2aeqae Pollock, F.J.. McMinds, R„ Smith. S.. Bourne. D.G.. Willis. B.L., Medina, M. et al. 2018. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Comm. 9:4921. https://doi.org/10.1038/s41467-018-07275-x.

Poole. A.Z.. Kitchen, S.A.. and V.M. Weis. 2016. The role of complement in cnidarian- dinoflagellate symbiosis and immune challenge in the sea anemone Aiptasia pallida. Front. ^Microbiol. 7:519. https://doi.org/10.3389/fmicb.2016.00519.

Radecker. N.. Meyer. F.W.. Bednarz, V.N., Cardini, U„ and C. Wild. 2014. Ocean acidification rapidly reduces dinitrogen fixation associated with the hermatypic coral Seriatopora hystrix. Mar. Ecol. Prog. Ser. 511:297-302. https://doi.org/10.3354/mepsl0912. Radecker. N.. Pogoreutz, C.. Voolstra, C.R., Wiedenmann, J.. and C. Wild. 2015. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 23:490-497. https://doi.Org/10.1016/j.tim.2015.03.008.

Radecker. N.. Raina. J-В.. Pernice, M.. Perna. G„ Guagliardo, P., Kilburn, M.R. et al. 2018. Using Aiptasia as a model to study metabolic interactions in cnidarian-Symbiodinium symbioses. Front. Physiol 9:214. https://doi.org/10.3389/fphys.2018.00214.

Raina. J-В.. Fernandez. V. Lambert. B.. Stocker, R., and J.R. Seymour. 2019. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17:284-294. https://doi.org/10.1038/s41579-019-0182-9.

Raina. J-В.. Tapiolas, D., Motti, C.A., Foret. S., Seemann, T, Tebben, J. et al. 2016. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ. 4:e2275. https://doi.org/10.7717/peerj.2275.

Ralph, P.J.. Larkum, A.W.D.. and M. Ktihl. 2007. Photobiology of endolithic microorganisms in living coral skeletons: 1. Pigmentation, spectral reflectance and variable chlorophyll fluorescence analysis of endoliths in the massive corals Cyphastrea serailia. Porites lutea and Goniastrea australensis. Mar. Biol. 152:395-404. https://doi.org/10.1007/ S00227-007-0694-0.

Reshef. L., Koren, 0., Loya, Y., Zilber-Rosenberg, I., and E. Rosenberg. 2006. The Coral Probiotic Hypothesis. Environ. Microbiol. 8:2068-2073. https://doi. org/10.1111/j. 1462-2920.2006.01148.x.

Ritchie, K.B. 2006. Regulation of microbial populations by coral surface mucus and mucus- associated bacteria. Mar. Ecol. Prog. Ser. 322:1-14. https://doi.org/10.3354/meps322001.

Ritchie, K.B. 2012. Bacterial symbionts of corals and Symbiodinium. In: Rosenberg E., Gophna U. (eds) Beneficial Microorganisms in Multicellular Life Forms. Springer. Berlin, Heidelberg, pp. 139-150. https://doi.org/10.1007/978-3-642-21680-0_9.

Robbins, S.J.. Singleton, C.M., Chan, C.X., Messer. L.F., Geers. A.U., Ying, H. et al. 2019. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat. Microbiol. 4:2090-2100. https://doi.org/10.1038/s41564-019-0532-4.

Roder. C„ Arif, C„ Bayer. T., Aranda, M„ Daniels, C. Shibl, A. et al. 2014a. Bacterial profiling of White Plague Disease in a comparative coral species framework. ISME J. 8:31-39. https://doi.org/10.1038/ismej.2013.127.

Roder, C„ Arif, C.. Daniels. C„ Weil, E.. and C.R. Voolstra. 2014b. Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol. Ecol. 23:965-974. https://doi.Org/10.l 111/mec.12638.

