A MODEL HOST TO STUDY PLANT-ENDOPHYTE INTERACTION

A. thaliana is an ideal plant model organism (Koomneef and Метке, 2010). The genome of its many genotypes is sequenced and there is numerous knowledge about their functional genetics and genomics that provides a versatile of tools to deepen knowledge of plant biology (Ehrhardt and Frommer, 2012). Moreover,^, thaliana is an important annual species that spread everywhere in the world and can present in various anthropic and wild habitats (Hoffmann, 2002). Thus, one of the most recently used model plants to study plant-endophyte interaction is the A. thaliana. This plant has been studied for its interactions with endophytes, such as enterobacteria and Azorhizobium caulinodans. Furthermore, the most important factor to use Arabidopsis as a model plant is the existence of mutants that can be used for analyzing endophytic colonization. For example, Iniguez et al. (2005) presented that A. thaliana andM. truncatula mutants can be useful for determining the importance of endophytic bacteria in plant response mechanism. According to this study, plants develop ISR against ethylene and alleviate Klebsiella sp. strain Kp342 and S. typhimurium colonization. When the ethylene precursor ACC was added to the wild type M. truncatula and wheat, the amount of endophytic bacteria decreases, however, Klebsiella sp. Kp342 promotes hypercolonization of an ethylene-insensitive M. trucatula mutant. Moreover, when wild type plants were treated with the ethylene inhibitor 1-methylcyclopropane, the colonization of

Mechanism

Bacteria

Plant

Beneficial

Influence*

References

PHYTOSTIMULATION

Herbaspirillum ftisingense GSF30T

Japanese silver grass

IAA

Rothballer et al.. 2008

Pseudomonas spp.

Maize, Sunflower

Li and Ramakrishna, 2011

Bacillus amvloliquefaciens FZB42

Lemna minor ST

Idris et al., 2007

Azospirillum spp.

Rice

Steenhoudt and Yanderleyden. 2000

Azospihllum sp. B510

Isawa et al.. 2010

Pseudomonas spp.

Wheat

Iqbal and Hasuain, 2013

Actinobacteria spp.

Winter rye

Merzaeva and Shirokikh, 2010

Streptomvces sp. PT,

Tomato cv. Mannande

Goudjal et al.. 2013

Pseudomonas putida, Rhodococcus spp.

Pea

ACC deaminase

Belimov et al., 2001

Burkholdeha spp. КЛЮ6

Rice

Kwak et al., 2012

Brevibacterium iodinum, Bacillus licheniformis, Zhihengliuela alba

Red pepper

Siddikee et al., 2011

Aiirobacter spp.. Bacillus spp.

Sizderics et al., 2007

Variovorax paradoxus 5C-2

Pea

Belimov et al., 2009

Serratia proteamaculans 568

Soybean

Taghavi et al., 2009

Sinorhizobium meliloti CCNWSX0020

Medicago lupulina

Kong et al.. 2015

Stenotmphomonas maltophilia R551-3

Poplar

IAA

ACC deaminase

Taghavi et al., 2009

Pseudomonas putida W619

Serratia proteamaculans 568

Soybean

Burkholdeha phytofirmans PsJN

Potato, tomato, maize, barley, onion, canola, grapevine

Weilliarter et al., 2011

Bacillus sp.

Canola and rice

Islam et al., 2009

Bacillus amvloliquefaciens RWL-1

Rice

GAs

Shahzad et al., 2016

Bacillus cereus MJ-l

Red pepper

Joo et al., 2005

Azospihllum sp.. Bacillus sp.

Wheat

Kucey, 1988

Herbaspirillum ftisingense GSF30T

Sim flower

JA

Forchetti et al.. 2007

Grass

Straub et al., 2013

Mechanism

Bacteria

Plant

Beneficial

Influence*

References

Pseudomonas aeruginosa 7NSK2

Sunflower

SA

De Meyer et al.. 1999

Klepsiella sp. Kp342, Salmonella tvphimurium

Medicago truncatula, Arabidopsis thaliana

ISR

hiiquez et al.. 2005

Pseudomonas putida, Rhodococcus spp.

