RESULTS AND DISCUSSION

We analyzed the characteristics for 37 species. Statistically significant differences between species was observed for all studied characteristics NDF (F (36, 148) = 21,642, p = 0) (Fig. 8.1), ADF (F(36,148) = 18,783, p = 0) (Fig. 8.3), lignin (F(36,148) = 39,030, p = 0) (Fig. 8.5), cellulose (F(36,148) = 25,237,

p = 0) (Fig. 8.7), hemicellulose (F(36,148) = 9,4778, p = 0) (Fig. 8.9), fiber (F(36,148) = 21,660,p = 0) (Fig. 8.11). Means are given in Table 8.1.

8.3.1 NEUTRAL DETERGENT FIBER

Maximum ofNDF (94.8%) is observed in Celtispallida (Fig. 8.1, Table 8.1). Parkinsonia aculeata and Guaiacum atigustifoliimi have also high values of NDF. These species do not have statistically significant differences from each other but they are different from other species (Figs. 8.1 and 8.2). Acacia famesiana has a minimum ofNDF (74.86%). This species has a maximum number of statistically significant differences from other species (Fig. 8.2). Minimum of statistically significant differences from other species is observed in Harvadiapallens (Fig. 8.2).

NDF content (%) of woody tree species in 1

FIGURE 8.1 NDF content (%) of woody tree species in 1: Acacia schaffneri, 2: Fraxinus greggii, 3: Helietta panifoha, 4: Forestiera angustifolia, 5: Cordia boissieri, 6: Salix lasiolepis, 7: Karwinskia humboldtiana, 8: Acacia famesiaua, 9: Diospyros texana, 10: Croton suaveolens, 11: Acacia berlandieri, 12: Sargentia greggii, 13: Acacia rigidula, 14: Ebenopsis ebano, 15: Amyris texana, 16: Ehretia anacua, 17: Celtis laevigata, 18: Onerous polymorpha, 19: Bernardia myricifolia, 20: Prosopis laevigata, 21: Lantana macropoda, 22: Eysenhardtia polystachya, 23: Cercidium macrum, 24: Zanthoxylum fagara, 25: Celtis pallida, 26: Guaiacum angustifolium, 27: Parkinsonia aculeata, 28: Leucaena leucocephala, 29: Leucophyllum frutescens, 30: Condalia hookeri, 31: Acacia wrightii, 32: Hairadia pollens, 33: Gymnosperma glutinosum, 34: Berberis trifoliata, 35: Caesalpinia mexicana, 36: Sideroxylon celastrina, 37: Diospyrospalmeri.

TABLE 8.1 The Chemical Composition and Fiber Content of the Tree Species. A: mean. B: standard deviation

