Table of Contents:

Highlights

In this chapter, the characterization techniques have been discussed in a manner to make the reader aware of the nuances and limitations while characterizing CNT- reinforced metal matrix composites. These characterization techniques can be divided broadly into two types. The first set of techniques provides information on the microstructural features in CNT-MMCs, whereas the second type of technique provides data on the mechanical, thermal, and corrosion properties of the composite. The different types of information about CNT-MMC systems that can possibly be obtained using each of these techniques have been summarized. The XRD technique can detect the metal-CNT reaction product formation, CNT orientation in matrix, effect of CNT reinforcement on grain size, and dislocation density in matrix. Raman spectroscopy is used as the most conclusive evidence about the presence of CNT in the matrix. SEM helps in finding out qualitative information about distribution of CNT and the nature of their interfacial bonding with metal matrix. HRTEM provides much information about CNT-MMCs, for example, wetting between the metal matrix and the CNTs, interfacial compound formation due to reaction between CNTs and the matrix, orientation relationship between carbide (reaction product) with CNT and matrix, and defects introduced in CNTs during processing. Information about filling of CNT with metal and transformation of CNT to any other carbon nano-structure could be obtained using EELS. The reaction products of carbon and metal are detected using XPS. Nano-indentation and nano-scratch techniques can identity and discriminate the effect of microstructural features, for example, CNT reinforcement, clusters, or reaction products on the mechanical and tribological performance of the composite structure. Nano-DMA and modulus mapping are very powerful characterization techniques to study the effect of CNT addition on damping property of the composite, as w'ell as the spatial distribution of the elastic modulus in the matrix. Conventional techniques of macro-scale mechanical and tribological property characterization are also used to study CNT-MMCs. Thermal properties of CNT-MMC systems are characterized using techniques like DSC for heat capacity, laser flash technique for thermal conductivity, and dilatometry for CTE. Measurement of electrical conductivity on CNT-MMCs is mostly conducted using four-probe methods. Potentiodynamic polarization tests and electrochemical impedance measurement, being the two most common methods for corrosion property characterization, are popular for CNT-MMCs CNT-MMCs as well. Conventional techniques used for microstructural and property characterization need attention to account accurately the effect of CNT reinforcement in metal matrix. Such considerations, if any. have been mentioned in the respective sections of this chapter.

References

  • 1. Bian. Z.. Pan. M. X.. Zhang, Y.. and W. H. Wang. 2002. Carbon-nanotube-reinforced Zr5, 5CU|7 9Nil46Al|0Ti5 bulk metallic glass composites.Appl. Pliys. Lett. 81:4739-4741.
  • 2. Perez-Bustamante, R.. Gomez-Esparza, C. D.. Estrada-Guel. I., Miki-Yoshida, M.. Licea-Jimenez, L., Perez-Garcfa, S. A., and R. Martfnez-Sanchez. 2009. Microstructural and mechanical characterization of AI-MWCNT composites produced by mechanical milling. Mater. Sci. Eng. A 502: 159-163.
  • 3. Bakshi, S. R.. Singh, V., Seal, S.. and A. Agarwal, 2009. Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf. Coat. Tech. 203: 1544-1554.
  • 4. Cao, A.. Xu, C., Liang, J.. Wu. D., and B. Wei. 2001. X-ray characterization on the alignment degree of carbon nanotubes. Chem. Phys. Lett. 344: 13-17.
  • 5. Zhong, Z.. Liu. B., Sun, L.. Ding, J.. Lin, J.. and K. L. Tan. 2002. Dispersing and coating of transition metals Co, Fe and Ni on carbon materials. Chem. Phys. Lett. 362: 135-143.
  • 6. Choi. H. J.. Kwon, G. B.. Lee. G. Y.. and D. H. Bae. 2008. Reinforcement with carbon nanotubes in aluminum matrix composites. Scripta Mater. 59: 360-363.
  • 7. Chu, K., Wu, Q.. Jia, C., Liang. X., Nie, J.. Tian, W.. Gai, G.. and H. Guo. 2010. Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Composites Sci. Tech. 70: 298-304.
