Bibliography

[AGL 79] Agler A.T., Lifson S., Dauber P., “Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields”, Journal of the American Chemical Society, vol. 101, pp. 5122-5130, 29 August 1979.

[AUS 81] Austmeyer K., Untersuchungen zum Warme und Stoffubergang im Anfangsstadium der Verdampfungskristallisation der Saccharose, Dissertation, Technical University, Braunschweig, 1981.

[BEN 68] Bennema P., “Surface diffusion and the growth of sucrose crystals”, Journal of Crystal Growth, vols. 3-4, p. 331, 1968.

[BES 69] Besset R., “Continuous sugar crystallization: a chemical engineer’s viewpoint”, Chemical Engineering Progress Symposium Series, vol. 65, p. 34, 1969.

[BRA 66] Bravais A., Etudes cristallographiques, Editions Gauthier-Villars, Paris, 1866.

[BRO 92] Brown D.J., Alexander K., “Rates of nucleation in the crystallization of sucrose”, Journal of Crystal Growth, vol. 118, p. 464, 1992.

[BRU 96] BRUHNS M., Fliessverhalten von Zuckerkristallsuspensiaren und Warmeubergang bei der Zucker Verdampfungskristallisation bei kleinen Temperaturgefallen, Verlag Dr Albert Bartens, Berlin, 1996.

[BUB 84] Bubnik Z., Kadlec P., “Geschvindigkeit der Saccharosekristallisation”,

Internationaler Kongress CHISA in Prague Zuckerindustrie, vol. 109, no. 12, p. 1117, 1984.

[BUB 95] Bubnick Z., Kadlec P., Urban D. et al., Sugar Technologists Manual, Verlag Dr. Albert Bartens, Berlin, 1995.

[BUC 14] Buckingham E., “On physically similar systems. Illustrations of the use of dimensional equations”, Physical Review, vol. 4, no. 4, pp. 345-376, 1914.

[BUC 15] Buckingham E., “The principle of similitude”, Nature, vol. 96, pp. 396397, 1915.

[BUC 47] Buckingham R.A., “Tables of second virial and low-pressure Joule- Thomson coefficient for intermolecular potentials with exponential repulsion”,

Proceedings of the Royal Society, vol. A189, p. 118, 1947.

[BUR 51] Burton W.K., Cabrera N., Frank F.C., “The growth of crystals and the equilibrium structure of their surfaces”, Philosophical Transactions of the Royal Society, vol. A243, p. 299, 1951.

[BYR 02] Byrappa K., Ohachi T., Crystal Growth Technology, Springer, New York, 2002.

[CHA 84] Chang Y.C., Myerson A.S., “Diffusion coefficients in supersaturated solutions”, in Jancic S.J., de Jong E.J. (eds), Industrial Crystallisation, Elsevier, Amsterdam, 1984.

[CHE 61] Chernov A.A., “The spiral growth of crystals”, Uspekhi Fizicheskikh Nauk, vol. 73, p. 277, 1961.

[COR 98] Coriell S.R., Chernov A.A., Murray B.T. et al., “Step bunching: generalized kinetics”, Journal of Crystal Growth, vol. 183, p. 669, 1998.

[CUR 85] Curie P., “Sur la formation des cristaux et sur les constantes capillaires de leurs diverses faces”, Bulletin de la Societe mineralogique de France, vol. 8, p. 145, 1885.

[DAV 85] Davidson J.F., Clift R., Harrison D., Fluidization, 2nd ed., Academic Press, 1985.

[DEV 83] De Vries G.H., “New method for the continuous crystallisation of sugar”, Sugar Technology Review, vol. 10, p. 3, 1983.

[DIA 73] Dialer K., Kubner K., “Oberflachenentfaltung und Energieaufname bei der Schwingmalhung von Kristallzucker zum EinfluP der Bindungsverhaltnisse auf die Feinstzerkleinerung”, Kolloid-Zeitschrift und Zeitschrift fur Polymere, vol. 251, pp. 710-715, 1973.

[DIR 91] Dirksen J.A., Ring T.A., “Fundamentals of crystallisation: kinetic effects on particle size distributions and morphology”, Chemical Engineering Science, vol. 46, p. 2389, 1991.

[DOW 80] Dowty E., “Computing and drawing crystal shapes”, American Mineralogist, vol. 65, p. 465, 1980.

[DUD 86] Duda R., Rejl L., La grande encyclopedie des mineraux, Editions Grund, 1986.

[DUR 16] Duroudier J.-P., Heat Transfer in the Chemical, Food and Pharmaceutical Industries, ISTE, London and Elsevier, Oxford, 2016.

[FRI 07] Friedel M.G., “Etudes sur la loi de Bravais”, Bulletin de la Societe frangaise de Mineralogie, vol. 9, p. 326, 1907.

[GAH 97] Gahn C., Die Festigkeit von Kristallen und ihr EinfluP auf die Kinetik in Suspensions kristallisatoren, Thesis, Technical University, Munchen, 1997.

[GAV 94] Gavezzotti A., “Are crystal structures predictable?”, Accounts of Chemical Research, vol. 27, p. 309, 1994.