Species

NDF, %

ADF, %

Lignin, %

Cellulose, %

Hemicellulose, °/<

) Fiber, %

A

В

A

В

A

В

A

В

A

В

A

В

1

Acacia schaffneri

83.01

1,43

60.16

0,83

19.05

0,35

41.21

0,51

22.85

0,79

83.10

1,41

2

Fraxinus greggii

81.17

1.07

55.43

0.40

15.28

0,25

40.29

0.49

25.74

0,70

81.31

1.05

3

Helietta parvifolia

81.15

0,94

60.73

0,72

20.40

1,32

40.53

1,17

20.42

0,58

81.34

0,82

4

Foiestiera angnstifolia

86.12

2,50

63.88

2,59

20.72

0,74

43.28

1,85

22.25

0,35

86.24

2,44

5

Cordia boissien

81.50

2,81

61.56

1,84

24.36

1,33

37.34

1.66

19.94

1.03

81.64

2,81

6

Salix lasiolepis

85.14

1,94

63.56

1,57

17.85

0,94

45.92

1,85

21.58

0,58

85.36

1.96

7

KaiM’inskia humboldtiana

82.57

0,74

60.02

0,58

21.93

0.40

38.27

0.66

22.55

0.42

82.76

0,79

8

Acacia farnesiana

74.86

0.63

50.89

1.02

17.31

0,48

33.70

1,25

23.97

0.43

74.98

0.61

9

Diospyros texana

86.01

2,30

62.15

1.07

18.71

1,18

43.59

0,54

23.86

1,25

86.15

2,29

10

Croton suaveolens

88.89

2,96

61.52

1,12

19.51

1,20

42.18

0.64

27.37

2,06

89.06

2,89

И

Acacia berlandieh

82.43

0,55

61.48

0,70

16.93

0,85

44.98

1,49

20.95

0.43

82.86

0,50

12

Sargeiitia greggii

78.92

0,78

59.61

0,61

18.67

1,47

41.05

1,41

19.32

0,74

79.05

0,78

13

Acacia ligidula

81.01

1,25

60.55

0,87

19.30

3,03

41.36

2,60

20.47

0.41

81.13

1,29

14

Ebenopsis ebano

79.13

0.65

60.14

0,26

27.80

4,50

32.55

4,69

18.99

0,56

79.34

0,61

15

Amyris texana

80.56

2,32

60.33

1.46

24.85

3,59

35.62

4,63

20.23

1,38

80.71

2,35

16

Ehretia опасна

78.27

0,72

62.38

4,54

24.93

2,75

37.68

3,59

15.89

4,41

78.49

0,77

17

Celt is laevigata

90.27

3,80

60.09

0,93

14.60

0,33

45.57

0.90

30.18

3,10

90.35

3,80

18

Quercus polymorpha

87.63

1,95

59.72

0,52

19.57

0,32

40.29

0,39

27.91

1,50

87.77

2,00

19

Bernardia myricifolia

89.23

2,88

58.84

0,81

20.12

0,31

38.85

0,81

30.39

3,09

89.36

2,84

Species

NDF, %

ADF, %

Lignin, %

Cellulose, %

Hemicellulose, %

Fiber, %

A

В

A

В

A

В

A

В

A

В

A

В

20

Prosopis laev igata

82.48

5,06

60.72

4,67

16.76

0,55

44.16

4,23

21.76

8,80

82.68

5,00

21

Laiitana macropoda

89.06

0.43

71.37

0.42

19.08

0.16

52.56

0.40

17.69

0,39

89.32

0.42

22

Eys enh ai dtia polystachya

80.67

0,38

62.22

0.60

17.66

0,17

44.85

0,71

18.44

0.62

80.96

0,32

23

Ceicidium macrum

80.61

0.63

63.05

0.80

15.63

0,23

47.61

0.69

17.55

0,30

80.79

0.63

24

Zanthoxylum fagara

82.52

1 *>

65.46

4,52

18.45

0,81

47.10

4,14

17.06

3,34

82.61

2 12

25

Celtis pallida

94.80

1,61

77.58

11,43

17.18

0,67

60.51

11,65

17.22

9.99

94.91

1.60

26

Guaiacum angustifolium

93.45

2,32

65.13

2,58

21.23

0.44

44.06

3,05

28.33

3,35

93.62

2,34

27

Parkinsonia aculeata

93.99

2,87

77.14

2,91

15.43

0.40

61.85

2,87

16.85

5,65

94.14

2,91

28

Leucaena leucocephala

80.96

0.96

64.42

0,81

18.97

0,35

45.60

1.08

16.54

0.84

81.11

0,95

29

Leucophyllum frutescens

86.97

0,91

67.25

0,53

24.67

1.62

42.88

1,33

19.72

0,59

87.27

0,91

30

Condalia hookeri

85.28

7,18

64.65

4,70

24.14

1.49

40.67

3,31

20.64

2,96

85.44

7,23

31

Acacia wightii

82.63

0,39

58.55

0,79

15.43

0,23

43.29

0.63

24.08

0,79

82.80

0,34

32

Hairadia pollens

84.03

0,57

