Table of Contents:


  • • bacterial endophytes
  • • biocontrol
  • • biofertilization
  • • endophytic bacteria
  • • phytodegradation
  • • phytoremediation
  • • phytostimulation
  • • plant beneficial microbes
  • • plant growth-promoting bacteria
  • • plant interactions with endophytic bacteria
  • • plant microbiome


Abhilash, P. C., Powell, J. R., Singh, H. B., & Singh, В. K. Plant-microbe interactions: Novel applications for exploitation in multipurpose remediation technologies. Trends in Biotechnology>, 2012, 30(8), 416-420.

Abreu-Tarazi, M. F.,Navarrete, A. A., Andreote, F. D., Almeida, C. V.,Tsai. S. M., & Almeida, M. Endophytic bacteria in long-term in vitro cultivated “axenic” pineapple microplants revealed by PCR-DGGE. World J. Microbiol. Biotechnol., 2010, 26, 555-560.

Afzal, M., Khan, Q. M., & Sessitsch, A. Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere, 2014,117,232-242.

Afzal, M., Yousaf, S., Reichenauer, T. G., & Sessitsch, A. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int. J. Phytoremediat., 2012,14, 35-47.

Afzal, M., Yousaf, S., Reichenauer, T. G., Kuffner, M., & Sessitsch, A. Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J. Hazard. Mater., 2011,186, 1568-1575.

Andressen, D., Manoochehri, I., Carletti, S., Llorente, B., Tacoronte, M., & Vielma, M. Optimization of the in vitro proliferation of jojoba [Simmondsia chinensis (Link) Schn.] by using ratable central composite design and inoculation with rhizobacteria. Bioagro., 2009. 21, 41-48.

Araujo, W. L., Marcon, J., Maccheroni, W., an Elsas, J. D., Van Vuurde, J. W. L., & Azevedo,

J. L. Diversity of endophytic bacterial populations and their interaction with Xylella fastid- iosa in citrus plants. Applied and Environmental Microbiology’, 2002, 6S(10), 4906-4914.

Arkhipova, T. N., Prinsen, E., Veselov, S. U., Martinenko, E. V, Melentiev, A. I., & Kudoyarova, G. R. Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil, 2007, 292(1/2), 305-315.

Arshad, M., & Frankenberger, W. T. Microbial production of plant hormones. Plant and Soil, 1991,133(1), 1-8.

Azevedo, J. L., Maccheroni, W., Pereira, J. O., & De Araujo, W. L. Endophytic microorganisms: A review' on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology’, 2000, 3(1), 15, 16.

Bacon, C. W., & White, J. F. Microbial Endophytes (pp. 1-129). CRC Press, Florida, USA, 2000.

Bais, H. P., Walker, T. S., Stennitz, F. R., Hufbauer, R. A., & Yivanco, J. M. Enantiomeric- dependent phytotoxic and antimicrobial activity of (±)-catechin, a rhizosecreted racemic mixture from spotted knapw'eed. Plant Physiology, 2002,128(4), 1173-1179.

Bakker, P. A., Pieterse, С. M., & Лап Loon, L. C. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 2007, 97(2), 239-243.

Barac, T., Taghavi, S., Bonemans, B., Provoost, A., Oeyen, L., Colpaert, J. V., anqronveld, J., & Van Der Lelie, D. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature Biotechnology’, 2004,22(5), 583-588.

Banaquio, W. L., Revilla, L., & Ladlia, J. K. Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil, 1997,194, 15-24.

Baity, S. M., & Challis, G. L. Recent advances in siderophore biosynthesis. Curr. Opin. Chem. Biol., 2009,13, 205-215.

Bashan, Y., & Gina, H. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: Biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biology and Biochemistty, 1998, 30(8), 1225-1228.

Battistoni, F., Bartels, D., Kaiser, O., Reamon-Buttner, S. M., Hurek, T., & Reiuliold-Hurek, B. Physical map of the Azoarcus sp. strain BH72 genome based on a bacterial artificial chromosome library as a platform for genome sequencing and functional analysis. FEMS Microbiol. Lett., 2005. 249, 233-240.

Beattie, G. A. Plant-associated bacteria: Survey, molecular phytogeny, genomics and recent advances. In: Gnanamanickam, S. S., (ed.), Plant-Associated Bacteria (pp. 1-56). Springer, Dordrecht, 2007.

Beck, H. C., Hansen, A. M., & Lauritsen, F. R. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacilluspolymyxa. FEMS Microbiol. Lett., 2003,220, 67-73.

Bela, J. K. U., & Kalidas, S. Control of hyperhydricity in anise (Pimpinella anisum) tissue culture by Pseudomonas spp. Journal of Herbs, Spices and Medicinal Plants, 1998, 6(1), 57-67.

Belimov, A. A., & Dietz, K. J. Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiological Research, 2000,155(2), 113-121.

Belimov, A. A., & Tikhonovich, I. A. Microbiological aspects of sustainability and accumulation of heavy metals in plants. Skh. Biol, 2011, 3,10-15.

Belimov, A. A., Dodd, I. C., Hontzeas, N., Theobald, J. C., Safronova, V. I., & Davies,

W. J. Rliizosphere bacteria containing 1-aminocyclopropane-l-carboxylate deaminase increase yield of plants grown in diving soil via both local and systemic hormone signaling. New Phytologist, 2009,181(2), 413-423.

Belimov, A. A., Dodd, I. C., Safronova, V. I., Dumova, V. A., Shaposhnikov, A. I., Ladatko, A. G., & Davies, W. J. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiology and Biochemistiy, 2014, 74, 84-91.

Belimov, A. A., Hontzeasb, N., Safronovaa, V. I., Demchinskayaa, S. V., Piluzzac, G., Bullittac, S., & Glick, B. R. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea, L. Czem.). Soil Biologу and Biochemistiy, 2005, 37(2), 241-250.

Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, Y. E., Borisov, A. Y., Tikhonovich, I. A., Kluge, C., Preisfeld, A., Dietz, K. J., & Stepanok, V. V. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-l-carboxylate deaminase. Canadian Journal of Microbiolog)’, 2001, 47(1), 642-652.

Beneduzi, A., Ambrosini, A., & Passaglia, L. M. P. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 2012, 35(4), 1044-1051.

Benhamou, N., Kloepper, J. W., & Tuzun, S. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: Ultrastructure and cytochemistry of the host response. Planta, 1998, 204(2), 153-168.

Benhizia, Y., Benhizia, H., Benguedouar, A., Muresu, R., Giacomini, A., & Squartini, A. Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst. Appl. Microbiol.. 2004. 27, 462-468.

Berde, С. V., Bhosale, P. P., & Chaphalkar, S. R. Plasmids of endophytic bacteria as vectors for transformation in plants. International Journal of Integrative Biology, 2010, 9(3), 113-118.

Berg, G., & Halhnann, J. Control of plant pathogenic fungi with bacterial endophytes. In: Schulz, B. J. E., Boyle, C. J. C., & Sieber, T. N., (eds.), Microbial Root Endophytes (pp. 53-69). Springer, Berlin, Heidelberg, 2006.

Bertalan, M., Albano, R., De Padua, V., Rouws, L., Rojas, C., Hemerly, A., et al. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics, 2009, 20(1), 450, doi: 10.1186/1471-2164-10-450.

Bloemberg, G. V., & Lugtenberg, B. J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology’, 2001, 4(4), 343-350.

Boiler, T. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol, 1995. 46, 189-214.

Bottini, R., Cassan, F., & Piccoli, P. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology, 2004, 65(5), 497-503.

Bragina, A., Berg, C., Cardinale, M., Shcherbakov, A., Chebotar, V., & Berg, G. Sphagnum mosses harbor highly specific bacterial diversity dining their whole lifecycle. The ISME Journal 2012, 6(4), 802-813.

Buckley, P. M., De Wilde, T. N., & Reed, В. M. Characterization and identification of bacteria isolated from micropropagated mint plants. In Vitro Cell Dew Biol, 1995, 31, 58-64.

Bueno, D. R. J., F., Massena, R. V., Urquiaga, S., & Dobereiner, J. Influence of nitrogen fertilization on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugar cane Saccharum spp. Plant Soil, 2000,219,153-159.