  • 8. Shi, X. L.. Yang. H.. Shao, G. Q.. Duan. Z. L., Yan. L.. Xiong, Z.. and P. Sun. 2007. Fabrication and properties of W-Cu alloy reinforced by multi-walled carbon nanotubes. Mater. Sci. Eng. A 457: 18-23.
  • 9. Lahiri. D., Bakshi, S. R., Keshri. A. K., and A. Agarwal. 2009. Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites. Mater. Sci. Eng. A 523: 263-270.
  • 10. Zare, H., Jahedi. M., Toroghinejad. M. R., Meratian. M., and M. Knezevic. 2016. Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation. Mater. Des. 106: 112-119.
  • 11. Ferraro, J. R., Nakamoto. K.. and C. W. Brown. 1994. Introductory Raman Spectroscopy. San Diego. CA: Academic Press.
  • 12. Tuinstra, F.. and J. L. Koenig. 1970. Raman spectrum of graphite. J. Client. Phys. 53: 1126-1130.
  • 13. Eklund, P. C., Holden. J. M. and R. A. Jishi. 1995. Vibrational modes of carbon nanotubes; spectroscopy and theory. Carbon 33: 959-972.
  • 14. Rao, A. M., Richter. E., Bandow. S., Chase, B., Eklund, P. C.. Williams, K. A., Fang, S., Subbaswamy, K. R.. Menon. M., Thess, A., Smalley. R. E., Dresselhaus, G., and M. S. Dresselhaus. 1997. Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science 275: 187-191.
  • 15. Belin, T.. and F. Epron. 2005. Characterization methods of carbon nanotubes: a review. Mater. Sci. Eng. В 119: 105-118.
  • 16. Cooper, C. A.. Young. R. J., and M. Halsall. 2001. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites A 32: 401-411.
  • 17. Lourie, O.. and H. D. Wagner. 1998. Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J. Mater. Res. 13: 2418-2422.
  • 18. Choi, Й., Shin. J.. Min. B., Park, J., and D. Bae. 2009. Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J. Mater. Res. 24: 2610-2616.
  • 19. So. К. P, Lee. I. H.. Duong, D. L„ Kim, T. H., Lim, S. C.. An, К. H., and Y. H. Lee. 2011. Improving the wettability of aluminum on carbon nanotubes, Acta Mater. 59: 3313-3320.
  • 20. Yu. M. F.. Lourie. O.. Dyer, M. J.. Moloni. K.. Kelly. T. F.. and R. S. Ruoff. 2000. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287: 636-640.
  • 21. Xu. C. L.. Wei. B. Q„ Ma. R. Z., Liang, J.. Ma, X. K„ and D. H. Wu. 1999. Fabrication of aluminum-carbon nanotube composites and their electrical properties. Carbon 37: 855-858.
  • 22. Bacon. R. 1960. Growth, structure, and properties of graphite whiskers. J. Appl. Phvs. 31:283-290.
  • 23. IIjima. S. 1991. Helical microtubules of graphitic carbon. Nature 354: 56-58.
  • 24. Bakshi. S. R., Singh. V., Balani. K.. McCartney, D. G.. Seal, S.. and A. Agarwal. 2008. Carbon nanotube reinforced aluminum composite coatine via cold spraying. Surf. Coat. Tech. 202: 5162-5169.
  • 25. Krasheninnikov, A. V., and F. Banhart. 2007. Engineering of nanostructured carbon materials with electron or ion beams. Nature Mater. 6: 723-733.
  • 26. Ci. L., Ryu. Z., Jin-Phillipp, N. Y.. and M. Rtihle. 2006. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater. 54: 5367-5375.
  • 27. Kwon, H.. Estili, M.. Takagi, K., Miyazaki, T., and A. Kawasaki. 2009. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47: 570-577.
  • 28. Laha. T., Kuchibhatla, S., Seal. S.. Li. W„ and A. Agarwal. 2007. Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite. Acta Mater. 55: 1059-1066.
  • 29. Bakshi, S. R., Keshri. A. K., Singh, V., Seal, S., and A. Agarwal. 2009. Interface in carbon nanotube reinforced aluminum silicon composites: thermodynamic analysis and experimental verification. J. Alloys Compel. 481: 207-213.