60.13

0.48

16.49

0,26

43.65

0,26

23.90

0.49

84.04

0,53

33

Gymnosperma glutiiiosum

84.67

1,59

59.04

1,25

11.94

0.49

47.23

0,88

25.63

1,37

84.80

1.60

34

Berbeiis tnfohata

81.40

0.15

54.88

0,38

15.06

0,51

39.95

0,37

26.52

0.44

81.53

0.14

35

Caesalpinia mexicana

83.63

0,36

58.67

0,37

17.16

0,20

41.53

0,41

24.96

0,30

83.65

0,33

36

Sidevoxylon celasthna

78.94

0.46

58.25

0,83

28.57

0,83

29.80

0.49

20.69

0.62

79.07

0,37

37

Diospnros palmeri

83.45

0.46

58.77

0.49

14.26

0.65

44.63

0,37

24.67

0,67

83.56

0,47

Total

83.98

4.90

61.90

5,61

19.19

4.00

42.87

6,69

22.08

4,63

84.14

4,89

Another nine species also did not have much difference from other species: Acacia schaffneri, Acacia berlandieri, Acacia wrightii, Salix lasio- lepis, Kanvinskia humboldtiana, Prosopis laev igata, Condalia hookeri, Caesalpinia mexicana, Diospyros pahneri.

Results of Tukey's HSD (p

FIGURE 8.2 Results of Tukey's HSD (p < 0.05) for NDF in woody tree species.

8.3.2 DIGESTIBLE DETERGENT FIBER

ADF of most species is close to the average and statistically significant differences were not detected (Fig. 8.3). Much more ADF was found in three species Celtis pallida, Parkinsonia aciileata, and Lantana macropoda. Significantly smaller ADF was detected in Acacia famesiana.

These species are different from other species significantly (Fig. 8.4). In addition, many significant differences were detected in LeucophyUum firutescens, Berberis trifoliata, and Fraxinus greggii. This parameter of other species is veiy similar.

8.3.3 LIGNIN

Different plant species have different lignin content (Fig. 8.5). The lignin content of the investigated plants varies from 11.94 to 28.57%.

Sideroxylon celastrina, Ebenopsis ebano, Ehretia anacua, Amyris texatia, Leucophyllum frutescens, Cordia boissieri, and Condalia hookeri have high lignin content (over 24%) (Table 8.1). Extremely low lignin content was found in Gymnosperma glutinosum, Diospyros pahneri, and Celtis laevigata (<14.6%). We have found a significant difference in many cases. The greatest difference of Cordia boissieri, Ebenopsis ebano, Amyris texana,

Ehretia anacua, Leitcophylhtm frutescens, Condalia hookeri, Gymnospemia glutinosum, and Sideroxylon celastrina from other plant species is lignin content (Fig. 8.6).

ADF content (%) in woody tree species. 1

FIGURE 8.3 ADF content (%) in woody tree species. 1: Acacia schqffheri, 2: Fiminus gieggii, 3: Heliettapaivifolia, 4: Forestiera angustifolia, 5: Cordia boissieri, 6: Salix lasiolepis, 7: Karwin- skia hwnboldtiana, 8: Acaciafamesiana, 9: Diospyios texana, 10: Crown suaveolens, 11: Acacia berlandieri, 12: Sargentiagieggii, 13: Acacia hgidula, 14: Ebenopsis ebano, 15: Amyris texana, 16: Ehretia опасна, 17: Celtis laevigata, 18: Quercus polymotpha, 19: Bemardia myricifolia, 20: Prosopis laevigata, 21: Lantana macwpoda, 22: Eysenhardtiapohstachya, 23: Cercidium macntm, 24: Zanthoxylum fagara, 25: Celtis pallida, 26: Guaiacum angustifolium, 27: Parkin- sonia aculeata, 28: Leucaena leucocephala, 29: Leucophyllumfiutescens, 30: Condalia hooketi, 31 -.Acaciawhghtii, 32: Hairadiapollens, 33: Gymnospermaglutinosum, 34: Berbetis trifoliata, 35: Caesalpinia mexicana, 36; Sideroxylon celastiina, 37; Diospyiospalmeri.

Results of Tukey’s HSD {p

FIGURE 8.4 Results of Tukey’s HSD {p < 0.05) for ADF in woody tree species.

