References

  • 1. Kurtz, S., Balaguru, P.: Postcrack creep of polymeric fiber-reinforced concrete in flexure. Cem. Concr. Res. 30(2), 183-190 (2000)
  • 2. American Society for Testing and Materials (ASTM) International, ‘C1399 Standard Test Method for Obtaining Average Residual-Strength of Fiber-Reinforced Concrete’, 2010
  • 3. Bernard, E.S.: Creep of cracked fibre reinforced shotcrete panels. In: Shotcrete: More Engineering Developments, pp. 47-57. Taylor & Francis, London (2004)
  • 4. MacKay, J., Trottier, J.F.: Post-crack creep behavior of steel and synthetic FRC under flexural loading. In: Shotcrete: More Engineering Developments, pp. 183-192. Taylor & Francis, London (2004)
  • 5. Kusterle, W.: Viscous material behavior of solids-creep of polymer fiber reinforced concrete. 5th Central European Conference on Concrete Engineering, pp. 95-99 (2009)
  • 6. Zerbino, R.L., Barragan, B.E.: Long-term behavior of cracked steel fiber-reinforced concrete beams under sustained loading. ACI Mater. J. 109(2), 215-224 (2012)
  • 7. Garcia-Taengua, E., Arango, S., Marti-Vargas, J.R., Serna, P.: Flexural creep of steel fiber reinforced concrete in the cracked state. Constr. Build. Mater. 65, 321-329 (2014)
  • 8. Arango, S.E., Serna, P., Marti-Vargas, J.R., Garcia-Taengua, E.: A test method to characterize flexural creep behaviour of pre-cracked FRC specimens. Exp. Mech. 52(8), 1067-1078 (2012)
  • 9. Zhao, G., Di Prisco, M., Vandewalle, L.: Experimental research and numerical simulation of post-crack creep behavior of SFRC loaded in tension. Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete, Proceedings of the Ninth International Conference on Creep, Shrinkage, and Durability Mechanics (CONCREEP-9), pp. 340-347, Cambridge, Massachusetts (2013)
  • 10. Zhao, G., di Prisco, M., Vandewalle, L.: Experimental investigation on uniaxial tensile creep behavior of cracked steel fiber reinforced concrete. Mater. Struct. 48(10), 3173-3185 (2015)
  • 11. Babafemi, A.J., Boshoff, W.P.: Tensile creep of macro-synthetic fibre reinforced concrete (MSFRC) under uni-axial tensile loading. Cement Concr. Compos. 55, 62-69 (2015)
  • 12. Buratti, N., Mazzotti, C.: Experimental tests on the effect of temperature on the long-term behaviour of macrosynthetic Fibre Reinforced Concretes. Constr. Build. Mater. 95, 133-142 (2015)
  • 13. Naaman, A.E., Namur, G.G., Alwan, J.M., Najm, H.S.: Fiber pullout and bond slip. II: experimental validation. J. Struct. Eng. 117(9), 2791-2800 (1991)
  • 14. Robins, P.J., Austin, S.A., Jones, P.A.: Pull-out behaviour of hooked steel fibres. Mater. Struct. 35(7), 434-442 (2002)
  • 15. Cunha, V.M.C.F., Barros, J.A.O., Sena-Cruz, J.M.: Pullout behavior of steel fibers in self-compacting concrete. J. Mater. Civ. Eng. 22(1), 1 -9 (2009)
  • 16. Breitenbdcher, R., Meschke, G., Song, F., Zhan, Y.: Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths. Struct. Concr. 15(2), 126-135 (2014)
  • 17. Zile, E., Zile, O.: Effect of the fiber geometry on the pullout response of mechanically deformed steel fibers. Cem. Concr. Res. 44, 18-24 (2013)
  • 18. Choi, W.C., Jang, S.J., Do Yun, H.: Interface bond characterization between fiber and cementitious matrix. Int. J. Polym. Sci. 2015, 1-11 (2015)
  • 19. Isla, F., Ruano, G., Luccioni, B.: Analysis of steel fibers pull-out. Experimental study. Constr. Build. Mater. 100, 183-193 (2015)