  • 30. Lipecka, J.. Andrzejczuk, M., Lewandowska. M., Janczak-Rusch, J., and K. J. Kurzydlowski. 2011. Evaluation of thermal stability of ultrafine grained aluminium matrix composites reinforced with carbon nanotubes. Compos Sci. tech. 71: 1881-1885.
  • 31. Liu, X.. Li, J.. Liu. E., Li, Q.. He, C.. Shi, C.. and N. Zhao. 2018. Effectively reinforced load transfer and fracture elongation by forming A14C3 for in-situ synthesizing carbon nanotube reinforced Al matrix composites. Mater. Sci. Eng. A. 718: 182-189.
  • 32. Eswai. A. M. K.. Morsi. K., Sayed. A.. Taher, M., and S. Lanka. 2011. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Composites A. 42: 234-243.
  • 33. Guo, B„ Chen. B.. Zhang, X., Cen. X.. Wang. X.. Song, M.. Ni, S.. Yi. J.. Shen. T.. and Y. Du. 2018. Exploring the size effects of A14C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes. Carbon. 138: 135-224.
  • 34. Fukuda, H., Kondoh. K.. Umeda, J., and B. Fugentsu. 2011. Interfacial analysis between Mg matrix and carbon nanotubes in Mg-6 wt.% Al alloy matrix composites reinforced with carbon nanotubes. Compos. Svi. Tech. 11: 705-709.
  • 35. Liang. J., Li, H.. Tian, W.. Li. X.. Chao, X., and J. Wei. 2017. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion. J. Alloys Compel. 728: 282-288.
  • 36. Cho, S.. Kikuchi, K.. Miyazaki, T.. Takagi. K.. Kawasaki, A., and T. Tsukuda. 2010. Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites, Scrita Mater. 63: 375-378.
  • 37. Peng, B., Locascio, M.. Zapol, P., Shuyou. L.. Mielke. S. L., Schatz. G. C.. and H. D. Espinosa. 2008. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nemotech. 3: 626-631.
  • 38. Hwang. G. L.. and К. C. Hwang. 2001. Breakage, fusion, and healing of carbon nanotubes. Nano Lett. 1:435-438.
  • 39. Demoncy, N.. Stephan. O.. Brun. N.. Colliex. C„ Loiseau, A., and H. Pascard. 1998. Filling of carbon nanotubes with metals by the arc discharge method: the key role of sulphur. Eur. Phys. J. B-Conel. Matter Complex Sys. 4: 147-157.
  • 40. Jin-Phillipp, N. Y., and M. Riihle. 2004. Carbon nanotube/metal interface studied by cross-sectional transmission electron microscopy. Phys. Rev. В 70: 245421.
  • 41. Stockli, T. 2003. Electron energy loss spectroscopy of carbon nanotubes and onions. In Electron Microscopy of Nanotubes. Z. L. Wang and C. Hui, Eds. Norwell. MA: Kluwer Academic Press.
  • 42. Kim, I-Y., Lee, J-H.. Lee, G-S., Baik, S-H.. Kim, Y-J., and Y-Z. Lee. 2009. Friction and wear characteristics of the carbon nanotube-aluminum composites with different manufacturing conditions. H4w267: 593-598.
  • 43. http://www.hysitron.com/page_attachments/0000/0636/Hysitron_Probe_Selection_ Guide.pdf.
  • 44. Oliver. W. C., and G. M. Pharr. 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7: 1564-1583.
  • 45. Giannakopoulos, A. E., and S. Suresh. 1999. Determination of elastoplastic properties by instrumented sharp indentation. Scripta Mater. 40: 1191-1198.
  • 46. Chen, Y., Laha, T., Balani. K., and A. Agarwal. 2008. Nanomechanical properties of hafnium nitride coating. Scripta Mater. 58: 1121-1124.
  • 47. Rzepiejewska-Malyska, K. A.. Buerki, G.. Michler. J., Major. R. C.. Cyrankowski, E., Asif. S. A. S.. and O. L. Warren. 2008. In situ mechanical observations during nanoindentation inside a high-resolution scanning electron microscope. J. Mater. Res. 23: 1973-1979.
  • 48. http://www.hysitron.com/products/pi-series-tem-picoindenter/.