Burg, S. P. Ethylene in plant growth. Proc. Natl Acad. Sci. USA, 1973, 70, 591-597.

Cassells, A. C., & Tahmatsidou, V. The influence of local plant growth conditions on non-fastidious bacterial contamination of meristem-tips of Hydrangea cultured in vitro. Plant Cell Tissue Organ Cult., 1996, 47, 15-26.

Castillo, U. F., Strobel, G. A., Ford, E. J.. Hess, W. M.. Porter, H., Jensen, J. B., Albert, H.. Robison, R., Condron, M. A., Teplow, D. B., Stevens, D., & Yaver, D. Munumbicins, wide-spectmm antibiotics produced by Streptomyces NRRL, 30562, endophytic on Kennedia nigriscans. Microbiology>, 2002,148, 2675-2685.

Cavalcante, J. J. V., Vargas, C., Nogueira, E. M., Yinagre, F., Schwarcz, K., Baldani, J. I., Ferreira, P. C. G., & Hemerly, A. S. Members of the ethylene signaling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. Journal of Experimental Botany, 2007, 58(3), 673-686.

Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science, 1994, 263, 802-805.

Chandra, S., Bandopadhyay, R., Kumar, V., & Chandra, R. Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnol. Lett., 2010,32,1199-1205.

Charkow'ski, A. O., Barak, J. D., Sarreal, C. Z., & Mandrell, R. E. Differences in growth of Salmonella enterica and Escherichia coli 0157:H7 on alfalfa sprouts. Appl. Environ. Microbiol, 2002, 68, 3114-3120.

Chelius, M. K., & Triplett, E. W. Diazotrophic endophytes associated with maize. In: Wymondham, U. K., & Triplett, E. W, (eds.), Prokaiyotic Nitrogen Fixation: A Model System for Analysis of a Biological Process (pp. 779-791). Horizon Scientific Press, Wymondham, UK, 2000.

Chen, C., Bauske, E. M., Musson, G., Rodriguezkabana, R., & Kloepper, J. W. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control, 1995. 5(1), 83-91.

Chi, F., Shen, S. H., Cheng, H. P., Jing, Y. X., Yanni, Y. G., & Dazzo, F. B. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology, 2005, 71(11), 7271-7278.

Cho, S. J., Hong, S. Y„ Kim, J. Y„ Park. S. R.. Kim, M. K„ Lim, W. J., Shin, E. J., Kim. E. J., Cho, Y. U., & Yun, H. D. Endophytic Bacillus sp. CY22 from a balloon flower (Platycodon grandiflorum) produces surfactin isoforms. Journal of Microbiology> and Biotechnology', 2003,13(6), 859-865.

Christiansen-Weniger, C., Groneman, A. F., & Van Veen, J. A. Associative N, fixation and root exudation of organic acids from wheat cultivars of different aluminum tolerance. Plant and Soil 1992,139,167-174.

Christoserdova, L., Chen, S. W., Lapidns, A., & Lindstrom, M. E. Methylotrophy in Methy- lobacterium extorquens AMI from a genomic point of view. J. Bacterial., 2003, 185, 2980-2987.

Cohen, A. C., Travaglia, C. N., Bottini, R., & Piccoli, P. N. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany, 2009. 87(5), 455-462.

Compant, S., Clement, C., & Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 2010, 42(5), 669-678.

Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C., & Ait, В. E. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Bwkholderia sp. strain PsJN. Appl. Environ. Microbiol., 2005, 71, 1685-1693.

Conn, V. M., Walker, A. R., & Franco, С. M. M. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol. Plant-Microbe Interact., 2008, 21(2), 208-218.

Comath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P, Jakab, G., Mauch, F., et al. Priming: getting ready for battle. Mol. Plant-Microbe Interact., 2006,79(10), 1062-1071.

Costa, F. G., Zucchi, T. D., & Melo, I. S. D. Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.). Brazilian Archives of Biologу and Technology, 2013, 56(6), 948-955.

De Almeida, С. V.. Andreote, F. D., Yara, R., Tanaka, F. A. O., Azevedo, J. L., & De Almeida, M. Bacteriosomes in axenic plants: Endophytes as stable endosymbionts. World J. Microbiol. Biotechnol., 2009, 25, 1757-1764.

De Bary, A. Morphologie und physiologie der pilze, flechten und myxomyceten. In: Abt, E. W., (ed.), Handbuch der Physiologischen Botanik, 2 Bd., 1. Veiiag, Leipzig, 1866, doi. org/10.5962/bhl.title. 120970.

De Meyer, G., Audenaert, K., & Hofte, M. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PRla expression. European Journal of Plant Pathology, 1999, 105(5), 513-517.

De Oliveira, A. L. M., De Canuto, E. L., Urquiaga, S., Reis, V. M., & Baldani, J. I. Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant and Soil, 2006, 284, 23-32.

De Werra, P, Pechy-Tarr. M., Keel, C., & Maurhofer, M. Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHAO. Applied and Environmental Microbiology’, 2009, 75(12), 4162-4174.

Deng, Y., Zhu, Y., Wang, P, Zhu, L., Zheng, J., Li, R., Ruan, L., Peng, D., & Sun, M. Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. Journal of Bacteriology, 2011,193(8), 2070-2071.

Dias, A. C. F., Costa, F. E. C., Andreote, F. D., Lacava, P. T, Teixeira, M. A., Assump9ao, L. C., Araujo, W. L., Azevedo, J. L., & Melo, I. S. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J. Microbiol. Biotechnol., 2009, 25, 189-195.

Digat, B., Brochard, P, Hennelin, V., & Touzet, M. Interest of bacterized synthetics substrates MILCAP® for in vitro culture. Acta Hort., 1987, 212, 375-378.

Dimock, M. B., & Tingey, W. M. Host acceptance behavior of Colorado potato beetle larvae influenced by potato glandular trichomes. Physiological Entomology>, 1988,13(4), 399-406.

Ding, S. M., Liang, X, Zhang, C. S., Yan, J. C., & Zhang, Z. L. Accumulation and fractionation of rare earth elements (REEs) in wheat: Controlled by phosphate precipitation, cell wall absoiption and solution complexation. Journal of Experimental Botany, 2005, 56(420), 2765-2775.

Dobbelaere, S., Yanderleyden, J., & Окоп, Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 2003,22(2), 107-149.

Dodd, I. C., Zinovkina, N. Y., Safronova, Y I., & Belimov, A. A. Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, 2010, 757(3), 361-379.

Dong, Y. H., Zhang, X. F., Xu, J. L., & Zhang, L. H. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl. Environ. Microbiol., 2004, 70(2), 954-960.

Dong, Y., Glasner, J. D., Blattner, F. R., & Triplett, E. W. Genomic interspecies microarray hybridization: Rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K-12 open reading frames. Appl. Environ. Microbiol, 2001, 67, 1911-1921.

Doty, S. L., Oakley, B., Xin, G., Kang, J. W., Singleton, G., Khan, Z., Vajzovic, A., & Staley, J. T. Diazotrophic endophytes of native black cottonwood and willow. Symbiosis, 2009. 47(1), 23-33.

Downing, K. J., & Thomson, J. A. Intr oduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Canadian Journal of Microbiology, 2000, 46(4), 363-369.

Duffy, В. K., & Defago, G. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Applied and Environmental Microbiology-, 1999, 65(6), 2429-2438.

Duffy, B., Schouten, A., & Raaijmakers, J. M. Pathogen self-defense: Mechanisms to counteract microbial antagonism. Annual Review of Phytopathology, 2003, 47(1), 501-538.

Dunaeva, S. E., & Osledkin, Y. S. Bacterial microorganisms associated with the plant tissue culture: Identification and possible role. Selskokhozyaistvennaya Biologia, 2015, doi: 10.15389/agrobiology.2015.1.3eng.

Durbak, A., Yao, H., & Me Steen, P. Hormone signaling in plant development. Current Opinion in Plant Biolog)’, 2012, 75(1), 92-96.

Egener, T, Hurek, T, & Reinhold-Hurek, B. Endophytic expression oinif genes of Azoarcus sp. strain BH72 in rice roots. Mol. Plant-Microbe interact., 1999, 72(9), 813-819.