[GRI 98] Grimbergen R.F.P., Meekes H., Bennema P. et al, “On the prediction of crystal morphology, Part I, The Hartmann-Perdok theory revisited”, Acta Crystallographica, vol. A54, p. 491, 1998.

[GRI 99] Grimbergen R.F.P., Bennema P., Meekes H., “On the prediction of crystal morphology, Part III, Equilibrium and growth behaviour of crystal faces containing multiple connected nets”, Acta Crystallographica, vol. A55, p. 84, 1999.

[HAG 79] Hagler A.T., Lifson S., Dauber P., “Consistent force field studies of intermolecular faces in hydrogen - bonded crystals. Part II”, Journal of the American Chemical Society, vol. 101, p. 5122, 1979.

[HAR 55a] Hartmann P., Perdok W.G., “On the relation between structure and morphology of crystals. Part I”, Acta Crystallographica, vol. 8, p. 49, 1955.

[HAR 55b] Hartmann P., Perdok W.G., “On the relation between structure and morphology of crystals. Part II”, Acta Crystallographica, vol. 8, p. 521, 1955.

[HAR 55c] Hartmann P., Perdok W.G., “On the relation between structure and morphology of crystals. Part III”, Acta Crystallographica, vol. 8, p. 525, 1955.

[HAR 80] Hartmann P., Bennema P., “The attachment energy as a habit controlling factor”, Journal of Crystal Growth, vol. 49, p. 145, 1980.

[HAR 96] Hartel R.W., “Controlling crystallization in foods”, Journal of the American Chemical Society, pp. 172-177, 1996.

[JAN 84] Jancic S.J., Grootscholten P.A.M., Industrial Crystallization, Delft University Press, 1984.

[JON 74a] Jones A.G., “Optimal operation of a batch cooling crystallizer”,

Chemical Engineering Science, vol. 29, p. 1075, 1974.

[JON 74b] Jones A.G., Mullin J.W., “Programmed cooling crystallization of potassium sulphate solutions”, Chemical Engineering Science, vol. 29, p. 105, 1974.

[KER 50] Kern D.R., Process Heat Transfer, McGraw Hill, New York, 1950.

[KUR 96] Kurihara K., Miyashita S., Sazaki G. et al, “Interferometric study on the crystal growth of tetragonal lyzozyme crystal”, Journal of Crystal Growth, vol. 166, p. 904, 1996.

[LEC 68] Leci C.L., Mullin J.W., “Refractive index measurements in liquids rendered opaque by the presence of suspended solids”, Chemistry and Industry, p. 1517, 1968.

[LEW 74a] Lewis B., “The growth of crystals at low supersaturation. Part I.

Theory”, Journal of Crystal Growth, vol. 21, p. 29, 1974.

[LEW 74b] Lewis B., “The growth of crystals at low supersaturation. Part II. Comparaison with experiment”, Journal of Crystal Growth, vol. 21, p. 40, 1974.

[LIA 87] Liang B.M., Hartel R.W., Berglund K.A., “Contact nucleation in sucrose crystallization”, Chemical Engineering Science, vol. 42, no. 11, p. 2723, 1987.

[LIF 79] Lifson S., Hagler A.T., Duaber P., “Consistent force field studies of intermolecular forces in hydrogen - bonded crystals Part I”, Journal of the American Chemical Society, vol. 101, p. 5111, 1979.

[LIU 96] Liu X.-Y., Bennama P., “Theoretical considerations of the growth morphology of crystals”, Physical Review, vol. B53, p. 2314, 1996.

[MAL 89] Malkin A.I., Chenov A.A., Alexeev I.V., “Growth of dipyramidal face of dislocation-free ADP crystals: free energy of steps”, Journal of Crystal Growth, vol. 97, p. 765, 1989.

[MAR 84] Marqusee J.A., Ross J., “Theory of Ostwald ripening: competitive growth and its dependence on volume fraction”, Journal of Chemical Physics, vol. 80, no. 1, pp. 536-543, 1984.

[MAU 85] Maurandi V., Mantovani G., Vaccari G., “Sucrose crystallisation at low supersaturation in impure beet syrups and pure solutions”,

Zuckerindustrie, vol. 110, p. 1096, 1985.

[MEE 98] Meekes H., Bennema P., Grimbergen R.F.P., “On the prediction of crystal morphology. Part II. Symmetry roughening of pairs of connected nets”, Acta Crystallographica, vol. A55, p. 501, 1998.

[MER 88] Mersmann A., “Design of cystallizers”, Chemical Engineering and Processing, vol. 23, p. 213, 1988.

[MER 01] Mersmann A., Crystallization Technology Handbook, Marcel Dekker, New York, 2001.

[MIL 47] Miller P., Saeman W.C., “Continuous vacuum crystallization of ammonium nitrate”, Chemical Engineering Progress, vol. 43, no. 12, p. 667, 1947.

[MIL 69] Milazzo G., Electrochimie, Editions Dunod, Paris, 1969.