  • 49. Balani. K., Brito, F. C., Kos, L., and A. Agarwal. 2009. Melanocyte pigmentation stiffens murine cardiac tricuspid valve leaflet. / Roy. Soc. Interface. doi:10.1098/rsif.2009.0174.
  • 50. Balani. K., and A. Agarwal. 2008. Damping behavior of carbon nanotube reinforced aluminum oxide coatings by nanomechanical dynamic modulus map-ping. J. Appl. Phys. 104:063517.
  • 51. Asif. S. A. S., Wahl. K. J.. and R. J. Colton. 1999. Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev. Sci. Instr. 70: 2408-2413.
  • 52. Laha, T.. and A. Agarwal. 2008. Effect of sintering on thermally sprayed carbon nanotube reinforced aluminum nanocomposite. Mater Sci. Eng. A 480: 323-332.
  • 53. Bakshi, S. R.. Lahiri. D., Patel, R. R.. and A. Agarwal. 2010. Nanoscratch behavior of carbon nanotube reinforced aluminum coatings. Thin Solid Films 518: 1703-1711.
  • 54. Balani. K., Harimkar. S. P., Keshri. A.. Chen, Y.. Dahotre, N. B., and A. Agarwal. 2008. Multiscale wear of plasma-sprayed carbon-nanotube-reinforced aluminum oxide nanocomposite coating. Acta Mater 56: 5984-5994.
  • 55. Laha, T.. Chen. Y., Lahiri. D., and A. Agarwal. 2009. Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Composites: A 40: 589-594.
  • 56. Chen, X. H.. Peng. J. C„ Li. X. Q., Deng. F. M.. Wang, J. X.. and W. Z. Li. 2001. Tribological behavior of carbon nanotubes—reinforced nickel matrix composite coatings. /. Mater Sci. Lett. 20: 2057-2060.
  • 57. Liu. B., Zeng, Z.. and Y. Lin. 2009. Mechanical properties of hard Cr-MWNT composite coatings. Surf. Coat. Technol. 203: 3610-3613.
  • 58. Tu. J. P. Zhu, L. P. Chen, W. X.,Zhao, X. B., Liu, F., and X. B. Zhang. 2004. Preparation of Ni-CNT composite coatings on aluminum substrate and its friction and wear behavior. Trans. Nonferrous Met. Soc. China 14(5): 880-884.
  • 59. Tu, J. P. Yang, Y. Z.. Wang, L. Y.. Ma. X. C.. and X. B. Zhang. 2001. Tribological properties of carbon-nanotube-reinforced copper composites. Tribol. Lett. 10(4): 225-228.
  • 60. Zhou, S. M.. Zhang, X. B.. Ding. Z. P. Min. С. V., Xu, G. L„ and W. M. Zhu. 2007. Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Composites A 38: 301-306.
  • 61. Chen, W. X., Tu. J. P. Wang. L. Y.. Gan, H. Y., Xu. Z. D.. and X. B. Zhang. 2003. Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon. 41: 215-222.
  • 62. Dong, S. R.. Tu. J. P. and X. B. Zhang. 2001. An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Mater Sci. Eng. 313: 83-87.
  • 63. Chen, X., Zhang, G., Chen, C., Zhou. L.. Li. S.. and X. Li. 2003. Carbon nanotube composite deposits with high hardness and high wear resistance. Adv. Eng. Mater. 5(7): 514-518.
  • 64. Fiorito, S. 2008. Carbon Nanotube: Angels or Demons? Singapore: Pan Stanford Publishing.
  • 65. Wagner, H. D., Lourie. O., Feldman, Y.. and R. Tenne. 1998. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72: 188.
  • 66. Deng. F.. Ogasawara, T., and N. Takeda. 2007. Tensile properties at different temperature and observation of micro deformation of carbon nanotubes-poly(ether ether ketone) composites. Compos. Sci. Technol. 67: 2959-2964.
  • 67. Yamamoto. G., Shirasu. K., Hashida, T.. Takagi. T., Suk, J-W., An. J., Richard, R. R. and R. S. Ruoff. 2011. Nanotube fracture during the failure of carbon nanotube/alumina composites. Carbon. 49: 3709-3716.
  • 68. Xia. Z., Riester, L.. Curtin, W. A.. Li, H., Sheldon. B. W., Liang, J.. Chang, B., and J. M. Xu. 2004. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 52: 931-944.
