Advantages, Disadvantages and Limitations of the System

The advantages, disadvantages and limitations of the system are summarized in Table 27.1.

Table 27.1 Advantages and disadvantages to the SHIME® system

Advantages

• Integrates the entire gastrointestinal tract

• Microbiome inoculation from different target groups: adult vs. infant, healthy vs. diseased (e.g. ulcerative colitis patients: Vermeiren et al. 2012) and animals (pig, dog)

• Colon-region specific research (Possemiers et al. 2006)

• Maintains microbiome stability over a long timeframe: possibility to monitor microbiome adaptation

• Mechanistic research by multi-parametric control

• Differentiation between mucosal and luminal microbiome in M-SHIME setup (Van den Abbeele et al. 2013)

• Parallel control and treatment in TWIN-SHIME setups

• Interindividual variability can be studied in a SHIME setup as unique features of an individual's microbiome are preserved. Limiting microbiome simulation to one colon region, eight different subjects can be simultaneously assessed

Disadvantages

• Conventional SHIME setup lacks dialysis. Incorporation of dialysis modules is possible after small intestine digestion (Ceuppens et al. 2012) and colon digestion

• Lack of peristalsis, mixing is conducted by means of stirrers as normally performed in a standard dissolution apparatus

• Absence of host cells in conventional SHIME. Solved by coupling to HMI module with epithelial or immune cells (Possemiers et al. 2013; Marzorati et al. 2014)

References

Bolca S, Van de Wiele T, Possemiers S (2013) Gut metabotypes govern health effects of dietary polyphenols. Curr Opin Biotechnol 24:220–225

Ceuppens S, Uyttendaele M, Drieskens K, Heyndrickx M, Rajkovic A, Boon N et al (2012) Survival and germination of Bacillus cereus spores without outgrowth or enterotoxin production during in vitro simulation of gastrointestinal transit. Appl Environ Microbiol 78:7698–7705

Decroos K, Eeckhaut E, Possemiers S, Verstraete W (2006) Administration of equol-producing bacteria alters the equol production status in the simulator of the gastrointestinal microbial ecosystem (SHIME). J Nutr 136:946–952

Englyst HN, Hay S, MacFarlane GT (1987) Polysaccharide breakdown by mixed populations of human fecal bacteria. FEMS Microbiol Ecol 95:163–171

Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA et al (2009) Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 69:231–242

Grootaert C, Van de Wiele T, Van Roosbroeck I, Possemiers S, Vercoutter-Edouart A, Verstraete W, Bracke M, Vanhoecke B (2011) Bacterial monocultures, propionate, butyrate and H2O2 modulate the expression, secretion and structure of the fasting induced adipose factor in gut epithelial cells. Environ Microbiol 13:1778–1789

Gross G, Jacobs D, Peters S, Possemiers S, van Duynhoven J, Vaughan E et al (2010) In vitro bioconversion of polyphenols from black tea and red wine/grape juice by human intestinal microbiota displays strong inter-individual variability. J Agric Food Chem 58:10236–10246

Macfarlane GT, Cummings JH, Macfarlane S, Gibson GR (1989) Influence of retention time on degradation of pancreatic-enzymes by human colonic bacteria grown in a 3-stage continuous culture system. J Appl Bacteriol 67:521–527

Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2009) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10: 1571–1581

Marzorati M, Vanhoecke B, De Ryck T, Sadaghian Sabadad M, Pinheiro I, Possemiers S et al (2014) The HMI module: a new in vitro tool to study the host microbiome interactions from the human gastrointestinal tract. BMC Microbiol 14:133

Miller TL, Wolin MJ (1981) Fermentation by the human large-intestine microbial community in an in vitro semicontinuous culture system. Appl Environ Microbiol 42:400–407

Minekus M, Smeets-Peeters M, Bernalier A, Marol-Bonnin S, Havenaar R, Marteau P et al (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53:108–114

Molly K, Vandewoestijne M, Verstraete W (1993) Development of a 5-step multichamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39:254–258

Molly K, Vandewoestyne M, Desmet I, Verstraete W (1994) Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities. Microb Ecol Health Dis 7:191–200

Peppercorn, Goldman (1972) The role of intestinal bacteria in the metabolism of salicyl azo-sulphapyridines. J Pharmacol Exp Ther 181:555–562

Possemiers S, Verthe K, Uyttendaele S, Verstraete W (2004) PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 49:495–507

Possemiers S, Bolca S, Grootaert C, Heyerick A, Decroos K, Dhooge W et al (2006) The prenylflavonoid isoxanthohumol from hops (Humulus lupulus L.) is activated into the potent phytoestrogen 8-prenylnaringenin in vitro and in the human intestine. J Nutr 136:1862–1867

Possemiers S, Pinheiro I, Verhelst A, Van den Abbeele P, Maignien L, Laukens D et al (2013) A dried yeast fermentate selectively modulates both the luminal and mucosal gut microbiota and protects against inflammation, as studied in an integrated in vitro approach. J Agric Food Chem 61:9380–9392

Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736

Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W, Gerard P et al (2010) Microbial community development in a dynamic gut model is reproducible, colon-region specific and selects for Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 76:5237–5246

Van den Abbeele P, Van de Wiele T, Verstraete W, Possemiers S (2011) The host selects mucosal and luminal associations of co-evolved gut microbes: a novel concept. FEMS Microbiol Rev 35:681–704

Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O et al (2013) Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J 7:949–961

van Duynhoven J, Vaughan E, Jacobs D, Kemperman R, van Velzen E, Gross G et al (2011) The metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci U S A 108:S4531–S4538

Vermeiren J, Van den Abbeele P, Laukens D, Visgnaes LK, De Vos M et al (2012) Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiol Ecol 79:685–696

Willing B, Halfvarson J, Dicksved J, Rosenquist M, Järnerot G, Engstrand L et al (2009) Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis 15:653–660

Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K et al (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626

 
< Prev   CONTENTS   Next >