ED provides an effective strategy to analyse PD-dissimilarities among areas, and make inferences as if we are counting up branches or features. While well-justified through the link to feature diversity, application of ED to date has been frustrated by a lack of synthesis about alternative methods, including inconsistent use of names for methods and miss-representation of basic properties. Araújo et al. (2001, 2003, 2004), Hortal et al. (2009), and Arponen et al. (2008) all have incorrectly characterised “ED” as a method using only environmental data. Hortal et al. (2009) claimed to have evaluated the continuous ED method of Faith and Walker (1996a), but in fact used a quite different method (see Faith 2011). Recently, Beier and Albuquerque (2015) found strong support for ED as a biodiversity surrogate.

The comparison in this study of ED to other proposed methods helps to clarify key properties. ED, Ferrier et al.'s p, and the MCR method share important desirable properties for biodiversity assessment; they transform dissimilarities in order to infer useful information, including the amount of biodiversity represented by subsets of sites. All three methods are based to some degree on the idea of unimodal response. However, among these candidate approaches, ED seems to best reflect the plausible underlying model in which elements of biodiversity have general unimodal response to environmental space.

This chapter has attempted to provide some long-overdue comparisons among existing proposed methods, but it is important to note that more comparative evaluations are needed. In the interest of synthesis, I highlight several other methodological issues requiring study.

Hierarchical Clustering

Faith (2013) recently reviewed the prospects for another strategy, based on a hierarchical clustering of the PD-dissimilarities among sites or samples (including those predicted by GDM). Faith and Walker (1996a), in discussing dissimilarities defined at the species level, had argued that “a robust hierarchical clustering method designed for biotic distribution data, such as flexible-UPGMA with Bray-Curtis dissimilarities, is likely to produce a hierarchy where distances along branches between areas indeed reflect the relative number of species differences.” Faith (2013) suggested an extension of this idea: “This rationale extends to PD-dissimilarities in such a hierarchical clustering, distances along branches between samples reflect the relative difference in the PD of the samples. ….the PD method can be applied to a hierarchy of samples, just as it is applied to a hierarchy (phylogeny) of species. Various PD calculations can be applied to the hierarchies of sites/samples that are based on PD-dissimilarities among samples or sites.” Faith (2013) referred to this method as “PDh”, as it uses the PD calculus, but is applied to a samples/sites hierarchy. The PDh value for a subset of samples/sites indicates the PD of the subset. It is noteworthy that that the suggested hierarchical clustering approach for PDh is a method (Belbin et al. 1993) designed to be compatible with an environmental space and unimodal response.

< Prev   CONTENTS   Next >