Lignin content (%) in woody tree species. 1

FIGURE 8.5 Lignin content (%) in woody tree species. 1: Acacia schaffnen, 2: Fraxinus greggii, 3: Helietta pairifolia, 4: Forestiera angustifolia, 5: Cordia boissieri, 6: Salix lasiolepis, 7: Karwinskia humboldtiana, 8: Acacia faniesiana, 9: Diospyros texana, 10: Croton suaveolens, 11: Acacia berlandieii, 12: Sargentia greggii, 13: Acacia rigidu/a, 14: Ebenopsis ebano, 15: Amyris texana, 16: Ehretia anacua, 17: Ce/rts laevigata, 18: Quercuspolymoipha, 19: Bemardia myricifolia, 20: Prosopis laevigata, 21: Lantana macropoda. 22: Eysenhaidlia polystachya, 23: Cercidium macrum, 24: Zanthoxylumfagara, 25: Ce/rtspallida, 26: Guaiacum angustifolium, 27: Parkinsonia aculeata, 28: Leucaem leiicocephala, 29: Leucophyllwn firutescem, 30: Condalia hookeri, 31: Acacia wtightii, 32: Haivadiapallens, 33: Gymnosperma glutinosum, 34: Berbeiis trifoliata, 35: Caesalpinia mexicana, 36: Sideroxylon celasttina, 37: Diospyros palmeri.

Results of Tukey's HSD (p < 0.05) for lignin content in woody tree species

FIGURE 8.6 Results of Tukey's HSD (p < 0.05) for lignin content in woody tree species.

8.3.4 CELLULOSE

The cellulose content of the investigated plants varies from 29.80% to 61.85% (Fig. 8.7). Maximum of cellulose content is observed in Parkinsonia aculeata. Celtis pallida and Lantana macropoda have also high levels of cellulose.

Cellulose content (%) in woody tree species. 1

FIGURE 8.7 Cellulose content (%) in woody tree species. 1: Acacia schaffheri, 2: Fraxinus greggii, 3: Helietta paivifolia, 4: Forestieva angustifolia, 5: Cordia boissieii, 6: Salix lasiolepis, 7: Karwinskia humboldtiana, 8: Acacia famesiana, 9: Diospyros texana, 10: Croton suaveolens, 11: Acacia berlandieh, 12: Saigentia greggii, 13: Acacia tigidula, 14: Ebenopsis ebano, 15: Amyris texana, 16: Ehretia опасна, 17: Ce/fts laevigata, 18: Ouercuspolymoipha, 19: Betvardia myhcifolia, 20: Prosopis laevigata, 21: Lantana macropoda, 22: Eysenhardtiapolystachya, 23: Cercidium macnnn, 24: Zanthoxyhmifagara, 25: Celtispallida, 26: Guaiacum angustifolium, 21: Parkinsonia aculeata, 28: Leucaena leucocephala, 29: Leucophyllmn frutescens, 30: Condalia hooketi, 31: Acacia wightii, 32: Hairadiapollens, 33: Gynmospenna glutinosum, 34: Berbehs trifoliata, 35: Caesalpinia mexicana, 36: Sideroxylon celastiina, 37: Dtospyrospalmeri.

Minimum of cellulose is observed in Sideroxylon celastrina. Acacia farnesiana and Ebenopsis ebano have also low levels of cellulose. These species have the greatest number of significant differences from other plant species (Fig. 8.8).

8.3.5 HEMICELLULOSE

Hemicellulose content among these investigated plants varied from 19.89% to 30.39% (Fig. 8.9). Maximum of cellulose is observed in Bernardia myricifolia. Close to the maximum content of liemicellulose was revealed in Celt is laevigata.

Results of Tukey’s HSD (p

FIGURE 8.8 Results of Tukey’s HSD (p < 0.05) for cellulose content in woody tree species.