Egorshina, A. A., Khairullin, R. M., Sakhabutdinova, A. R., & Lukyantsev, M. A. Involvement of phytohormones in the development of interaction between wheat seedlings and endophytic Bacillus subtilis strain 11BM. Russian Journal of Plant Physiology’, 2012, 59(1), 134-140.

Ehrhardt, D., & Frommer, W. New technologies for 21“ century plant science. Plant Cell, 2012, 24, 374-394.

Elliott, G. N., Chou, J. H., Chen, W. M., Bloemberg, G. V., Bontemps, C., Martinez- Romero, E., Velazquez, E., Young, J. P, Sprent, J. I., & James, E. K. Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environmental Microbiology, 2009, 77(4), 762-778.

Fang, J. Y., & Hsu, Y. R. Molecular identification and antibiotic control of endophytic bacterial contaminants from micropropagated Aglaonema cultures. Plant Cell Tissue Organ Cult., 2012. 110, 53-62.

Felix, G., Duran, J. D., Yolko, S., & Boiler, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J., 1999, IS, 265-276.

Feller, I. C. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecological Monographs, 1995, 65,477-505.

Fernandez, O., Theocharis, A., Bordiec, S., Feil, R., Jacquens, L., Clement, C., Fontaine, F., & Barka, E. A. Burkholderia phytofinnans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol. Plant-Microbe Interact., 2012, 25(4), 496-504.

Ferreira, A., Quecine, M. C., Lacava, P. T., Oda, S., Azevedo, J. L., & Araujo, W. L. Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiology’ Letters, 2008, 257(1), 8-14.

Fletcher, J., Leach, J. E., Eversole, K., & Tauxe, R. Human pathogens on plants: Designing a multidisciplinary strategy for research. Phytopathology, 2013,103, 306-315.

Forchetti, G., Masciarelli, O., Alemano, S., Alvarez, D., & Abdala, G. Endophytic bacteria in sunflower (.Helianthus annum L.): Isolation, characterization, and production of jasmo- nates and abscisic acid in culture medium. Applied Microbiology’ and Biotechnology’, 2007. 76(5), 1145-1152.

Fumkranz, M., Adam, E., Muller, H., Gmbe, M., Huss, H., Winkler, J., & Berg, G. Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. European Journal of Plant Pathology, 2012,134(3), 509-519.

Gamalero, E., Lingua, G., Berta, G., & Lemanceau, P. Methods for studying root colonization by introduced beneficial bacteria. Agronomie, 2003, 23(5/6), 407-418.

Gangwar, M., Sheela, R., & Neerja, S. Investigating endophytic actinomycetes diversity from rice for plant growth promoting and antifungal activity. International Journal of Advanced Life Sciences, 2012,1, 10-21.

Gao, M., Teplitski, M., Robinson, J. B., & Bauer, W. D. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol. Plant-Microbe Interact., 2003,16(9), 827-834.

Germaine, K., Keogh, E., Garcia-Cabellos, G., Bonemans, B., Van Der Lelie, D., Barac, T., Oeyen, L., Vangronsveld, J., Moore, F. P, Moore, E. R. B., Campbell, C. D., Ryan, D., & Dowling, D. N. Colonization of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol. Ecol., 2004, 48, 109-118.

Glick, B. R., Karaturovrc, D., & Newell, P. A novel procedure for rapid isolation of plant growth-promoting rhizobacteria. Can. J. Microbiol., 1995, 41, 533-536.

Glick, B. R., Penrose, D. M., & Li, J. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol., 1998,190, 63-68.

Gond, S. K., Bergen, M. S., Tones, M. S., & White. J. F. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defense gene expression in maize. Microbiological Research, 2015,172, 79-87.

Goudjal, Y., Toumatia, O., Sabaou, N., Barakate, M., Mathieu, F., & Zitouni, A. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: Indole-3-acetic acid production and tomato plants growth promoting activity. World Journal of Microbiolog’ and Biotechnolog’, 2013, 29(10), 1821-1829.

Govindarajan, M., Balandreau, J., Kwon, S. W., Weon, H. Y., & Lakshminarasimhan, C. Effects of the inoculation of Bwkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microbial Ecology’, 2008, 55(1), 21-37.

Guan, S. H., Sattler, I., Lin, W. H., Guo, D. A., & Grabley, S. p-Aminoacetophenonic acids produced by a mangrove endophyte: Streptomyces griseus subspecies. J. Nat. Prod., 2005. 68, 1198-1200.

Guerin, P. Sur la presence dun champignon dans livraie. J. Botanique., 1898,12, 230-238 (in French).

Guemey, K. A., & Mantle, P. G. Biosynthesis of 1-N-methylalbonoursin by an endophytic Streptomyces sp. J. Nat. Prod., 1993, 56,1194-1198.

Gunatilaka, A. L. Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. Journal of Natural Products, 2006, 69(3), 509-526.

Gyaneshwar, P, James, E. K., Reddy, P. M., & Ladha, J. K. Herbaspirillum colonization increases growth and nitrogen accumulation in aluminum-tolerant rice varieties. New Phytol., 2002. 154, 131-145.

Halhnann, J. Plant Interactions with Endophytic Bacteria (pp. 87-119). CABI Publishing, New York, 2001.

Halhnann, J., & Berg, G. Spectrum and population dynamics of bacterial root endophytes. In: Microbial Root Endophytes (pp. 15-31). Springer, Berlin, Heidelberg, 2006.

Hallmann, J., Kloepper, J. W., Rodriguez-Kabana, R., & Sikora, R. A. Endophytic rhizobacteria as antagonists of Meloidogyne incognita on cucumber. Phytopathology’, 1995, 55(10), 1136, (Accessed on 5 October 2019).

Halhnann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 1997, 43(10), 895-914.

Han, J. I., Choi, H. K., Lee, S. V., Orwin, P. M., Kim. J., La Roe, S. L., Kim, T. O., Neil, J., Leadbetter, J. R., Lee, S. Y., Hur, C. G., Spain, J. C., Ovchinnikova, G., Goodwin, L., & Han, C. Complete genome sequence of the metabolically versatile plant growth- promoting endophyte Variovorax paradoxus S110. Journal of Bacteriology, 2011, /93(5), 1183-1190.

Hardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttila, A. M., Compant, S., Campisano, A., Doling, M., & Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 2015, 79(3), 293-320.

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews Microbiology’, 2004, 2(1), 43-56.

Hartmann, A., Stoffels, M., Eckert, B., Kirchhof, G., & Schloter, M. Analysis of the presence and diversity of diazotrophic endophytes. In: Triplett, E. W., (ed.), Prokaiyotic Nitrogen Fixation: A Model System for Analysis of a Biological Process (pp. 727-736). Horizon Scientific Press, Wymondham, UK, 2000.

Hinton, D. M., & Bacon, C. W. Enterobacter cloacae is an endophytic symbiont of com. Mycopathologia, 1995,129, 117-125.

Ho, K. L., Lin, B., Chen, Y. Y., & Lee,D. J. Biodegradation of phenol using Coiynebacterium sp. DJI aerobic granules. Bioresource Technology, 2009, /00(21), 5051-5055.

Hoffmann, M. Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J. Biogeogr., 2002, 29, 125-134.

Hong, Y., Pasternak, J. J., & Glick, B. R. Biological consequences of plasmid transformation of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can. J. Microbiol, 1991, 37, 796-799.

Honma, M., & Tokuji, S. Metabolism of 1-aminocyclopropane-l-carboxylic acid. Agricultural and Biological Chemistry, 1978, 42(10), 1825-1831.

Hu, N., Luo, Y., Wu, L., & Song, J. A field lysimeter study of heavy metal movement down the profile of soils with multiple metal pollution during chelate-enhanced phytoremediation. International Journal of Phytoremediation, 2007,9(4), 257-268.

Hurek, T., Egener, X, & Reinhold-Hurek, B. Divergence in nitrogenases of Azoarcus spp., Proteobacteria of the beta subclass. J. Bacterial., 1997,179, 4172-4178.