Roder, C„ Bayer, T„ Aranda. M.. Kruse, M„ and C.R. Voolstra. 2015. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol. Ecol. 24:3501-3511. https://doi.org/10.111 l/mec.13251.

Rodriguez-Lanetty. M„ Krupp, D.A.. and V.M. Weis. 2004. Distinct ITS types of Symbiodinium in Clade C correlate with cnidarian/dinoflagellate specificity during onset of symbiosis. Mar. Ecol. Prog. Ser. 275:97-102. https://doi:10.3354/meps275097

Rohwer. F., Seguritan. V.. Azam, F.. and N. Knowlton. 2002. Diversity and distribution of coral- associated bacteria. Mar. Ecol. Prog. Ser. 243:1-10. https://doi:10.3354/meps243001.

Rosado, P.M.. Leite. D.C.A.. Duarte, G.A.S.. Chaloub, R.M., Jospin. G., Nunes da Rocha, U. et al. 2018. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISMEJ. 921-936. https://doi.org/10.1038/s41396-018-0323-6.

Rosenberg. E., Koren, O.. Reshef, L., Efrony, R.. and I. Zilber-Rosenberg. 2007. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5:355-362. https://doi.org/10.1038/nrmicrol635.

Rossbach, S., Cardenas, A., Perna. G.H., Duarte, C.M.. and C.R. Voolstra. 2019. Tissue specific microbiomes of the Red Sea giant clam Tridacna maxima highlight differential abundance of Endozoicomonadaceae. Front. Microbiol. 10:2661. https://doi.org/10.3389/ fmicb.2019.02661.

Rypien, K.L.. Ward. J.R.. and F. Azam. 2010. Antagonistic interactions among coral-associated bacteria. Environ. Microbiol. 12:28-39. https://doi.org/10.1111/j. 1462-2920.2009.02027.x.

Sampayo, E.M.. Ridgway, T., Bongaerts, P, and O. Hoegh-Guldberg. 2008. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl. Acad. Sci. 105:10444-10449. https://doi.org/10.1073/ pnas.0708049105.

Santos, H.F., Carmo. F.L.. Duarte, G.. Dini-Andreote, F.. Castro, C.B., Rosado. A.S. et al. 2014. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISMEJ. 8:2272-2279. https://doi.org/10.1038/ismej.2014.70.

Schlichter. D., Zscharnack. B.. and H. Krisch. 1995. Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften 82:561-564.

Schwarz. J., Krupp. D.. and V. Weis. 1999. Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol. Bull. 196:70-79. https://doi. org/10.2307/1543169.

Seymour, J.R., Amin, S.A., Raina, J-В., and R. Stocker. 2017. Zooming in on the phycosphere: The ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2:17065. https://doi.org/10.1038/nmicrobiol.2017.65.

Shantz, A.A.. Lemoine. N.P., and D.E. Burkepile. 2016. Nutrient loading alters the performance of key nutrient exchange mutualisms. Ecol. Lett. 19:20-28. https://doi.org/10.llll/ ele.12538.

Sharp. K.H.. Distel, D„ and V.J. Paul. 2012. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J. 6:790-801. https:// doi.org/10.1038/ismej.2011.144.

Sharp. K.H.. Ritchie. K.B., Schupp, P.J., Ritson-Williams. R.. and V.J. Paul. 2010. Bacterial acquisition in juveniles of several broadcast spawning coral species. PLOS ONE 5:el0898. 10.1371/journal.pone.0010898.

Shashar. N.. Cohen. Y.. Loya. Y., and N. Sar. 1994. Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral-bacteria interactions. Mar. Ecol. Prog. Ser. 111:259-264. https://www.jstor.org/stable/24849564.

Shinzato, C., Shoguchi, E„ Kawashima. T., Hamada, M., Hisata. K., Tanaka. M. et al. 2011. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320-323. https://doi.org/10.1038/naturel0249.