Hemicellulose content (%) in woody tree species. 1

FIGURE 8.9 Hemicellulose content (%) in woody tree species. 1: Acacia sclmffneri, 2: Fraxinus gieggii, 3: Helietta paivifolia, 4: Forestiera angustifolia, 5: Cordia boissieri, 6: Salix lasiolepis, 7: Karwinskia humboldtiana, 8: Acacia farnesiana, 9: Diospyros texana, 10: Croton suaveolens, 11: Acacia berlandieri, 12: Sargentia gieggii, 13: Acacia rigidula, 14: Ebenopsis ebano, 15: Amyiis texana, 16: Ehretia anacua, 17: Celtis laevigata, 18: Ouercus polymorpha, 19: Bernardia myricifolia, 20: Prosopis laevigata, 21: Lantana macropoda, 22: Eysenhardtiapolystachya, 23: Cercidium macruni, 24: Zanthoxylum fagava, 25: Celtis pallida, 26: Guaiacum angustifolium, 27: Parkinsonia aculeata, 28: Leucaena leucocephala, 29: LeucophyUum frutescens, 30: Condalia hookeri, 31: Acacia wrightii, 32: Haivadia pollens, 33: Gynmospenna glutinosum, 34: Berberis trifoliata, 35: Caesalpinia mexicana, 36: Sideroxylon celastrina, 37: Diospyrospalmeri.

Quercus polymorpha, Croton suaveolens, and Berberis trifoliata (chococo) have also low levels of liemicellulose. Significant differences were found among the species (Fig. 8.10).

Results of Tukey's HSD (p

FIGURE 8.10 Results of Tukey's HSD (p < 0.05) for hemicellulose content in woody tree species.

8.3.6 FIBER

It is observed that not only there were statistically significant differences in the chemical composition of wood samples of the investigated plants; they also exhibited variability in the fiber content. The fiber content among these plant species varied from 74.98% to 94.91% (Fig. 8.11).

Maximum of fiber is observed in Celtis pallida. Close to the maximum content of fiber was revealed in Parkinsonia acnleata and Guaiacum angus- tifolium. Minimum of fiber content is observed in Acacia farnesiana. This species shows maximum number of statistically significant differences from other species (Fig. 8.12/ Croton suaveolens, Celtis laevigata, Bernardia tnyricifolia, and Lantana macropoda have also many significant differences from other plant species.

8.3.7 RESULTS OF TUKEY'S HSD TEST FOR EACH PLANT SPECIES (P < 0.05)

The investigated plant species differ in lignin contents to the greatest degree (Fig. 8.13). The greatest similarity of the studied species is traced on the content of liemicellulose and ADF (Fig. 8.1). However, some plant species have the features. Croton suaveolens, Guaiacum angustifolium, and Sargentia greggii have the highest number of statistically significant differences in the content of fiber and NDF. Acacia farnesiana has the highest number of statistically significant differences in the content of fiber, ADF, and NDF. Celtis laevigata, Bemardia myricifolia, and Quercus polymorpha have the highest number of statistically significant differences in the content of hemicelluloses, fiber, and NDF. Lantana macropoda has the highest number of statistically significant differences in the content of NDF and cellulose. Celtis pallida and Parkinsonia aculeata have the highest number of statistically significant differences in the content of celluloses, fiber, ADF, and NDF.

Fiber content (%) in woody tree species. 1

FIGURE 8.11 Fiber content (%) in woody tree species. 1: Acacia schaffheii, 2: Fraxinus greggii, 3: Helielta pairifolia, 4: Forestiera angustifolia, 5: Cordia boissieri, 6: Salix lasiolepis, 7: Karwinskia humboldtiana, 8: Acacia famesiana, 9: Diospyros texana, 10: Croton suaveolens, 11: Acacia berlandieri, 12: Sargentia greggii, 13: Acacia rigidu/a, 14: Ebenopsis ebano, 15: Amyris texana, 16: Ehretia anacua, 17: Celtis laevigata, 18: Ouercuspolymoipha, 19: Betvardia myricifolia, 20: Prosopis laev igata, 21: Lantana macropoda, 22: Eysenhaidtia polystachya, 23: Cercidium macrum, 24: Zantboxylumfagara, 25: Ce/ftspallida, 26: Guaiacum angustifolium, 27: Pavkinsonia aculeata, 28: Leucaena leucocephala, 29: Leucophyllum fiutescens, 30: Condalia hooken, 31: Acacia wtightii, 32: Hanadiapattern, 33: Gynmospenna glutinosum, 34: Berbevis tiifoliata, 35: Caesalpinia mexicana, 36: Sideroxylon celastiina, 37: Diospyros palmeri.