Hurek, X, Handley, L. L., Reinhold-Hurek, B., & Piche, Y. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol. Plant-Microbe Interact.. 2002.15, 233-242.

Idris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact, 2007, 20(6), 619-626.

Ulmer, R, & Schinner, F. Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biology and Biochemistiy, 1995, 27(3), 257-263.

Iniguez, A. L., Dong, Y., Carter, H. D., Alimer, В. M., Stone, J. M., & Triplett, E. W. Regulation of enteric endophytic bacterial colonization by plant defenses. Mol. Plant- Microbe Interact. 2005. 1S(2), 169-178.

Iqbal, A., & Hasnain, S. Auxin producing Pseudomonas strains: Biological candidates to modulate the growth of Triticum aestivum beneficially. American Journal of Plant Sciences, 2013, 4(9), 1693. doi:10.4236/ajps.2013.49206.

Isawa, X, Yasuda, M., Awazaki, H., Minamisawa, K., Shinozaki, S., & Nakashita, H. Azospirillum sp. strain B510 enhances rice growth and yield. Microbes and Environments, 2010,25(1), 58-61.

Islam, M. R., Madhaiyan, M., Deka, В. H. P, Yim, W., Lee, G., Saravanan, V. S., Fu, Q., Hu, H., & Sa, X Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. Journal of Microbiology and Biotechnology, 2009, 79(10), 1213-1222.

James, E. K., & Olivares, F. B. Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit. Rev. Plant Sci., 1997,17,77-119.

James, E. K., Gyaneshw'ar, P, Mathan, N., Barraquio, Q. L., Reddy, P. M., Iannetta, P. P., Olivares, F. L., & Ladha, J. K. Infection and colonization of rice seedlings by the plant growth promoting bacterium Herbaspmllum seropedicae Z67. Mol Plant Microbe Interact, 2002,15, 894-906.

Joo, G. J.. Kim, Y. M„ Kim, J. X, Rliee. I. K„ Kim, J. H.. & Lee, I. J. Gibberellins- producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. Journal of Microbiolog)’ (Seoul, Korea) 2005, 43(6), 510-515.

Kaluzna, M., Mikicinsk, A., Sobiczewski, P., Zaw'adzka, M., Zenkteler, E., & Orlikowska, X Detection, isolation, and preliminary characterization of bacteria contaminating plant tissue cultures. Acta Agrobot., 2013, 66, 81-92.

Kalyaeva, M. A., Ivanova, E. G., Doronina, N. Y., Zakharchenko, N. S., Trotsenko, Y. A., & Buryanov, Y. I. The effect of aerobic methylotrophic bacteria on the in vitro morphogenesis of soft w'heat (Triticum aestivum). Russian Journal of Plant Physiology, 2003, 50(3), 313-317.

Kamilova, F., Validov, S., Azarova, X, Mulders, I., & Lugtenberg, B. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology’, 2005, 7(11), 1809-1817.

Kang, J. W., Khan, Z., & Doty, S. L. Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl. Environ. Microbiol, 2012, 7S(9), 3504-3507.

Kaul, S., Shamia, X, & Dhar, M. K. Omics tools forbettenmderstanding the plant-endophyte interactions. Frontiers in Plant Science, 2016, 7, 955, doi: 10.3389/fjpls.2016.00955.

Kieran, G. J., Liu, X., Cabellos, G. G., Hogan, J. P., Ryan, D., & Dowling, D. N. Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichloro- phenoxyacetic acid. FEMS Microbiology’ Ecology’, 2006, 57(2), 302-310.

Kloepper, J. W., Leong, J., Xeintze, M., & Schroth, M. N. Pseudomonas siderophores: A mechanism explaining disease-suppressive soils. Cun . Microbiol, 1980, 4,317-320.

Kloepper, J. W., Ryu, С. M., & Zhang, S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 2004, 94,1259-1266.

Kloepper, J. W., Xipping, E. M., & Lifshitz, R. Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister, D. L., & Cregan, P. B., (eds.), The Rhizosphere and Plant Growth (pp. 315-326). Kluwer Academic Publishers, Dordrecht, Xhe Netherlands, 1991.

Knotli, J. L., Kim, S. H., Ettl, G. J., & Doty, S. L. Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazo trophic endophyte consortia. New Phytologist, 2014, 201(2), 599-609.

Kobayashi, D. Y., & Palumbo, J. D. Bacterial endophytes and their effects on plants and uses in agriculture. Microbial Endophytes, 2000,19, 199-233.

Kong, Z. Y., Glick, B. R., Duan, J., Ding, S., Xian, J., McConkey, B. J., & Wei, G. H. Effects of 1-aminocyclopropane-l-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant and Soil, 2015, 391(1/2), doi: 10.1007/S11104-015-2434-4.

Koomneef, M., & Meinke, D. Xhe development of Arabidopsis as a model plant. Plant Journal 2010, 61, 909-921.

Koumoutsi, A., Chen, X. H., Heime, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., & Borriss, R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol, 2004,1S6, 1084-1096.

Kpomblekou, A. K., & Xabatabai, M. A. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agr. Ecosyst. Environ., 2003,100, 275-284.

Krause, A., Ramakumar, A., Bartels, D., Battistoni, F., Bekel, X, Boch, J., et al. Complete genome of the mutualistic, N,-fixing grass endophyte Azoarcus sp. strain BH72. Nature Biotechnology’, 2006, 24(11),1385—1391.

Kucey, R. M. N. Plant growth-altering effects of Azospirillum brasilense and Bacillus C-l 1-25 on two w'heat cultivars. J. Appl Bacteriol, 1988, 64, 187-196.

Kudoyarova, G. R., Melentiev, A. I., Martynenko, E. Y.. Ximergalina, L. N., Arkhipova, X. N., Shendel, G. V., Kuzmina, L. Y., Dodd, I. C., & Veselov, S. Y. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem., 2014, S3, 285e291, doi: 10.1016/j.plaphy.2014.08.015.

Kusari, P, Spiteller, M., Kayser, O., & ICusari, S. Recent advances in research on Cannabis sativa L. endophytes and their prospect for the pharmaceutical industry. In: Kharwar, R.

N., Upadhyay, R. S., Dubey, N. K., & Raghuwanshi, R., (eds.), Microbial Diversity and Biotechnologу in Food Security (pp. 3-15). Springer, New Delhi, 2014.

Li, K., & Ramakrishna, W. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J. Hazard. Mater., 2011,189, 531-539.

Liu, L., Kloepper, J. W., & Tuzun, S. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology’, 1995, §5(8), 843-847.

Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R., Taghavi, S., Mezgeay, M., & Der Lelie, D. V. Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences, 2002, 21(6), 583-606.

Lorentz, R. H., Artico, S., Da Silveira, A. B., Einsfeld, A., & Conjao, G. Evaluation of antimicrobial activity in Paenibacillus spp. strains isolated from natural environment. Let. Appl. Microbiol., 2006. 43, 541-547.

Loy, A., Нот, M., & Wagner, M. Probe base: An online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res, 2003,37(1), 514-516.

Lucero, M. E., Unc, A., Cooke, P, Dowd, S., & Sun, S. Endophyte microbiome diversity in micropropagated.lf/7p/e.t canescens and Atrip!ex torreyi var gnffthsu. PLoS One, 2011, 6(3), el7693, (Accessed on 5 October 2019).

Lugtenberg, B., & Kamilova, F. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 2009, 63, 541-556.

Luo, S., Xu, T., Chen, L., Chen, J., Rao, C., Xiao, X., Wan, Y., Zeng, G., Long, F., Liu, C., & Liu, Y. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Applied Microbiology’ and Biotechnology, 2012, 93(4), 1745-1753.

Ma, R. S., Oliveira, F., Nai, M., Rajkumar, Y., Luo, I., Rocha, H., & Freitas, X. X. The hyperaccumulator Sedum plutnbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J. Environ. Manage.. 2015.156, 62-69.

Madhaiyani, M., Chauhan, P. S., Yim, W. J., Bomah, H. P. D., & Sa, T. M. Diversity and beneficial interactions among Methylobacterium and plants. In: Maheshwari, D. K., (ed.), Bacteria in Agrobiology’: Plant Growth Responses (pp. 259-284). Springer-Verlag, Berlin, Heidelberg, 2011.