Shishlyannikov. S.M.. Zakharova. Y.R., Volokitina. N.A.. Mikhailov, I.S.. Petrova. D.P.. and Y.V. Likhoshway. 2011. A procedure for establishing an axenic culture of the diatom Synedra acus subsp. radians (Kiitz.) Skabibitsch from Lake Baikal. Limnol. Oceanogr. Methods 9:478-484. https://doi.Org/10.4319/lom.2011.9.478.

Shoguchi. E., Shinzato, C., Kawashima. T., Gyoja. F., Mungpakdee. S., Koyanagi. R. et al. 2013. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23:1399-1408. https://doi.Org/10.1016/j.cub.2013.05.062.

Shumaker. A., Putnam, H.M.. Qiu. H„ Price. D.C.. Zelzion. E., Harel. A. et al. 2019. Genome analysis of the rice coral Montipora capitata. Sci. Rep. 9:2571. https://doi.org/10.1038/ S41598-019-39274-3.

Siboni, N., Ben-Dov, E., and A. Kushmaro. 2012. Geographic specific coral-associated ammonia-oxidizing archaea in the northern Gulf of Eilat (Red Sea). Microb. Ecol. 64:18-24. https://doi.org/10.1007/s00248-011-0006-6.

Siboni. N.. Ben-Dov. E., Sivan. A., and A. Kushmaro. 2008. Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ. Microbiol. 10:2979-2990. https://doi.org/10. 1111/j. 1462-2920.2008.01718.X.

Silverstein, R.N.. Correa, A.M.S., LaJeunesse, T.C., and A.C. Baker. 2011. Novel algal symbiont (Symbiodinium spp.) diversity in reef corals of Western Australia. Mar. Ecol. Prog. Ser. 422:63-75. https://doi.org/10.3354/meps08934.

Silverstein, R.N., Cunning. R.. and A.C. Baker. 2015. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Chang. Biol. 21:236-249. https://doi.org/10.llll/gcb.12706.

Slapeta, J., and M.C. Linares. 2013. Combined amplicon pyrosequencing assays reveal presence of the apicomplexan “type-N” (cf. Gemmocystis cylindrus) and Chromera velia on the Great Barrier Reef. Australia. PLOS ONE 8:e76095. https://doi.org/10.1371/ journal.pone.0076095.

Smith, G.J.. and L. Muscatine. 1999. Cell cycle of symbiotic dinoflagellates: Variation in G1 phase-duration with anemone nutritional status and macronutrient supply in the Aiptasia pulchella-Symbiodinium pulchrorum symbiosis. Mar. Biol. 134:405-418. https://doi. org/10.1007/s002270050557.

Spalding, M., Burke, L.. Wood, S.A., Ashpole, J.. Hutchison. J., and P. zu Ermgassen. 2017. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82:104-113. https://doi.Org/10.1016/j.marpol.2017.05.014.

Sweet, M.J., Brown, B.E., Dunne, R.P., Singleton. I., and M. Bulling. 2017. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs 36:815-828. https://doi.org/10.1007/s00338-017-1572-y.

Sweet. M.J., Croquer. A., and J.C. Bythell. 2011. Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs 30:39-52. https://doi.org/10.1007/ S00338-010-0695-1.

Tait, K.. Hutchison, Z., Thompson. F.L.. and C.B. Munn. 2010. Quorum sensing signal production and inhibition by coral-associated Vibrios. Environ. Microbiol. Rep. 2:145— 150. https://doi.Org/10.llll/j.1758-2229.2009.00122.x.

Tebben. J., Motti. C.A., Siboni, N.. Tapiolas. D.M., Negri. A.P.. Schupp, P.J. et al. 2015. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5:10803. https://doi.org/10.1038/srepl0803.

Thurber, R.V., Willner-Hall, D., Rodriguez-Mueller, B.. Desnues, C„ Edwards. R.A.. Angly, F. et al. 2009. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol. 11:2148-2163. https://doi.Org/10.llll/j.1462-2920.2009.01935.x.

