The Importance of Phylogeny in Conservation

Why We Need to Evaluate Extinction Risk within a Phylogenetic Framework

Phylogenetic approaches are now well accepted in many ecological disciplines. Phylogenetic methods are also increasingly commonplace in extinction biology (see Purvis 2008). The necessity of employing a phylogenetic framework for exploring a non-evolving trait such as risk of extinction has been questioned (Grandcolas et al. 2011). Reasons for doing so are multifold. First, as we have discussed above, many drivers of extinction risks can be linked to phylogenetically conserved traits, such as body mass (Cardillo et al. 2005, 2008) and phenology (Willis et al. 2008, 2010). Therefore, phylogenetic comparative methods, such as independent contrasts (Felsenstein 1985) or phylogenetic regression are important because species cannot be considered as statistically independent (see Purvis 2008 for further discussion). Second, species evolutionary history might itself be an important predictor of extinction risk, for example, with higher risks associated with either more evolutionarily distinct lineages (Purvis et al. 2000a; Mace et al. 2003) or centres of diversification (Davies et al. 2011), depending on the clade and taxonomic scale. Third, by considering extinction within a phylogenetic framework, we can quantify directly its impacts on the tree-of-life as the loss of phylogenetic diversity (PD) (Purvis et al. 2000a; Mace et al. 2003). This measure of evolutionary heritage provides a useful conservation metric, typically measured in millions of years, it is easily comprehendible, and simple to calculate for particular regions or taxa (Mooers et al. 2005). Although, there remain practical obstacles in the implementation of phylogenetic approaches for conservation planning, there is now increasing appreciation of the importance of including an evolutionary perspective within conservation goals, as illustrated by the Zoological Society of London's EDGE of existence programme (edgeofexistence.org/) that emphasises the conservation of evolutionary distinct and threatened species (Isaac et al. 2007).

Practical Contribution of Phylogeny to Conservation

The practical contribution of phylogeny to conservation actions has recently been discussed (Cardillo and Meijaard 2012; Winter et al. 2013). In part, the conservation value of the phylogenetic approach is in its ability to guide pre-emptive actions towards identifying and prioritizing the most at-risk species. For example, by identifying species with traits or in regions that predispose them to high risk of extinction, we can identify species that are not yet at risk of extinction but which might become threatened in the near future if current extinction drivers increase in intensity or geographic extent. Cardillo et al. (2006) referred to such species as having high 'latent risk' of extinction. Given limited conservation funding, focusing efforts on species with high latent risk might make economic sense as it is likely to be more cost effective to prevent species declines before they begin versus reestablishing viable populations for species that have already suffered declines and may have lost much of their natural range. Preserving intact habitats will almost always be easier and cheaper than returning transformed habitats to their natural states.

A justification for placing emphasis on the preservation of phylogenetic diversity per se is that phylogenetic diversity captures feature diversity (Faith 1992; Crozier 1997; see also section “Feature diversity and evolutionary models of character change”), and thus preserving the set of species that maximizes phylogenetic diversity also maximizes the possibility of having the right set of features in an uncertain future. Forest et al. (2007) provided an example of the utility of phylogenetic diversity in the Cape Floristic Region of South Africa by demonstrating that preserving the phylogenetic diversity of the flora would maximize future options for the benefit of society through a continued provisioning of key ecosystem services. To date, empirical examples of conservation actions implemented explicitly to protect phylogenetic diversity are rare; however, one recent effort spearheaded by the Zoological Society of London's EDGE programme specifically aims at focusing conservation attention on evolutionary distinct species at risk of extinction. These EDGE species are distinct not only in the history of their evolutionary past, but perhaps also in the functional roles they might fill within ecosystems. The extinction of EDGE species might therefore result in the loss of important ecosystem functions and services for which we have no species substitute. Some EDGE species (e.g. elephants and pandas) are well known, but many others (e.g. Chinese giant salamanders and the peculiar long-beaked echidnas) have been overlooked by traditional conservation strategies (see Isaac et al. 2007, 2012).

Critically, the utility of phylogenetic metrics and methods in conservation biology relies upon the accuracy of the underlying phylogenetic topology and, if we are interested in capturing feature diversity, the evolutionary model of character change along the branches of the tree, a point we explore further in the following sections.

 
< Prev   CONTENTS   Next >