  • 20. Li, V.C., Wang, Y., Backer, S.: Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. Composites 21(2), 132-140 (1990)
  • 21. Singh, S., Shukla, A., Brown, R.: Pullout behavior of polypropylene fibers from cementitious matrix. Cem. Concr. Res. 34(10), 1919-1925 (2004)
  • 22. Lee, S.C., Shin, K.J., Oh, B.H.: Cyclic pull-out test of single PVA fibers in cementitious matrix. J. Compos. Mater. 45(26), 2765-2772 (2011)
  • 23. Di Maida, P., Radi, E., Sciancalepore, C., Bondioli, F.: Pullout behavior of polypropylene macro-synthetic fibers treated with nano-silica. Constr. Build. Mater. 82, 39-44 (2015)
  • 24. Alberti, M.G., Enfedaque, A., Galvez, J.C., Ferreras, A.: Pull-out behaviour and interface critical parameters of polyolefin fibres embedded in mortar and self-compacting concrete matrixes. Constr. Build. Mater. 112, 607-622 (2016)
  • 25. Nieuwoudt, P.D., Boshoff, W.P.: Modelling the time-dependent pull-out behaviour of hooked steel fibres. In: Proceedings of CONCREEP 10—Mechanics and Physics of Creep, Shrinkage and Durability of Concrete and Concrete Structures, pp. 1333-1339, Vienna, Austria, 21-23 Sept 2014
  • 26. van Mier, J.G.M., van Vliet, M.R.A.: Uniaxial tension test for the determination of fracture parameters of concrete: state of the art. Eng. Fract. Mech. 69(2), 235-247 (2002)
  • 27. Plizzari, G.A., Cangiano, S., Alleruzzo, S.: The fatigue behaviour of cracked concrete. Fatigue Fract. Eng. Mater. Struct. 20(8), 1195-1206 (1997)
  • 28. Plizzari, G.A., Cangiano, S., Cere, N.: Postpeak behavior of fiber-reinforced concrete under cyclic tensile loads. ACI Mater. J. 97(2), 182-192 (2000)
  • 29. Li, Z., Li, F., Chang, T.-Y.P., Mai, Y.-W.: Uniaxial tensile behavior of concrete reinforced with randomly distributed short fibers. ACI Mater. J. 95(5), 564-574 (1998)
  • 30. Vandewalle, L., Nemegeer, D., Balazs, L., Barr, B., Bartos, P., Banthia, N., Brandt, A., Criswell, M., Denarie, F., Di Prisco, M., Falkner, H., Gettu, R., Gopalaratnam, V., Groth, P., et al.: RILEM TC 162-TDF: test and design methods for steel fibre reinforced concrete— Uni-axial tension test for steel fibre reinforced concrete. Mater. Struct. 34(235), 3-6 (2001)
  • 31. Barr, B., Lee, M., Barragan, B., Dupont, D., Gettu, R., Olesen, J.F., Stang, H., Vandewalle, L.: Round-robin analysis of the RILEM TC 162-TDF uni-axial tensile test: part 1. Mater. Struct. 36(4), 265-274 (2003)
  • 32. Barr, B., Lee, M., Barragan, B., Dupont, D., Gettu, R., Olesen, J.F., Stang, H., Vandewalle, L.: Round-robin analysis of the RILEM TC 162-TDF uni-axial tensile test: part 2. Mater. Struct. 36(4), 275-280 (2003)
  • 33. Barragan, B.E., Gettu, R., Martin, M.A., Zerbino, R.L.: Uniaxial tension test for steel fibre reinforced concrete—a parametric study. Cement Concr. Compos. 25(7), 767-777 (2003)
  • 34. Buratti, N., Mazzotti, C.: Uniaxial tension tests on macrosynthetic fibre reinforced concretes. In: Proceedings of the 9th Rilem International Symposium on Fiber Reinforced Concrete (BEFIB), Vancouver, Canada, 19-21 Sept 2016
  • 35. Zerguini, A., Rossi, P.: Post-cracking behaviour in uniaxial tension of metallic fiber-reinforced concrete (MFRC): experimental study of scale effects. Bulletin des Laboratoires des Ponts et Chaussees 242, 67-75 (2003)
  • 36. Sorelli, L.G., Meda, A., Plizzari, G.A.: Bending and uniaxial tensile tests on concrete reinforced with hybrid steel fibers. J. Mater. Civ. Eng. 17(5), 519-527 (2005)