Tilstra, A.. El-Khaled, Y.. Roth. F., Riidecker. N.. Pogoreutz. C.. Voolstra, C.R. et al. 2019. Denitrification aligns with N2 fixation in Red Sea corals. Sci. Rep. 9:19460. https://doi. org/10.1038/s41598-019-55408-z.

Toller. W.W.. Rowan. R.. and N. Knowlton. 2002. Genetic evidence for a protozoan (phylum Apicomplexa) associated with corals of the Montastraea annularis species complex. Coral Reefs 21:143-146. https://doi.org.10.1007/s00338-002-0220-2.

Tout. J.. Jeffries, T.C.. Petrou. K., Tyson. G.W.. Webster. N.S., Garren. M. et al. 2015. Chemotaxis by natural populations of coral reef bacteria. ISME J. 9:1764-1777. https:// doi.org/10.1038/ismej.2014.261.

Tremblay, P. Grover, R.. Maguer. J.F.. Legendre, L.. and C. Ferrier-Pages. 2012. Autotrophic carbon budget in coral tissue: a new ‘'C-based model of photosynthate translocation. J. Exp. Biol. 215:1384-1393. https://doi: 10.1242/jeb.065201.

Underhill, D.M.. and A. Ozinsky. 2002. Phagocytosis of microbes: complexity in action. Anna.

Rev. Immunol. 20:825-852. https://doi.org/10.1146/annurev.immunol.20.103001.114744. Upton. S.J., and E.C. Peters. 1986. A new and unusual species of Coccidium (Apicomplexa: Agamococcidiorida) from Caribbean scleractinian corals. J. Invertebr. Pathol. 47:184-193.

Verbruggen, H.. Marcelino, V.R., Guiry. M.D.. Cremen. M.C.M., and C.J. Jackson 2017. Phylogenetic position of the coral symbiont Ostreobium (Ulvophyceae) inferred from chloroplast genome data. J. Phycol. 53:790-803. https://doi.org/10.llll/jpy.12540. Vermeij. M.J.A., Smith. J.E.. Smith, C.M., Vega Thurber. R., and S.A. Sandin. 2009. Survival and settlement success of coral planulae: Independent and synergistic effects of macroalgae and microbes. Oecologia 159:325-336. https://doi.org/10.1007/ S00442-008-1223-7.

Voolstra, C.R.. Li, Y., Liew, Y.J., Baumgarten. S., Zoccola, D.. Flot, J.F. et al. 2017. Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Sci. Rep. 7:17583. https://doi.org/10.1038/s41598-017-17484-x.

Wada. N.. Ishimochi, M.. Matsui. T. Pollock. F.J.. Tang. S.-L.. Ainsworth, T.D. et al. 2019. Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. Sci. Rep. 9:14662. https://doi.org/10.1038/ S41598-019-49651-7.

Wada, N.. Pollock, F.J.. Willis, B.L.. Ainsworth. T.D.. Mano, N.. and D.G. Bourne. 2016. In situ visualization of bacterial populations in coral tissues: pitfalls and solutions. PeerJ. 4:e2424. https://doi.org/10.7717/peerj.2424.

Wafar. M.M.. Wafar, S„ and David. J.J. 1990. Nitrification in reef corals. Limnol. Oceanogr.

35:725-730. https://doi.Org/10.4319/lo.1990.35.3.0725.

Wangpraseurt. D.. Pernice, M., Guagliardo, P. Kilburn, M.R.. Clode. P.L.. Polerecky. L. et al. 2016. Light microenvironment and single-cell gradients of carbon fixation in tissues of symbiont-bearing corals. ISME J. 10:788-792. https://doi.org/10.1038/ismej.2015.133.