  • 69. Boesl. B.. Lahiri. D., Behdad, S.. and A. Agarwal. 2014. Direct observation of carbon nanotube induced strengthening in aluminum composite via in situ tensile tests. Carbon. 69: 79-85.
  • 70. Chen. B.. Li, S.. Imai, H.. Jia. L.. Umeda, J., Takahashi, M., and K. Kondoh. 2015. Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in- situ tensile tests. Compos. Sci. Teclmol. 113: 1-8.
  • 71. Chen, B., Shen, J.. Ye, X., Imai. H.. Jia, L., Umeda. J., Takahashi. M.. and K. Kondoh. 2017. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon 114: 198-208.
  • 72. Chen. B., Kondoh. K.. Umeda. J., Li, S.. Jia, L.. and J. Li. 2019. Interfacial in-situ AI203 nanoparticles enhance load transfer in carbon nanotube (CNT)-reinforced aluminum matrix composites. J. Alloys Compd. 789: 25-29.
  • 73. Deng. C. F.. Zhang, X. X., Wang, D. Z., and Y. X. Ma. 2007. Calorimetric study of carbon nanotubes and aluminum. Mater. Lett. 61: 3221-3223.
  • 74. Parker. W. J., Jenkins. R. J.. Butler, C. P.. and G. L. Abbott. 1961. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32: 1679-1684.
  • 75. Hone. J.. Batlogg, B., Benes, Z., Johnson. A. T. and J. E. Fischer. 2000. Quantized phonon spectrum of single-wall carbon nanotubes. Science 289: 1730-1733.
  • 76. Yi. W.. Lu, L.. Zhang, D. L., Pan, Z. W.. and S. S. Xie. 1999. Linear specific heat of carbon nanotubes. Phys. Rev. В 59: R9015-R9018.
  • 77. Bakshi, S. R.. Balani, K., and A. Agarwal. 2008. Thermal conductivity of plasma- sprayed aluminum oxide-multiwalled carbon nanotube composites. J. Am. Ceram. Soc. 91:942-947.
  • 78. Wu, J., Zhang, H.. Zhang, Y., and X. Wang. 2012. Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Mater. Des. 41: 344-348.
  • 79. Tang, Y.. Cong, H., Zhong. R.. and H-M. Cheng. 2004. Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum. Carbon 42: 3260-3262.
  • 80. Liu, Z. Y.. Xiao, B. L., Wang, W. G.. and Z. Y. Ma. 2012. Elevated temperature tensile properties and thermal expansion of CNT/2009AI composites, Compos. Sci. Tech. 72: 1826-1833.
  • 81. Goh, C. S.. Wei, J.. Lee. L. C., and M. Gupta. 2006. Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology. 17:7-12.
  • 82. Feng. Y.. Yuan. H. L.. and M. Zhang. 2005. Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater. Char. 55: 211-218.
  • 83. Chen, X. H.. Chen. C. S„ Xiao. H. N.. Cheng. F. Q.. Zhang. G., and G. J. Yi. 2005. Corrosion behavior of carbon nanotubes-Ni composite coating. Surf. Coat. Technol. 191:351-356.
  • 84. Yang. Y. L.. Wang. Y. D., Ren, Y.. He. C. S.. Deng. J. N.. Nan. J„ Chen. J. G„ and L. Zuo. 2008. Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field. Mater. Lett. 62: 47-50.
  • 85. Shin. S. E., Choi. H. J., and D. H. Bae. 2012. Electrical and thermal conductivities of aluminum-based composites containing multi-walled carbon nanotubes. J. Composites Mater. 47: 2249-2256.
  • 86. Praveen. В. M.. Venkatesha. T. V.. Naik. Y. A., and K. Prashatha. 2007. Corrosion studies of carbon nanotubes-Zn composite coating. Surf. Coat. Technol. 201: 5836-5842.
  • 87. Yang. Z., Xu, H., Shi. Y. L., Li. M. K.. Huang. Y., and H. L. Li. 2005. The fabrication and corrosion behavior of electroless Ni-P-carbon nanotube composite coatings. Mater. Res. Bull. 40: 1001-1009.
 
Source
< Prev   CONTENTS   Source   Next >