Results of Tukey’s HSD (p

FIGURE 8.12 Results of Tukey’s HSD (p < 0.05) for fiber content in woody species.

Results of Tukey's HSD for all plant species (p

FIGURE 8.13 Results of Tukey's HSD for all plant species (p < 0.05). 8.3.8 CONCLUSIONS

In conclusion, it may be noted that the investigated plant species, to the greatest degree, differ in lignin contents. This information may be helpful in the selection of species for a particular purpose. The greatest similarity of the studied species is traced on the content of hemicelluloses and ADF.

Table 8.1 depicts the chemical composition of woods of 37 woody species (percentage of NDF, ADF, lignin, cellulose, hemicellulose, and fiber) at Linares, Northeast Mexico. Table 8.1 reveals that there exist large variations among woody species in the percentage of NDF, ADF, lignin, hemicellulose, cellulose, and fiber) among species. For example, percentage of NDF on an average ranged from 75 to 94; ADF, 51-77; lignin, 11-28; hemicellulose, 16-36; cellulose, 29-62; and fiber, 74-05. The variability in these chemical components are represented in Figures 8.2-8.4 and Tukey’s HSD for each element at the last.

In this respect, few studies are documented on the wood chemical composition of woods of few woody plants, but studies on the percentage of NDF, ADF, and fiber observed in the present study on a large number of woody species are rare in the literature. We mention herein few of these results on different woody species in other countries, some of which coincide with our results.

In this respect, Petterson (1984) reported the chemical composition of woods of few species mentioning the variation of lignin from 18% to 35%. Ortuno (1998) reported the chemistry of cellulose, hemicellulose, and pectins. On the other hand, Gudalupe Barcenas Pozas and Raymondo Deav- alas Sotelo (1999) made a comprehensive review on importance of lignin stating that lignin offers resistance to shrinkage and movement of moisture and specific gravity also plays a great role. This reflects the quality of a particular wood. In other studies, Guadalupe Berland and Bjarme Holman (1999) reported that distribution of lignin in a particular wood varied radially from heartwood, softwood, and transition zone wood, lignin is maximum in heartwood and medium in softwood. But our study was concentrated on groundwood of different species. There is a necessity to study the variation of lignin and other composition in different zones similar to that as done by Gudalupe Barcenas Pozas and Raymondo Deavalas Sotelo (1999). On the other hand, Agata Pawlika et al. (2013) reported variation in chemical composition, such as lignin, holocellulose, pentosans of exotic wood species obtained from countries, including the United States. They reported that cellulose varied from 41.59 to 43.14; lignin from 22.43 to 30.36. The results more or less coincide with our findings.

Maiti et al. (2016) working on wood’s chemical composition of ten woody species at Linares reported that lignin varied from 15.28% to 24.35%; hemicellulose, 19.94% to 27.36%; cellulose, 33.69% to 45.92%. They mentioned the role of chemical compositions, such as lignin and cellulose, on the wood density of the species. On the other hand, Schamweber et al. (2016) reported that the chemical composition varied in two species, pine and chestnut, cellulose from 41% to 43% and lignin from 22% to 30%, which coincides with the results of few species studied particleboard.

With respect to the role of chemical composition on wood quality Sriraam et al. (2012) working on wood chips and pellets of scot pine, spruce, eucalyptus, and silver birch reported that cellulose ranged from 39.5% to 45.00%. Eucalyptus showing the maximum Hemicellulose ranged from 19.20% to 32.40% and lignin from 22% to 31.30%. Eucalyptus had a maximum lignin percentage. Similarly, Mehrnet Baharlogu et al. (2013) reported the effects of anatomical composition on the quality of particleboard. They concluded that pine wood produced strong particleboard.

