Discussion and conclusion

Table of Contents:

Currently, material consumption in Germany accounts for around 1.3 billion tons of primary raw materials. As extraction, procession, use, re-use and disposal is coercively linked to environmental impacts, a pathway towards to sustainable use of materials has to decrease material consumption significantly, in addition to a sustainable extraction, processing, use and recycling of materials. The closed

Resource use in a green Germany 155 link between material consumption and greenhouse gas emission has been shown and discussed in Chapter 12. In this contribution, we analysed the decrease of material demand and particularly metal demand in more detail.

Recycling, substitution and increasing efficiency are valuable measures in order to minimise material consumption. It is obvious that there is not only one strategy or measure; the combination of all measures and efforts leads as a result to a significant reduction of primary material consumption. However, the different ambitious levels of substitution, recycling and efficiency measures in the varying Green pathways result in different material consumption levels. The consequence of the comparatively low ambitious level in GreenLate is a relatively low decrease in material consumption and a low degree of circularity of the economy. Consequently, we have demonstrated that the resulting share of primary metal consumption of Germany in global production is still high. The fact that other countries also demand metals for their transformation or their economic development implies that global metal production has to increase to meet future global demand. This is linked to serious and increasing environmental consequences and impacts due to extraction, processing, use and disposal as described e.g. by van de Voet et al. (2018).

In contrast, ambitious technological changes, as shown in the GreenMe pathway, resulting in a significant decrease in overall material demand. Combining technological changes and life style changes — without loss of prosperity — make it possible to achieve a strong decline of primary material demand as illustrated in the GreenSupreme pathway. The resulting values of 5.7 tons per person (RMC) in GreenSupreme are clearly below the current global average of 11.98 tons (2015 according to IRP 2016) and already in the line with material consumption targets which were discussed for example, by Bringezu (2015). The degree of circularity was estimated conservatively in the presented approach. A degree of 30% and more is feasible with currently existing technologies. Thus, recycling efforts are significantly contributing to the reduction of primary material demand. This implies that logistics for collecting and separating have to be improved and technical facilities have to be (re)constructed. With respect to selected metals, this chapter has shown that the very ambitious pathways result in a significant decreasing demand for metals.

High ambitious levels lead to a decrease of demand for metals resulting in a low global share of demand. This is important as a fair global distribution is essential for global sustainability. A post-fossil, green Germany can be reached with a significant decrease in material consumption contributing to the mitigation of environmental impacts linked to extraction, processing, use and disposal of raw materials.

List of abbreviations

IRP International Resource Panel

RMC raw material consumption RME raw material equivalent

UBA German Federal Environmental Agency

URMOD Umweltökonomisches Rohstoffmodell (economic-environmental raw material model)

USGS United States Geological Survey

References

Bringezu, Stefan. (2015). Possible Target Corridor for Sustainable Use of Global Material. Resources 4(1), 25-54. doi:10.3390/resources4010025.

Deilmann, C., Reichenbach, J., Krauß, N., Gruhler, K. (2017). Materialströme im Hochbau — Potenziale für eine Kreislaufivirtschaft. Bonn/Dresden.

Destatis (2015). Bevölkerung Deutschlands bis 2060 — 13. koordinierte Bevölkerungsvorausbere chnung. Wiesbaden. www.destatis.de/DE/Publikationen/Theinatisch/Bevoelkerung/ VorausberechnungBevoelkerung/BevoelkerungDeutschland2060Presse5124204099004. pdf?__blob=publicationFile.

Dittrich. M., Schoer, K., Kämper, C., Ludmann, S., Ewers. B., Giegrich. J., Sartorius. C., Hummen, T., Marscheider-Weidemann. F. (2018). Strukturelle und produktionstechnische Determinanten der Ressourceneffizienz: Untersuchung von Pfadabhängigkeiten, strukturellen Effekten und technischen Potenzialen auf die zukünftige Entwicklung der Rohstoffproduktivität (DeteRess). UBA-Texte, 29/2018. Dessau-Roßlau www.umweltbundesamt.de/sites/ default/flies/medien/1410/publikationen/2018-04-1 l_texte_29-2018_deteress.pdf.