Madmony, A., Chemin, L., Pleban, S., Peleg, E., & Riov, J. Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiologica, 2005, 50(3), 209-216.

Maksimov, I. V., Abizgil, D. R. R., & Pusenkova, L. I. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl. Biochem. Microbiol., 2011, 47(4), 333-345.

Maksimov, I. V., Veselova, S. V., Nuzhnaya, T. V., Sarvarova, E. R., & Khairullin, R. M. Plant growth-promoting bacteria in regulation of plant resistance to stress factors. Russian Journal of Plant Physiology, 2015, 62(6), 715-726.

Mannisto, M. K., Matja, A. T., & Jaakko, A. P. Degradation of 2,3,4,6-tetrachlorophenol at low' temperature and low' dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation, 2001,12(5), 291-301.

Marchand, L., Mench, M., Jacob, D. L., & Otte, M. L. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environmental Pollution, 2010, /55(12), 3447-3461.

Marino, G., Altan, A. D., & Biavati, B. The effect of bacterial contamination on the growth and gas evolution of in vitro cultured apricot shoots In Vitro Cell. Dev. Biol., 1996, 32, 51-56.

Mailer, M. J., Zabinski, C. A., & Callaway, R. M. Mychonhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology, 1999, SO, 1180-1186.

Martinez-Aguilar, L., Diaz, R., Pena-Cabriales, J. J., Santos, P. E., Dunn, M. F., & Caballero- Mellado, J. Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Applied and Environmental Microbiology’, 2008. 74(14), 4574-4579.

Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anolles. G., Rolfe, B. G., & Bauer, W. D. Extensive and specific responses of a eukaryote to bacterial quorumsensing signals. Proc. Natl. Acad. Sci. USA, 2003,100(3), 1444-1449.

Me Inroy, J. A., & Kloepper. J. W. Survey of indigenous bacterial endophytes from cotton and sweet com. Plant and Soil, 1995,173, 337-342.

Melentev, A. I. Aerobnye SporoobrazuyushchieBakteru Bacillus Cohn. vAgroekosistemakh (Aerobic Spore Forming Bacterium Bacillus Cohn, in Agroecosystems). Nauka, Moscow', 2007.

Mercado-Bianco, J., & Lugtenberg, B. J. J. Biotechnological applications of bacterial endophytes. Curr. Biotechnol., 2014, 3, 60-75.

Merzaeva, О. V., & Shirokikh, I. G. The production of auxins by the endophytic bacteria of winter rye. Applied Biochemistiy and Microbiology’, 2010, 46(1), 44-50.

Miller, С. M., Miller, R. V., Garton-Kenny, D., Redgrave, B., Sears, J., Condron, M. M., Teplow', D. B., & Strobel, G. A. Ecomycins, unique antimycotics from Pseudomonas viridifiava. J. Appl. Microbiol., 1998, 54, 937-944.

Mishagi, I. J., & Donndelinger, C. R. Endophytic bacteria in symptom-free cotton plants. Phytopathology’, 1990. 9, 808-811.

Mitter, B., Petrie, A., Shin, M. W., Chain, P. S. G., Hauberg-Lotte, L., Reinhold-Hurek, B., Nowak, J., & Sessitsch, A. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front. Plant. Sci., 2013, 4,120, doi: 10.3389 fpls.2013.00120.

Mukhopadhyay, K., Garrison, N. K., Hinton, D. M., Bacon, C. W., Khush, G. S., Peck, H. D., & Datta, N. Identification and characterization of bacterial endophytes of rice. Mycopathologia, 1996,134(3), 151-159.

Mundt, J. O., & Hinkle, N. F. Bacteria within о Miles and seeds. Applied and Environmental Microbiology’, 1976, 32(5), 694-698.

Munoz-Rojas, J., & Caballero-Mellado, J. Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant grow'th. Microb. Ecol., 2003, 46,454^64.

Muithy, B. N. S., Yettakkommakankav. N., KrishnaRaj, S., Odumeru, J., & Saxena, P. K. Characterization of somatic embryogenesis in Pelargonium x hortorum mediated by a bacterium. Plant Cell Reports, 1999,18(1), 607-613.

Muthukumarasamy, R., Kang, U. G., Park, K. D., Jeon, W. T., Park, C. Y., Cho, Y. S., Kw'on, S. W., Song, J., Roh, D. H., & Revathi, G. Enumeration, isolation and identification of diazotrophs from Korean w'etland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. J. Appl. Microbiol, 2001.102, 981-991.

Muthukumarasamy, R., Revathi, G., & Loganathan, R Effect of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus). Plant and Soil, 2002, 243, 91-102.

Nahrstedt, A., & Butterweck, V. Biologically active and other chemical constituents of the herb of Hypericum perforatum L. Pharmacopsychiatry, 1997, 20(S2), 129-134.

Newman, K. L., Chatterjee, S., Ho, K. A., & Lindow, S. E. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors. Mol. Plant- Microbe Interact., 2008. 22(3), 326-334.

Newman, M. A., Sundelin, X, Nielsen, J. X, & Erbs, G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science, 2013, 4, 139, doi: 10.3389/fpls.2013.00139.

Nikolic, B., Schwab, H., & Sessitsch, A. Metagenomic analysis of the 1 -aminocyclopropane- 1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solarium tuberosum L. Archives of Microbiology’, 2011,193(9), 665-676.

Norman, D. J., & Alvarez, A. M. Latent infections of in vitro anthurium caused by Xanthomonas campestris pv. dieffenbachiae. Plant Cell, Tissue and Organ Culture, 1994, 39, 55-61.

Nowak, J. Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cellular and Developmental Biology-Plant, 1998, 34(2), 122-130.

Orlikowska, X, Nowak, K., & Reed, B. Bacteria in the plant tissue culture environment. Plant Cell, Tissue and Organ Culture 128(3), 2017, 487-508.

Otieno, M., Sidhu, C. S., Woodcock, B. A., Wilby, A., Yogiatzakis, I. N., Mauchline, A. L., Gikungu, M. W., & Potts, S. G. Local and landscape effects on bee functional guilds in pigeon pea crops in Kenya. Journal of Insect Conservation, 2015, 29(4), 647-658.

Pacurar, D. I., Xhordal-Christensen, H., Pacurar, M. L., Pamil, D., Botez, C., & Bellini, C. Agrobacterium turnefaciens: From crown gall tumors to genetic transformation. Physiol. Mol. Plant Pathol. 2011, 76, 76-81.

Panicker, B., Xhomas, P., Janakiram, X, Yenugopalan. R., & Narayanappa, S. B. Influence of cytokinin levels on in vitro propagation of shy suckering chrysanthemum ‘Arka Swama’ and activation of endophytic bacteria. In Vitro Cell. Dev. - PI, 2007, 43, 614-622.

Panigrahi, S., Arana. L. K„ Yeukateshwaralu, Y., & Umesli, N. Biohardening of micropropagated plants with PGPR and endophytic bacteria enhances the protein content. In: Kumar, A., (ed.), Biotechnology’ and Bioforensics, Forensic and Medical Bioinformatics (pp. 51-55). Springer, Netherlands, 2015.

Pedrosa, F. O., Monteiro, R. A., Wassem, R., Cruz, L. M., Ayub, R. A., Colauto, N. B., Fernandez, M. A., Fungaro, M. H., Grisard, E. C., Hungria, M., & Madeira, H. M. Genome of Herbaspirillum seropedicae strain SmRl, a specialized diazoti'ophic endophyte of tropical grasses. PLoSGenetics, 2011. 7(5), el002064, doi: org/10.1371/joumal.pgen. 1002064.

Phillips, L. A., Geimida, J. J., Farrell, R. E., & Greer, C. W. Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol. Biochem., 2008, 40, 3054-3064.

Pieterse, С. M., Л an Der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology’, 2012, 28, 489-521.

Pieterse, С. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. Induced systemic resistance by beneficial microbes. Annu. Rev. PhytopathoL, 2014, 52, 347-375.

Pinheiro, R. D., Boddey, L. H., & James, E. K. Sprent, J. I., & Boddey, R. M. Adsorption and anchoring of Azospirillum strains to roots of wheat seedlings. Plant Soil, 2002, 246, 151-166.