We selected woody species for containing high-percentage of different chemical contents:

  • • High % NDF: Celtis pallida (94.80); Parkinsonia aculeata (93.99); Guaicum angustifolium (93.46); Celtis laevigata (90.27); Quercus polymorpha (87.63); Croton sitaveolens (88.89).
  • • High % ADF: Celtis pallida (77.58); Parkinsonia aculeata (77.14); Lantana macropoda (71.37); Leucophyllum frutescens (67.27); Guiacum angustifolium 65.10).
  • • High % lignin: Siderxylon celastrina (28.67); Ebenopsis ebano (27.80); Amyris texana (24.85); Ehretia опасна (24.93); Leucophyllum frutescens (24.67), Guiacum angustifolium (21.23); Condalia hookeri (24.14); Cordia boissieri (24.36).
  • • High % hemicellulose: Bernardia myricifolia (30.39); Celtis laevigata (30.18); Guiacum angustifolium (28.33); Quercus polymorpha (27.91); Croton sitaveolens (27.37).
  • • High % cellulose: Parkinsonia aculeate (61.85); Celtis pallida (60.51); Lantana macropoda (52.56); Prosopis laevigata (44.16); Cercidium macrum (47.61); Salix lasiolepis (45.92); Leucaena leucocephala (45.60), Celtis laevigata (45.57), Eysenhardtiapolystachya (44.85).
  • • High % fiber: Celtis pallida (94.91); Parkinsonia aculeate (94.14); Guiacum angustifolium (93.62); Celtis laevigata (90.35); Bernardia myricifolia (89.36); Lantana macropoda (89.32); Croton suaveo- lens (89.06); Quercus polymorpha (87.77); Leucophyllum frutescens (87.27); Forestieria angustifolia (86.24); Diospyros texana (86.15).

It is expected that high percentages of NDF, ADF, lignin, and fiber contribute to strength of wood for making of strong furniture and offer resistance to strong winds and storms. We selected few species with high lignin percentage such as Siderxylon celastrina (28.67); Ebenopsis ebano (27.80); Amyris texana (24.85); Ehretia опасна (24.93); LeucophyUum frute- scens (24.67), Guiacum angustifolium (21.23); Condalia hookeri (24.14); Cordia boissieri (24.36), for high NDF namely, Celtis pallida (94.80); Parkinsonia acideata (93.99); Guaicum angustifolium (93.46); Celtis laevigata (90.27); Quercuspolvmorpha (87.63); Croton suaveolens (88.89); for high ADF namely, Celtis pallida (77.58); Parkinsonia acideata (77.14); Lantana niacropoda (71.37); LeucophyUum frutescens (67.27); Guiacum angustifolium (65.10); and high fiber percentage namely, Celtis pallida (94.91); Parkinsonia aculeate (94.14); Guiacum angustifolium (93.62); Celtis laevigata (90.35); Bernardia myricifolia (89.36); Lantana niacropoda (89.32); Croton suaveolens (89.06); Quercus polymorplia (87.77); Leuco- pliyllum frutescens (87.27); Forestieria angustifolia (86.24); Diospyros texana (86.15).

The timber of these species could produce strong furniture as well as function against shrinkage and strong winds/stoim stress. Besides, high wood density could impart strength in wood. Rodriguez et al. (2016) reported that there exists a large variability in wood density among woody species.

It is expected that high cellulose and high hemicellulose may contribute to good paper quality; hemicellulose has a good adhesive capacity in the paper. In this study, we selected few species for containing high values of these components. For high cellulose percentage, we selected Parkinsonia acideata (60.85); Celtis pallida (60.61); Lantana niacropoda (52.56); Prosopis laevigata (44.16); Cercidium macrum (47.61). On the other hand, we selected a few species for high hemicellulose percentage such as Bernardia myricifolia (30.39), Celtis laevigata (30.18). These hypotheses need to be confirmed in future study.

CONCLUSIONS

A study on analysis of few chemical components of woods of 37 woody species of Tamaulipan Thorn Scrub at Linares, Northeast Mexico reveals significant differences in percentages of NDF, ADF, lignin, cellulose, hemicellulose, and fiber contents. The species have been selected on the basis of high values of each component. The species with a high percentage of NDF, ADF, and fiber are recommended for the fabrication of strong furniture, doors, and instruments for domestic uses. The timber of these species may act against shrinkage and strong winds. The species selected for high cellulose and hemicellulose are recommended for the manufacture of paper. All these hypotheses need to be confirmed in future studies.