  • 37. Buratti, N., Mazzotti, C.: Experimental tests on the long-term behaviour of SFRC and MSFRC in bending and direct tension. In: Proceedings of the 9th Rilem International Symposium on Fiber Reinforced Concrete (BEFIB), Vancouver, Canada, 19-21 Sept 2016
  • 38. RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete. Uni-axial tension test for steel fibre reinforced concrete. Recommendations. Mater. Struct. 34(1), 3-6 (2001)
  • 39. Daviau-Desnoyers, D.L., Charron, J.-P., Massicotte, B., Rossi, P., Tailhan, J.-L.: Creep behaviour of a SFRC under service and ultimate bending loads. In: Proceedings of the International RILEM Workshop on creep behaviour in cracked section of Fibre Reinforced Concrete, Valencia Spain, 9-10 March 2016
  • 40. Buratti, N., Mazzotti, C., Savoia, M.: Long-term behavior of cracked SFRC elements exposed to chloride solutions. Advances in FRC Durability and Field Applications (ACI SP-280) (2011)
  • 41. Zerbino, R., Monetti, D.H., Giaccio, G.: Creep behaviour of cracked steel and macro-synthetic fibre reinforced concrete. Mater. Struct. 49(8), 3397-3410 (2016)
  • 42. Barr, B., Lee, M., de Place Hansen, E., Dupont, D., Erdem, E., Schaerlaekens, S., Schnhtgen, B., Stang, H., Vandewalle, L.: Round-robin analysis of the RILEM TC 162-TDF beam-bending test: part 1—test method evaluation. Mater. Struct. 36(9), 609-620 (2003)
  • 43. Kusterle, W.: Flexural creep tests on beams: 8 years of experience with steel and synthetic fibres. In: Proceedings of the International RILEM Workshop on creep behaviour in cracked section of Fibre Reinforced Concrete, Valencia Spain, 9-10 March 2016
  • 44. Babafemi, A.J., Boshoff, W.P.: Testing and modelling the creep of cracked macro-synthetic fibre reinforced concrete (MSFRC) under flexural loading. Mater. Struct. 49(10), 4389-4400 (2016)
  • 45. Nieuwoudt, P.D., Boshoff, W.P.: The time-dependant pull-out behaviour of hooked steel fibres. In: Proceedings of the International RILEM Workshop on creep behaviour in cracked section of Fibre Reinforced Concrete, Valencia Spain, 9-10 March 2016
  • 46. Vrijdaghs, R., di Prisco, M., Vandewalle, L.: Creep deformations of structural polymeric macrofibers. In: Proceedings of the International RILEM Workshop on creep behaviour in cracked section of Fibre Reinforced Concrete, Valencia Spain, 9-10 March 2016
  • 47. Buratti, N., Mazzotti, C.: An experimental and numerical study on the long-term behaviour of cracked fibre-reinforced self-compacting concrete beams. In: Proceedings of the 7th RILEM Symposium on Self-Compacting Concrete, Paris, France, 2-4 Sept 2013
  • 48. Larive, C., Chamoley, D.R., Regnard, A., Pannetier, T., Thuaud, C.: A new testing method dedicated to creep behaviour of fibre reinforced sprayed concrete. In: Proceedings of the International RILEM Workshop on Creep Behaviour in Cracked Section of Fibre Reinforced Concrete, Valencia Spain, 9-10 March 2016
  • 49. Ciancio, D., Mazzotti, C., Buratti, N.: Evaluation of fibre-reinforced concrete fracture energy through tests on notched round determinate panels with different diameters. Constr. Build. Mater. 52, 86-95 (2014)
  • 50. Ciancio, D., Manca, M., Buratti, N., Mazzotti, C.: Structural and material properties of mini notched round determinate panels. Constr. Build. Mater. 113, 395-403 (2016)

Part II

Influence of Fibre Type on Creep

 
Source
< Prev   CONTENTS   Source   Next >