Pirttila, A. M., Laukkanen, H., Pospiech, H., Myllyla, R., & Hohtola, A. Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Applied and Environmental Microbiolog)’, 2000, 66(1), 3073-3077.

Pirttila, A. M, Podolich, O., Koskimaki, J. J., Hohtola, E., & Hohtola, A. Role of origin and endophyte infection in browning of bud derived tissue cultures of Scots pine Pin us sylvestris L. Plant Cell Tissue Organ Cult., 2008, 95, 47-55.

Pischke, M. S., Huttlin, E. L., Hegeman, A. D., Sussman, M. R. A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol., 2006,140, 1255-1278.

Poppenberger, B., Leonhardt, W., & Redl, H. Latent persistence of Agrobacterium vitis in micropropagated Vitis vinifera. Vitis, 2002, 41(2), 113-114.

Porteous-Moore, F., Barac, T., Borremans, B., Oeyen, L., Yangronsveld, J., Van Der Lelie, D., Campbell, D., & Moore, E. R. B. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: The characterization of isolates with potential to enhance phytoremediation. Sys. App. Microl., 2006, 29, 539-556.

Puente, M. E., Li, C. Y., & Bashan, Y. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environmental and Experimental Botany, 2009, 66(3), 402^108.

Qin, S., Xing, K., Jiang, J. H., Xu, L. H., & Li, W. J. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Applied Microbiology and Biotechnology, 2011, 69(3), 457-473.

Quambusch, M., Pirttila, A. M., Tejesvi, M. V., Winkelmann, T., & Bartsch, M. Endophytic bacteria in plant tissue culture: Differences between easy- and difficult-to-propagate Prunus avium genotypes. Tree Physiology’, 2014, 34(5), 524-533.

Quoirin, M., & Lepoivre, P. Etude de milieux adaptes aux cultures in vitro de Prunus sp. ActaHortic.. 1977, 78, 437-442.

Rai, M. K., Akhtar, N., & Jaiswal, V. S. Somatic embiyogenesis and plant regeneration in Psidium guajava L. cv. Banarasi local. Scientia Horticulturae, 2007,113(2), 129-133.

Ramesh, R., & Phadke, G. S. Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Protection, 2012, 37, 35-41.

Ramesh, R., Joshi, A. A., & Ghanekar, M. P. Pseudomonads: Major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solatium melongena L.). World Journal of Microbiology and Biotechnology, 2009, 25(1), 47-55.

Ramos-Gonzalez, M. I., Campos, M. J., & Ramos, J. L. Analysis of Pseudomonas putida КТ2440 gene expression in maize rhizosphere: In vitro expression technology capture and identification of root-activated promoters. Journal of Bacteriology’, 2005, 187, 4033-4041.

Rashedul, I. M., Madhaiyan, M., Bomah, H. P. D., Yim, W., Lee, G., Saravanan, V. S., Fu, Q., Hu, H., & Sa, T. Characterization of plant growth promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. J. Microbiol. Biotechnol., 2009,19, 1213-1222.

Redman, R. S., Sheehan, К. B., Stout, R. G., Rodriguez, R. J., & Henson, J. M. Thermotolerance generated by plant/fimgal symbiosis. Science, 2002, 295(5598), 1581, doi: 10.1126/science. 1072191.

Reed, В. M., & Tanprasert, P. Detection and control of bacterial contaminants of plant tissue cultures: A review of recent literature. Plant Tissue Cult. BiotechnoL, 1995,1.137-142.

Reed, В. M., Buckley, P. M., & De Wilde, T. N. Detection and eradication of endophytic bacteria from micropropagated mint plants. In Vitro Cell De’ Biol Plant, 1995, 31, 53-57.

Reinhold-Hurek, B., & Hurek, T. Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: Identification, localization, and perspectives to study their function. Crit. Rev. Plant Sci., 1998.17, 29-54.

Riggs, P. J., Chelius, M. K., Iniguez, A. L., ICaeppler, S. M., & Triplett, E. W. Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust. J. Plant Physiol., 2001. 28, 829-836.

Rocha, F. R., Papini-Terzi, F. S., Nishiyama, M. Y., Yencio, R. Z., Yicentini, R., Duarte, R. D., et al. Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics, 2007, 8, 71, doi: 10.1186/1471-2164-8-71.

Rodriguez, R., & Redman, R. More than 400 million years of evolution and some plants still can’t make it on their own: Plant stress tolerance via fungal symbiosis. Journal of Experimental Botany, 2008, 59(5), 1109-1114.

Roesch, L. F. W., Camargo, F. A., Bento, F. M., & Triplett, E. W. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant and Soil, 2008. 302(1/2), 91-104.

Rosenblueth, M., & Martinez, R. E. Rhizobium etli maize populations and their competitiveness for root colonization. Arch. Microbiol, 2004,1S1, 337-344.

Rosenblueth, M., & Martinez-Romero, E. Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact, 2006. 79(8), 827-837.

Rothballer, M., Eckert, B., Schmid, M., Fekete, A., Schloter, M., Lehner, A., Pollmann, S., & Hartmann, A. Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMSMicrobiol. Ecol, 2008, 66(1), 85-95.

Russo, A., Carrozza, G. P, Yettori, L., Felici, C., Cinelli, F., & Toffanin, A. Plant beneficial microbes and their application in plant biotechnology. In: Agbo, E. C., (ed.), Innovations in Biotechnology (pp. 57-72). InTech, Croatia, 2012. doi: 10.5772/31466.

Russo, A., Yettori. L., Felici, C., Fiaschi, G., Morini, S., & Toffanin, A. Enhanced micropropagation response and biocontrol effect of Azospirillum brasiliense Sp245 on Primus cerasifera L. clone Mr. S 2/5 plants. J. Biotechnol., 2008,134, 312-319.

Ryan, R. P, Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters, 2008 278(1), 1-9.

Ryan, R. P, Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., Berg, G., Лап Der Lelie, D., & Dow, J. M. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology, 2009, 7(7), 514-525.

Ryu, С. M. Bacterial volatiles as airborne signals for plants and bacteria. In: Lugtenberg, B., (ed.), Principles of Plant-Microbe Interactions (pp. 53-64). Springer International Publishing, Switzerland, 2015.

Ryu, С. M„ Farag, M. A., Hu, С. H.. Reddy, M. S„ Wei. H. X., Pare, P. W„ & Kloeppe. J. W. Bacterial volatiles promote growth iaArabidopsis. Proc. Natl. Acad. Sci. USA, 2003, 100(8), 4927-4932.

Saleh, S. A., Mekhemar, G. A. A., El-Soud, A. A. A., Ragab, A. A., & Mikhaeel, F. T. Survival of Azorhizobium and Azospirillum in different earner materials: Inoculation of wheat and Sesbania rostrata. Bulletin of Faculty’ of Agriculture, Cairo University, 2001, 52,319-338.

Samish, Z., & Dimant, D. Bacterial population in fresh, healthy cucumbers. FoodManuf, 1959. 34, 17-20.

Sangeeth, К. P., Bhai, R. S., & Srinivasan, V. Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) lhizosphere. J. Spices Atom. Crops, 2012, 21,118-124.

Scherling, C., Ulrich, K., Ewald, D., & Weckewerth, W. A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics. Mol. Plant-Microbe Interact, 2009, 22,1032-1037.

Schroth, M. N. Pseudomonas siderophores: A mechanism explaining disease-suppressive soils. Cuir. Microbiol., 1980, 4, 317-320.

Schulz, S., & Dickschat, J. S. Bacterial volatiles: The smell of small organisms. Natural Product Reports, 2007. 24(4), 814-842.

Scott, R. A., Weil, J., Le, P. T., Williams, P., Fray, R. G., Yon Bodman, S. B., & Savka, M. A. Long- and short-chain plant-produced bacterial JV-acylhomoserine lactones become components of phyllosphere, lhizosphere, and soil. Mol. Plant-Microbe Interact, 2006, 19(3), 227-239.