Dittrich, M., N. Gerhardt, K. Schoer, F. Dünnebeil, S. Becker. A. v. Oehsen, S. Koeppen, et al. (2020a). Transformationsprozess zum Treibhausgasneutralem und Ressourcenschonendem Deutschland - CreenEe. Climate Change 01/2020. Dessau-Roßlau.

Dittrich, M-, N. Gerhardt. K. Schoer, F. Dünnebeil, S Becker, A. v. Oehsen, S. Koeppen, et al. (2020b). Transformationsprozess zum Treibhausgasneutralem und Ressourcenschonendem Deutschland - GreenLate. Climate Change 01/2020. Dessau-Roßlau.

Dittrich. M.. N. Gerhardt. K. Schoer, F. Dünnebeil, S. Becker. A. v. Oehsen, S. Koeppen. et al. (2020c). Transformationsprozess zum Treibhausgasneutralem und Ressourcenschonendem Deutschland - GreenMe. Climate Change 01/2020. Dessau-Roßlau.

Dittrich, M., N. Gerhardt, K. Schoer, F. Dünnebeil, S. Becker. A. v. Oehsen, S. Koeppen, et al. (2020d). Transformationsprozess zum Treibhausgasneutralem und Ressourcenschonendem Deutschland — CreenSupreme. Climate Change 01/2020. Dessau-Roßlau.

Dittrich. M.. N. Gerhardt. K. Schoer, F. Dünnebeil, S. Becker. A. v. Oehsen, S. Koeppen. et al. (2020e). Transformationsprozess zum Treibhausgasneutralem und Ressourcenschonendem Deutschland - GreenLife. Climate Change 01/2020. Dessau-Roßlau.

Elshkaki, A. and van der Voet, E. (2006). The consequences of the use of platinum in new technologies on its availability and on other metals cycles. In: Loeffe C. V. (ed.): Conservation and Recycling of Resources: A New Research. USA: Nova Publisher. 61—92.

IRP (2016). Global Material Flows and Resource Productivity. An Assessment Study of the UNEP International Resource Panel. Paris, United Nations Environment Programme.

IRP (2017a). Assessing Global Resource Use: A Systems Approach to Resource Efficiency and Pollution Reduction. A Report of the International Resource Panel. United Nations Environment Programme. Nairobi. Kenya.

IRP (2017b). Green Technology Choices: The Environmental and Resource Implications of Low-Carbon Technologies. A report of the International Resource Panel. United Nations Environment Programme, Nairobi, Kenya, www.resourcepanel.org/reports/green-technology- choices.

IRP (2019). Global Resources Outlook 2019: Natural Resources for the Future IVe Want. A Report of the International Resource Panel. United Nations Environment Programme. Nairobi, Kenya, www.resourcepanel.org/reports/global-resources-outlook.

Marscheider-Weidemann, F., Langkau, S., Hummen, T., Erdmann, L., Tercero Espinoza, L. (2016). Rohstoffe für Zukunftstechnologien. DERA Rohstoffinformationen 28, Berlin. www.isi.fraunhofer.de/content/dam/isi/dokumente/ccn/2016/Studie_ Zukunftstechnologien-2016.pdf.

Rietveld, E., Boonman. H., van Harmelen, T., Hauck. M., Bastein, T. (2018). Global Energy Transition and Metal Demand — an Introduction and Circular Economy Perspectives. TNO.

UBA (2014). Treibhausgasneutrales Deutschland im Jahr 2050. www.umweltbundesamt. de/sites/ default/files/medien/378/Publikationen/07_2014_climate_change_dt.pdf.

UBA (2019). Transformationsprozess zum Treibhausgasneutralen und Ressourcenschonendem Deutschland. Climate Change 36/2019. Dessau-Rosslau, www.umweltbundesamt.de/rescue

United Nations (2019). World Population Prospects 2019. Total Population - Both Sexes. https://population.un.org/wpp/Download/Standard/Population/.

USGS (2019). National Minerals Information Centre, www.usgs.gov/centers/nmic/.

Van de Voet, E., Van Oers, L., Verboon, M., Kupers, K. (2018). Environmental Implications of Future Demand Scenarios for Metals. Methodolog)' and Application to the Case of Seven Major Metals. Journal of Industrial Ecology, 23(1), 141-154.

 
Source
< Prev   CONTENTS   Source   Next >