Webster. N.S.. Smith. L.D.. Heyward. A.J., Watts. E.M.. Webb. R.I., Blackall, L.L. et al. 2004. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70:1213-1221. https://doi.org,10.1128/AEM.70.2.1213-1221.2004.

Webster. N.S.. Soo. R.. Cobb. R., and A.P. Negri. 2011. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. ISMEJ. 5:759-770. https://doi.org/10.1038/ismej.2010.152.

Wegley. L.. Edwards. R.. Rodriguez-Brito. B.. Liu. H., and F. Rohwer. 2007. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ. Microbiol. 9:2707-2719. https://doi:10.1111/j.l462-2920-2007.01383.x. Wegley, L.. Yu. Y.. Breitbart, M„ Casas, V.. Kline. D.I.. and F. Rohwer. 2004. Coral-associated archaea. Mar. Ecol. Prog. Ser. 273:89-96. https://doi:10.3354/meps273089.

Weis, V.M. 2008. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211:3059-3066. https://doi: 10.1242/jeb.009597.

Wiedenmann. J.. D'Angelo, C., Smith. E.G.. Hunt, A.N.. Legiret, F.-E.. Postle A.D. et al. 2012. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Cliin. Chang. 3:160-164. https://doi.org/10.1038/nclimatel661.

Wild. C.. Huettel, M., Klueter. A.. Kremb, S.G.. Rasheed. M.Y.M.. and B.B. Jorgensen. 2004. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66-70. https://doi.org/10.1038/nature02344.

Wilkinson. C. 2008. Status of Coral Reefs of the World: Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre. Townsville. Australia. 296 pp. Wolfowicz, I., Baumgarten, S„ Voss, P.A.. Hambleton, E.A., Voolstra. C.R.. Hatta. M. et al. 2016 Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci. Rep. 6:32366. https://doi.org/10.1038/srep32366.

Wood-Charlson. E.M.. Hollingsworth. L.L.. Krupp. D.A.. and V.M. Weis. 2006. Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell Microbiol. 8:1985-1993. https://doi.Org/10.llll/j.1462-5822.2006.00765.x.

Yamazaki. S.S., Nakamura, T.. Yuen. Y.S.. and H. Yamasaki. 2008. Reef-building coral Goniastrea aspera harbor a novel filamentous cyanobacterium in their skeleton. Proceedings of the 11th International Coral Reef Symposium 1:265-268.

Yang, S.H., Lee. S.T.M., Huang, C.R.. Tseng, C.H.. Chiang, P.W., Chen. C.P et al. 2016. Prevalence of potential nitrogen-fixing, green sulfur bacteria in the skeleton of reef-building coral Isopora palifera. Limnol. Oceanogr. 61:1078-1086. https://doi. org/10.1002/lno. 10277.

Ziegler, M.. Grupstra, C.G.B.. Barreto. M.M., Eaton. M.. BaOmar. J.. Zubier. K. et al. 2019. Coral bacterial community structure responds to environmental change in a host- specific manner. Nat. Comm. 10:1-11. https://doi.org/10.1038/s41467-019-10969-5. Ziegler. M., Roik. A.. Porter. A.. Zubier, K., Mudarris M.S., Ormond R. et al. 2016. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. 105:629-640. https://doi.Org/10.1016/j. marpolbul.2015.12.045.

Ziegler. M., Seneca. F.O., Yum. L.K.. Palumbi, S.R., and C.R. Voolstra 2017. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Comm. 8:14213. https://doi.org/10.1038/ncommsl4213.

Zimmer, B.L.. May. A.L.. Bhedi. C.D., Dearth. S.P., Prevatte. C.W., Pratte, Z. et al. 2014. Quorum sensing signal production and microbial interactions in a polymicrobial disease of corals and the coral surface mucopolysaccharide layer. PLOS ONE 9:el08541. https:// doi.org/10.1371/journal.pone.0108541.

 
Source
< Prev   CONTENTS   Source   Next >