Seker, M. G., Sah, I., Kirdok, E., Ekinci, H., Ciftci, Y. O., & Akkaya, O. A hidden plant growth promoting bacterium isolated from in vitro cultures of fraser photinia (Photinia x fraseri). Int. J. Agile. Biol., 2017,19(6), 1511-1519.

Sessitsch, A., Coenye, T., Sturz, A. V., Л andamme, P, Barka, E. A., Salles, J. F., Yan Elsas, J. D., Faure, D., Reiter, B., Glick, B. R., Wang-Pruski, G., & Nowak, J. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. International Journal of Systematic and Evolutionaty Microbiology, 2005, 55(3), 1187-1192.

Sessitsch, A., Hardoim, P., Doling, J., Weilharter, A., Krause, A., Woyke, T., et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant-Microbe Interact, 2012,25(1), 28-36.

Sgroy, Y, Cassan, F., Masciarelli, O., Del Papa, M. F., Lagares, A., & Luna, Y Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasisregulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology, 2009, 85, 371-381.

Shahzad, R„ Waqas, M„ Khan, A. L„ Asaf, S„ Khan, M. A., Kang, S. M„ Yun, B. W., & Lee, I. J. Seed-bome endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oiyza sativa. Plant Physiology and Biochemistry, 2016,106, 236-243.

Shetty, K., Cuitis, O. F., Levin, R. E., & Ang, W. W. Prevention of vitrification associated with in vitro shoot culture of Oregano (Origanum vulgare) by Pseudomonas spp. Journal of Plant Physiology’, 1995. 147(3/4), 447-451.

Siciliano, S. D., Fortin, N., Mihoc, A., Wisse, G., Labelle, S., Beaumier, D., Ouellette, D., Roy, R., Whyte, L. G., Banks, M. K., Schwab, P, Lee, K., & Greer, G. W. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Applied and Environmental Microbiology’, 2001, 67(6), 2469-2475.

Siddikee, M. D., Ashaduzzaman, P., Chauhan, S., & Tongmin, S. Regulation of ethylene biosynthesisundersalt stress inredpepper(C'(7/W7C»wtfnrj!/i/mL.)by 1-aminocyclopropane- 1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria. Journal of Plant Growth Regulation. 2012, 31(2), 265-272.

Staniek, A., Woerdenbag, H. J., & Kayser, O. Endophytes: Exploiting biodiversity for the improvement of natural product-based drug discovery. Journal of Plant Interactions, 2008, 3(2), 75-93.

Steenhoudt, O., & Yanderleyden, J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with glasses: Genetic, biochemical and ecological aspects. FEMS Microbiologу Renews, 2000, 24(4), 487-506.

Stenuit, B. A., & Agathos, S. N. Microbial 2,4,6-trinitrotoluene degradation: Could we leam from (bio)chemistry for bioremediation and vice versa? Appl. Microbiol Biotechnol, 2010, S8, 1043-1064.

Stone, J. K., Bacon, C. W., & White, J. F. An overview of endophytic microbes: endophytism defined. In: Bacon, C. W., & White, J. F., (eds.), Microbial Endophytes (pp. 3-30). Marcel Dekker, New York, 2000.

Straub, D., Yang, H., Liu, Y., Tsap, T., & Ludewig, U. Root ethylene signaling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T. Journal of Experimental Botany, 2013, 64(14), 4603-4615.

Strobel, G., Daisy, B., Castillo, U., & Harper, J. Natural products from endophytic microorganisms. Journal of Natural Products, 2004, 67(2), 257-268.

Sunayana, M. R., Sasikala, C., & Ramana, C. Y Rhodestrin: A novel indole terpenoid phytohormone from Rhodobacter sphaeroides. Biotechnol. Lett., 2005, 27, 1897-1900.

Suzuki, T., Shimizu, M., Meguro, A., Hasegawa, S., Nishimura, X, & Kunoh, H. Yisualiza- tion of infection of an endophytic actinomycete Streptomyces galbus in leaves of tissue- cultured rhododendron. Actinomycetologica, 2005, 29(1), 7-12.

Sziderics, A. H., Rasche, F., Trognitz, F., Sessitsch, A., & Wilhelm, E. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuurn L.). Canadian Journal of Microbiology-, 2007, 53(11), 1195-1202.

Taghavi, S., Barac, X, Greenberg, B., Borremans, B., Vangronsveld, J., & Van Der Lelie, D. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Applied and Environmental Microbiology, 2005, 72(12), 8500-8505.

Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., & Weyens, N. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol, 2009, 75, 748-757.

Taghavi, S., Лап Der Lelie, D., Hoffman, A., Zhang, Y. B., Walla. M. D., Vangronsveld, J., Newman, L., & Monchy, S. Genome sequence of the plant growth promoting endophytic bacteriumEnterobacter sp. 638.PLoS Genet, 2010,6(5), el000943, doi: 10.1371/joumal. pgen. 1000943.

Taghavi, S., Weyens, N., Vangronsveld, J., Lelie, D., Pirttila, A. M., & Frank, A. C. Improved phytoremediation of organic contaminants through engineering of bacterial endophytes oftrees. In: Pirttila, A. M., & Frank, A. C., (eds.), Endophytes of Forest Trees (pp. 205-216). Springer, Netherlands, 2011.

Tammaro, F., & Xepapadakis, G. Plants used in phytotherapy, cosmetics and dyeing in the Pramanda district (Epirus, North-West Greece). J. Ethnopharmacol, 1986, 16, 167-174.

Tlieocharis, A., Bordiec, S., Fernandez, O., Paquis, S., Dhondt-Cordelier, S., Baillieul, F., Clement, C., & Barka, E. A. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol. Plant-Microbe Interact. 2012, 25(2), 241-249.

Thomas, P. Intense association of non-culturable endophytic bacteria with antibiotic- cleansed in vitro watermelon and their activation in degenerating cultures. Plant Cell Rep.. 2011, 30,2313-2325.

Thomas, P. Isolation of Bacillus pumilus from in vitro grapes as a long-term alcohol- surviving and rhizogenesis inducing covert endophyte. J. Appl. Microbiol, 2004, 97, 114-123.

Thomas, P, & Sekhar, A. C. Live cell imaging reveals extensive intracellular cytoplasmic colonization of banana by normally non-cultivable endophytic bacteria. AoB Plants, 2014, 6, (Accessed on 6 October 2019).

Thomas, P, Kumari, S., Swama, G. K., & Gowda, T. K. S. Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host-endophyte interaction in vitro and in vivo. Canadian Journal of Microbiology, 2007, 53(3), 380-390.

Timmusk, S., Nicander, B., Granhall, U., & Tillberg, E. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem., 1999, 31, 1847-1852.

Tjamos, S. E., Flemetakis, E., Paplomatas, E. J., & Katinakis, P. Induction of resistance to VerticiIlium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol. Plant Microbe Interact, 2005, IS, 555-561.

Tomasino, S. F., Leister, R. T, Dimock, M. B., Beach, R. M., & Kelly, J. L. Field performance of Clavibacter xyli subsp. cynodontis expressing the insecticidal protein gene ciylA of Bacillus thuringiensis against European com borer in field com. Biol. Con., 1995,5,442^148.

Ton, J., Van Pelt, J. А., Лап Loon, L. C., & Pieterse, С. M. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant Microbe Interact, 2002. 75(1), 27-34.

Triplett, E. W. Diazotrophic endophytes: Progress and prospects for nitrogen fixation in monocots. Plant Soil. 1996,1S6,29-38. BF00035052 (Accessed on 6 October 2019).

Trivedi, P, & Tongmin, S. Pseudomonas coirugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Current Microbiology, 2008, 56(2), 140-144.

Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. Honnones and hormone-like substances of microorganisms: a review. Applied Biochemistiy and Microbiology-, 2006. 42(3), 229-235.

Turner, T. R., James, E. K., & Poole, P. S. The plant microbiome. Genome Biology>, 2013, 14(6), 209, https://doi.orgT0.1186/gb-2013-14-6-209 (Accessed on 6 October 2019).

Ueno, K., Cheplick, S., & ICalidas, S. Reduced hyperhydricity and enhanced growth of tissue culture-generated raspberry (Rubus sp.) clonal lines by Pseudomonas sp. isolated from oregano. Process Biochemistiy, 1998, 33(4), 441-445.