ACKNOWLEDGMENTS

Valuable technical assistance provided by Elsa Gonzalez Serna is gratefully acknowledged. We thank two anonymous reviewers for critically reading the manuscript and for their constructive comments that helped to improve the manuscript. This research was funded, in part, by Universidad Autonoma de Nuevo Leon (Proyecto PAICYT Grant CT259-15) and Consejo Nacional de Ciencia у Tecnologia (Grant 250732).

KEYWORDS

  • chemical composition
  • woods
  • ADF
  • NDF
  • lignin
  • cellulose
  • hemicellulose
  • variability
  • Tamaulipan thorn scrub

REFERENCES

Baharologlu a M.; Nemli. G.; Sari, B.; BirttirkT.; Bardak S. Effects of Anatomical and Chemical Properties of Wood on the Quality of Particleboard. Composites 2013, 52, 282-285. Berland. F.; Holmbom, B. Chemical Components of Early and Heartwood in Norway spruce Heartwood and Sapwood and Transition Zone. Wood Sci. Techno1. 2004, 38, 245-256. Chandrasekaran, S. R.: Норке, P. K.: Rector, L.; Allen, G.; Lin, L. Chemical Composition of Wood Chips and Wood Pellets. Energ. Fuels 2012, 26, 4932-4937.

Box, G. E. P. Non-normality and Tests on Variances. Biometi ika 1953, 40, 318-335.

Fisher, R. A. Studies in Crop Variation. I. An Examination of the Yield of Dressed Grain from Broadbalk. J. Agri. Sci. 1921, 11, 107-135.

Gelman. A. Analysis of Variance? Why it is More Important Than Ever. Annal. Stat. 2005, 33, 1-53.

Jones, P. D.: Laurence, R.; Gary F. S.; Richard, F. P., Clark, D. A. Nondestructive Estimation of Wood Chemical Composition of Sections of Radial Wood Strips by Diffuse Reflectance Near Infrared Spectroscopy. Wood Sci. Technol. 2006, 40, 709-720.

Maiti, R. K.; Rodriguez H. G.; Kumari A. Wood Density of Ten Native Trees and Shrubs and Its Possible Relation with Few Wood Chemical Composition and Wood Structure. Am. J. Plant Sci. 2016, 7.

Morrison, S.; Sosnoff, J. J.; Heffeman, K. S.; Jae, S. Y.; Fernhall, B. Aging, Hypertension and Physiological Tremor: The Contribution of the Cardioballistic Impulse to Tremorgenesis in Older Adults. J. Neurol Sci. 2013, 326, 68-74.

Ortuiio, A. V. Introduccion a la quimica industrial. Editorial Reverie. Alhambra Universidad. 1998, p 636.

Pawlicka A.; Waliszewska B. Chemical Composition of Selected Species of Exotic Wood Derived from the Region of Africa. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 2013, JO, 37-41.

Petterson, R. The Chemical Composition of Wood. Chaper 2. The Chemistry of Soft Wood. Adv. Chem. 1984, 207, 57-126.

Pazos, G. B.; Sotelo, R. D. Importancia de la lignina en las contracciones de la madera: revision bibliografica. Madera у Bosques. 1999,5, 13-26.

Ray, R. N.; Chowdhury, M. C.; Jan. T. K. Wood Chemistry and Density: An Analog for Response to the Change of Carbon Sequestration in Mangroves. Carbohy. Polym. 2012, 90, 102-108.

Rodriguez, H. G.; Maiti, R.; Sarkar, N. C.; Kumari, A. Variability in Wood Density and Wood Fibre Characterization of Woody Species and Their Possible Utilityin Northeastern Mexico..!»/. J. Plant Sci. 2016, 7, 1139-1150.

Scharnweber, T.; Hevia, A.; Buras, A.; van der Maaten E.; Wilmking M. Common Trends in Elements? Within- and Between-tree Variations of Wood-chemistry Measured by X-ray Fluorescence—A Dendrochemical Study. Sci. Total Environ 2016, 566-567, 1245-1253.

Tukey, J. W. Comparing Individual Means in the Analysis of Variance. Biometrics 1949, 5, 99-114.

 
Source
< Prev   CONTENTS   Source   Next >