Pea

Ethylene

Belimov et al., 2001

Agrobacterium rhizogenes ATCC-15S34

Basil

RA

Bais et al.. 2002

Achromobacter xxlosoxidans SF2

Sunflower

JAABA

Forchetti et al., 2007

Bacillus lichenifonnis Psl4

Argentine screwbean

ABA, GA„ IAA

Sgroy et al., 2009

Azospihllum lipoferum

Com

ABA

Cohen et al., 2009

Azospirillumlipoferum USA 59b strain

Maize

Bacillus, Rhizobium, Artivbacter, Azotobacter,Azotospirillum Pseudomonas spp.

Wheat

IAA

Kudoyarova et al., 2014

Bacillus, Rhizobium spp.

Arkhipova et al.. 2007

PHYTOREMEDIATION

Pseudomonas putida W619-TCE

Poplar

TCE deg.

Stenuit et al., 2010

Enterobacter sp. strain PDN3

Poplar (hybrid)

Kang et al.. 2012

Burkholdeiia cepacia YM1468

Yellow lupine

Weyens et al., 2009a, b

Pseudomonas putida W619-TCE

Poplar

Weyens et al., 2013

Enterobacter sp. strain PDN3

Poplar (hybrid)

Kang et al., 2012

Herbaspmllum sp. K1

Wheat

TCP. PCB

Mannisto et al., 2001

Methvlobactehum spp.

Populus deltoids x nigra

TNT deg.

Лап Aken et al., 2004

Methylobacteiium populi BJ001

Poplar tissues (Populus deltoidesnigra DN34)

Methane. TNT. RDX, HMX

Bacillus sp. SLS18

Sorghum

Mn and Cd

Luo et al.. 2012

Bacillus pumilus E2S2

Sedum plumbizincicola

TCd uptake

Ma et al., 2015

Arhrobacter myosorens 7, Flavobacterium sp. L30

Barley

ICd

Hu et al., 2007

Agrobacterium radiobacter 10

Barley

Belimov and Dietz, 2000

Mechanism

Bacteria

Plant

Beneflcial

Influence*

References

PH YTORE MEDIATION

Vaiiovoraxparadoxus, Rhodococctis sp., Flavobactehum sp.

Indian mustard

Belimov et al., 2005

Pseudomonas sp. ITRI53, Pseudomonas sp. MixRI75

Italian ryegrass L. multiflorum var. Taurus

Hydrocarbon deg.

Afzal et al., 2011, 2012

Sphingomonas spp., Microbacterium spp.

Alyssum murale

Ni-resistant

Belimov et al., 2011

B. cepacia Bu61pTOM-Bu61

Poplar

Toluene deg.

Taghavi et al., 2005

Burkholderia cepacia YM146S

Burkholderia cepacia G4

European yellow lupine

Baraci et al., 2004

P putida VM1450

Pea

2,4-D deg.

Germaine et al., 2006

Pseudomonas sp.

Populus cv. Hazendans cv. Hoogvorst

МТВЕ, В TEX, TCE deg.

Germaine et al., 2004

Burkholderia cepacia YM146S

Poplar

BTEX, TCE deg.

Taghavi et al., 2011

Achromobacter xylosoxidans

Phragmites australis, Ipomoea aquatica, Vetiveha,

Phragmites australis, Vetiveha zizanioides

Catechol deg. Phenol deg.

Ho et al., 2009

BIOFERTILIZATION

Pseudomonas fluorescens

Pea

Phosphate

solubilization

Otieno et al., 2015

Pseudomonas fluorescens CHAO

Wheat

De Werra et al., 2009

Achromobacter xiloxidans, Bacillus pumilus

Sunflower

Forchetti et al., 2007

Rhizobactehum spp.

Com

Yazdani and Bahmanyar, 2009

Pantoea agglomerans

Deep water rice

Nitrogen fixation

Venna et al., 2001

Azospiiillum brasilensis (Sp245 strain) Agiobacterium tumefaciens (A2S1 strain) Leifsoniaxyli subsp. xyli (CTC B07 strain)

Sugarcane

Vinagre et al., 2006

Azoarcus spp.