Ulrich, K., Stauber, X, & Ewald, D. Paenibacillus a predominant endophytic bacterium colonizing tissue cultures of woody plants. Plant Cell Tiss. Org., 2008, 93, 347-351.

Uroz, S., Oger, P. M., Chapelle, E., Adeline, M. T, Faure, D., & Dessaux. Y. ARhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Applied and Environmental Microbiology’, 2008, 74(5), 1357-1366.

Valdivia, R. H., & Falkow, S. Bacterial genetics by flow cytometry: Rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol., 1996, 22, 367-378.

Van Aken, B., Yoon, J. M., & Schnoor, J. L. Biodegradation of nitrosubstituted explosives TNT, RDX, and HMX by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Applied and Environmental Microbiology’, 2004, 70(1), 508-517.

Van Buren, A. M., Andre, C., & Ishimam, C. A. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology’, 1993, S3,1406.

Van Der Ent, S., Van Wees, S. C., & Pieterse, С. M. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistiy, 2009, 70(13), 1581-1588.

Лап Loon, L. C. Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology’, 2007,119(b), 243-254.

Лап Loon, L. C., Bakker, P. A., & Pieterse, С. M. J. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol., 1998, 36,453-483.

Л an Oosten, V. R., Bodenhausen, N.. Reymond, P., Лап Pelt, J. А., Л an Loon, L. C., Dicke, M., & Pieterse, С. M. Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol. Plant-Microbe Interact, 2008, 21(1), 919-930.

Л an Overbeek, L., & Л an Elsas, J. D. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solatium tuberosum L.). FEMSMicrobiol. Ecol., 2008, 64(2), 283-296.

Лап Peer, R., Punte, H. L. M., De Weger, L. A., & Schippers, B. Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. Appl. Environ. Microbiol., 1990, 56, 2462-2470.

Лат Slot, К. A. E., & Knogge W. A dual role for microbial pathogen-derived effector proteins in plant disease and resistance. Cut. Re Plant Dis., 2002, 39, 471-482.

Леппа, S. C., Ladlia. J. K., & Tripathi, A. K. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. Journal of Biotechnologyv, 2001, 91(2), 127-141.

Леппа, S. C., Singh, A., Chowdhury, S. P, & Tripathi, A. K. Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol. Lett., 2004, 26,425-429.

Л enneiren, H., Л anderleyden, J., & Hai, W. L. Colonization and nifH expression on rice roots by Alcaligenes faecalis A15. In: Malik, K. A., Mirza, M. S., & Ladlia, J. K., (eds.), Nitrogen Fixation with Non-Legumes (pp. 167-177). Kluwer Academic Publishers, London, 1998.

Vettori, L., Russo, A., Felici, C., Fiaschi, G., Morini, S., & Toffanin, A. Improving micropropagation: Effect of Azospirillum brasilense Sp245 on acclimatization of rootstocks of fruit tree. J. Plant Interact, 2010, 5, 249-259.

Лп^ге, F., Ла^ав, C., Schwarcz, K., Cavalcante, J., Nogueira, E. M., Baldani, J. I., Ferreira, P. C., & Hemerly, A. S. SHR5: A novel plant receptor kinase involved in plant-N2-fixing endophytic bacteria association. Journal of Experimental Botany, 2006, 57(3), 559-569.

Л'оп Bodman, S. B., Bauer, Л¥. D., & Coplin, D. L. Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol., 2003, 41, 455-482.

Weilharter, A., Mitter, B., Shin, M. V., Chain, P. S. G., Nowak, J., & Sessitsch, A. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytoirmans strain PsJN. Bacteriol., 2011,193, 3383-3384.

Weyens, N., Beckers, B., Schellingen, K., Ceulemans, R., Croes, S., Janssen, J., Haenen,

5., Witters, N., & Vangronsveld, J. Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. Journal of Soils and Sediments. 2013, 73(1), 176-188.

Weyens, N., Croes, S., Dupae, J., Newman, L., Van Der Lelie, D., Carleer, R., & Vangronsveld, J. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ. Pollut., 2010b, 158, 2422-2427.

Weyens, N., Truyens, S., Dupae, J., Newman, L., Taghavi, S., Van Der Lelie, D., Carleer, R., & Vangronsveld, J. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ. Pollut., 2010a, 158, 2915-2919.

Weyens, N., Van Der Lelie, D., Taghavi, S., & Vangronsveld, J. Phytoremediation: Plant- endophyte partnerships take the challenge. Curr. Opin. Biotechnol., 2009b, 20,248-254.

Weyens, N., Лап Der Lelie, D., Taghavi, S., Newman, L., & Vangronsveld, J. Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol., 2009a, 27, 591-598.

White. J. F., Tones, M. S., Somu, M. P., Johnson, H., Irizarry, I., Chen, Q., & Bergen, M. Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells. Microscopy Research and Technique, 2014a, 77(8), 566-573.

White. J. F., Tones, M. S., Sullivan, R. F., Jabbour, R. E., Chen, Q., Tadych, M., Irizarry,

1., Bergen, M. S., Havkin-Frenkel, D., & Belanger, F. C. Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids. Microscopy Research and Technique, 2014b. 77(11), 874-885.

Wong-'illaiTeal. A., & Caballero-Mellado, J. Rapid identification of nitrogen-fixing and legume-nodulating Burkholderia species based on PCR 16S rRNA species-specific oligonucleotides. Systematic and Applied Microbiology’, 2010, 33(1), 35-43.

Wu. X., ennison, S. J., Liu, H., Ben Dov, E., Zaritsky, A., & Boussiba, S. Mosquito lan'icidal activity of transgenic Anabaena strain PCC, 7120 expressing combinations of genes from Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol., 1997, 63, 1533-1537.

Yazdani, M., Bahmanyar, M. A., Pirdashti, H., & Esmaili, M. A. Effect of phosphate solubilization microorganisms PSM and plant growth promoting rhizobacteria PGPR on yield and yield components of com Zea mays L. World Academy ofScience, Engineering and Technology, 2009, 49, 90-92.

Yi, H. S., Yang, J. W., & Ryu, С. M. ISR meets SAR outside: Additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field grown pepper. Front. Plant Sci., 2013, 4, 122, doi: 10.3389/fpls.2013.00122.

Youngbae, S., Kim, S., & Park, C. W. A phylogenetic study of Polygonum sect, tovara (polygonaceae) based on ITS sequences of nuclear ribosomal DNA. Plant Biology’, 1997, 40. 47-52.

Yuan, Z. C., Haudecoeur, E., Faure, D., Kerr, K. F., & Nester, E. W. Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and y-amino butyric acid reveals signaling crosstalk and Agrobacterium-plant co-evolution. Cellular Microbiology’, 2008, 70(11), 2339-2354.

Zakharchenko, N. S., Kochetkov, V. Y. Buryanov, Y. A. I., & Boronin, A. M. Effect of rhizosphere bacteria Pseudomonas aureofaciens on the resistance of micropropagated plants to phytopathogens. Appl. Biochem. Microbiol., 2011, 47, 661-666.

Zhang, C., Tanabe, K., Tani, H., Nakajima, H., Mori, M., & Sakuno, E. Biologically active gibberellins and abscisic acid in fruit of two late-maturing Japanese pear cultivars with contrasting fruit size. Journal of the American Society for Horticultural Science, 2007, 132(4), 452^58.

Zhang, H. W., Song, Y. C., & Tan, R. X. Biology and chemistry of endophytes. Nat. Prod. Rep.. 2006. 23, 753-771.

Zhang, L. H. Quorum quenching and proactive host defense. Trends in Plant Science, 2003, 8(5), 238-244.

Zhang, T., Shi, Z. Q., Hu, L. B., Cheng, L. G., & Wang, F. Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World Journal of Microbiolog}! and Biotechnolog}!, 2008. 24(6), 783, doi: 10.1007/sll274-007-9533-l.

Ziemienowicz, A. Agrobacterium-mediated plant transformation: Factors, applications and recent advances. Biocatal. Agric. Biotechnol., 2014, 3, 95-102.

< Prev   CONTENTS   Source   Next >