Kallar glass

Hurek et al., 2002

Azoarcus sp. strain BH72

Rice

Egener et al., 1999

Mechanism

Bacteria

Plant

Beneficial

Influence*

References

BIOFERTILIZATION

Herbaspirillum seropedicae Z67

Rice

Gyaneshwar et al.. 2002

Azospirillum sp.,Azotobacter sp.

Maize

Roesch et al., 2008

Achoromobacter xiloxidans, Alcaligenes sp.. Bacillus pumilus

Sunflower

Forchetti et al., 2007

Bacillus spp., Klebsiella sp., Acinetobacter sp.. Pseudomonas sp., Satphvlococcus sp.

Cactus

Puente et al., 2009

Bacillus cereus, Bacillus marisflavi, Bacillus megaterium, Paenibacillus polymyxa, Paenibacillus massiliensis

Wheat, maize, rye grass, and willow

Ding et al., 2005

Bwkholderia mimosamm PAS44 Cupriavidus taiwanensis LMG19424

Mimosa nodule

Elliott et al., 2009

Bwkholderia sp., Acinetobacter sp., Rahnella sp., Sphingomonas sp.

Sorghum, mimosa

Doty et al., 2009

BIOCONTROL AND BACTERIAL SIGNAL MOLECULES

Burkholderia cepacia G4

European yellow lupine

YOCs

Barac et al., 2004

Pseudomonas convgata

Wheat

Trivedi et al., 2008

B. subtilis GB03

Arabidopsis thaliana

Ryu et al., 2003 Zhang et al., 2007

Burkholderia cepacia G4

European yellow lupine

Barac et al., 2004

Pseudomonas aeruginosa, Sinorhizobium m eliloti

Medicago truncatula

QS

Mathesius et al., 2003

Gluconacetobacter diazotrophicus (PAL5 strain)

Sugarcane

Rocha et al., 2007

Herbaspirillum seropedicae (HRC54 strain)

H. rubrisubalbicans (HCC103 strain-)

H seropedicae

Mechanism

Bacteria

Plant

Beneficial

Influence*

References

BIOCONTROL AND BACTERIAL SIGNAL MOLECULES

H. ivbiisubalbicans strain HCC103

QS

Xanthomonas campestris pv. vesicatoria

Cabbage, broccoli Black rot

Newman et al., 2008

X. campestns pv. campestris

Sinorhizobium meliloti

M. tnmcatula genotype A17

Mathesius et al., 2003

Variovorax paradoxus S110

Potato

Han et al.. 2011

Xanthomonas campestris pv. vesicatoria

Cabbage, broccoli Black rot

Newman et al., 2008

X. campestns pv. campestris

Sinorhizobium meliloti

M. tnmcatula genotype A17

Mathesius et al., 2003

Variovorax paradoxus S110

Potato

Han et al., 2011

Pseudomonas aeruginosa

Medicago tnmcatula

Mathesius et al., 2003

Sinorhizobium meliloti

Gluconacetobacter diazotrophicus (PAL5 strain)

Sugarcane

Rocha et al., 2007

Herbaspinllum seropedicae (HRC54 strain)

H. rubiisubalbicans (HCC'103 strain)

H. seropedicae

G. diazotrophicus strain PAL5 CADI)

Cavalcante et al., 2007

H. rubiisubalbicans strain HCC103

Gluconacetobacter diazotrophicus Pal5

Sugarcane

Antibiosis

Bertalan et al., 2009

Bacillus sp. CY22

Plah’codon grandiflorum

Cho et al.. 2003

Pseudomonas fluorescens

Apple plantlets

Downing and Thomson. 2000

Pseudomonas sp.

Egg plant

Ramesh et al., 2012

Bacillus spp.

Maize

Gond et al.. 2015

Pseudomonas vihdiflava

Glass

Antimicrobial

Miller et al., 1998

Streptomyces ghseus

Kandelia candel

Guan et al., 2005

Mechanism

Bacteria

Plant

Beneficial

Influence[1]

References

BIOCONTROL AND BACTERIAL SIGNAL MOLECULES

Streptomyces NRRL 30562

Kennedia nigtiscans

Antibiotic

Castillo et al.. 2002

Paenibacillus polymyxa

Wheat

Antifungal

Beck et al., 2003

Pseudomonas fluorescens

Arabidopsis thaliana Arabidopsis thaliana

SAR

Ton et al., 2002

Rhizobium sp.

ISR

Van Loon et al.. 2007

Van Oosten et al., 2008

PGRB’s Bacillus spp.

Arabidopsis thaliana Beaus

Van der Ent et al., 2009

Bacillus pumilus INR7

Pepper

Yi et al., 2013

Streptomyces sp. strain EN27

Arabidopsis thaliana

Conn et al.. 2008

Paenibacillus alvei K165

Tjamos et al., 2005

Streptomyces sp.

Cucumber

Biocontrol

of Pythium aphanidennatum

Costa et al., 2013

Pseudomonas mallei (RBG4. ET17)

Eggplant

Biocontrol of

Ralstoniaso-

lanacearum

Ramesh and Phadke. 2012

Bacillus spp. (RCh6)

Streptomyces sp.

Rice

Poplar

Siderophore

Gangwar et al., 2012

Enterobacter sp. 638

Taghavi et al., 2009, 2010

Enterobacter sp. 638

Poplar

bacteria was recovered. Hie presence of type III secretion systems (TTSS- SPI1) and flagella of Salmonella pathogenicity island 1, was shown to reduce endophytic colonization and mutants of S. typhimurium that do not contain these components showed more endophytic colonization in wheat seedlings and Medicago sativa (Iniquez et al., 2005). While A. thaliana mutants exhibited only a SA-independent defense response to inhibit the colonization of Klepsiella sp. strain Kp42, a colonization by S. typhimurium was restricted both SA-dependent and SA-independent pathways. The study with S. typhimurium flagella mutants proposes that flagella are recognized by the SA independent response; however, TTSS- SPI1 is recognized by the SA-dependent response required for induction of the PR1 promoter, a gene involved in SA-dependent pathogenesis. Since Klebsiella sp. Kp342 is deficient in flagella and TTSS-SPI1 (Dong et al., 2001), it cannot stimulate the SA-dependent responses when interacting with plant, and may result in higher number of colonization in plant (Rosenblueth and Martinez-Romero, 2006). Other bacteria which have flagella such as Rliizobium and Agrobacterium spp. may also associate closely with plants; except that these are not stimulants of the plant defense mechanisms (Felix et al., 1999). In all A. thaliana plants, flagellin plays a role as an inducer for oxidative burst, callus formation, and ethylene production resulting in the stimulation of genes involved in the activation of defense-related genes. Chemoperception systems allow plants to define the existence of molecules from bacteria (Boiler, 1995; Rosenblueth and Martinez-Romero, 2006). Therefore, it could be proposed that A. thaliana and its endophytes as a significant model system for an overview of the principles orchestrating the endophytic lifestyle by utilizing the abundant knowledge available from the molecular tools and the host plant.

  • [1] 2,4-D, 2,4-dichlorophenoxyacetic acid; ABA, abscisic acid; ACC deaminase, 1-aminocyclopropane-l-carboxylate deaminase; BTEX, benzene. toluene, ethylbenzene, and xylene; Cd. cadmium; GAs, gibberellins; IAA, indole-3-acetic acid; JA, jasmonic acid; Mn. manganese; Ni,nickel; PCB, polychlorinated biphenyl; RDX, hexahydro-l,3,5-trinitro-l,3,5-triazene; SA, salicylic acid; TCP, 2,3,4,6-tetrachlorophenol; TNT,2,4,б-trinitrotoluene; VOCs, volatile organic compounds; RA. rosmarinic acid; ISR. induced systemic resistance; DET. decrease ethylene; TCE,trichloroethene; deg, degr adation; LP, lipopeptide; MTBE, methyl tert-butyl ether; ISR. induced systemic resistance; SAR, systemic acquiredresistance; QS, quarum sensing; J,. decreasing; f. increasing. (Modified from Ryan et al., 2008).
 
Source
< Prev   CONTENTS   Source   Next >