[MOM 74] Momany F.A., Carruthers L.M., Mc Guire R.F. et al, “Intermolecular potentials from crystals data - Part III Determination of empirical potentials and application to the packing configurations and lattice energy in crystals of hydrocarbons, carboxylic acids, amines et amides”, The Journal of Physical Chemistry, vol. 78, p. 1595, 1974.

[MUL 72] Mullin J.W., Crystallisation, 2nd ed., Butterworths, 1972.

[MUT 01] Mutaftschiev B., The Atomistic Nature of Crystal Growth, Springer, New York, 2001.

[NAG 75] Nagata S., Mixing, Halstead Press, Sydney, 1975.

[NEM 83] Nemethy G., Pottle M.S., Scheraga H.A., “Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions and hydrogen bond interactions for the naturally occurring amino acids”, Journal of Physical Chemistry, vol. 87, p. 1883, 1983.

[NIE 71] Nielsen A.E., Sohnel O., “Interfacial tensions electrolyte crystal-aqueous solution from nucleation data”, Journal of Crystal Growth, vol. 11, p. 233, 1971.

[NIE 80] Nielsen A.E., “Transport control in crystal growth from solution”,

Croatica Chemica Acta, vol. 53, p. 255, 1980.

[NOU 85] Nougier J.P., Methodes de calcul numerique, Masson, 1985.

[NOV 55] NOVICK A.S., Crystal Properties via Group Theory, Cambridge university Press, Cambridge, 1955.

[NYV 85] Nyvlt J., Sohnel O., Matuchova M. et al., The Kinetics of Industrial Crystallization, Elsevier, Amsterdam, 1985.

[OLD 83] Oldshue J.Y., Fluid Mixing Technology, McGraw Hill, New York, 1983.

[ONS 44] Onsager L., “Part I A two-dimensional model with an order-disorder transition”, Physical Review, vol. 65, p. 117, 1944.

[ORO 49] Orovan E., “Fracture and strength of solids”, Reports on Progress in Physics, vol. 12, p. 185, 1949.

[POE 98] Poel P.W., Schiweck H.M., Schwartz T.K., Sugar Technology: beet and cane sugar manufacture, Verlag Dr Albert Bartens, Berlin, 1998.

[POH 87] Pohlisch R.J., Einfluss von mechanischer Beeinflussung und Abrieb auf die Korngrossenverteilung, Thesis, Technical University, Munchen, 1987.

[QUE 88] Quere Y., Physique des materiaux, Editions Ellipses, Paris, 1988.

[RAN 71] Randolph A.D., Larson M.A., Theory of Particulate Process, Academic Press, 1971.

[RAT 02] Ratke L., Voorhees P.W., Growth and Coarsening, Springer, New York, 2002.

[ROU 00] Rousseau J.-J., Cristallographie geometrique et radiocristallographie, Editions Dunod, 2000.

[SAN 87] Sanquer M., Ecolivelt C., “Elastic constants in molecular crystals experiments and intermolecular potentials”, in Lascombe J. (ed.), Dynamics of Molecular Crystals, Elsevier, Amsterdam, 1987.

[SCH 83] Schliephake D., Ekelhof B., “Beitrag zur vollstandigen Berechnung der Kristallisationsgeschwindigkeit der Saccharose”, Zuckerindustrie, vol. 108, no. 12, p. 1127, 1983.

[SPI 92] Spiegel M.R., Formules et tables de mathematiques, McGraw-Hill, New York, 1992.

[STE 90] Stewart J.J.P., “Mopac: a semiempirical molecular orbital program”, Journal of Computer-Aided Molecular Design, vol. 4, pp. 1-105, 1990.

[TAI 75] Tai C.Y., Me Cabe W.L., Rousseau R.W., “Contact nucleation of various crystal types”, AIChE Journal, vol. 21, no. 2, p. 351, 1975.

[TER 01] Ter Horst J.H., Geertman R.M., Van Rosmalen G.M., “The effect of solvent on crystal morphology”, Journal of Crystal Growth, vol. 230, p. 277, 2001.

[ULL 86] Ullrich M., Rathjen C., “Fortschritte beim Kristallisieren in Scheckenmasthinen”, Chemie Ingenieur Technik, vol. 58, no. 7, pp. 590-592, 1986.

[VAN 86] Van der Eerden J.P., “Formation of macrosteps due to time dependant impurity adsorption”, Electrochimica Acta, vol. 31, p. 1007, 1986.

[VES 99] Veszpremi T., Feher M., Quantum Chemistry Fundamentals to Applications, Klumer Academic/Plenum Publishing, 1999.

[WAG 62] Wagnerowski K., Dabrowska D., Dabrowski C., “Probleme der Melasseerschopfung”, Zeitschrift fur die Zuckerindustrie, vol. 12, p. 664, 1962.

[WAN 92] Wang S., Grossenabhangige Wachstumsdispersion von Abriebsteilchen, Thesis, Technical University, Munchen, 1992.

[WEY 73] Wey J.S., Estrin J., “Modeling the batch crystallization process. The ice- brine system”, Industrial & Engineering Chemistry Process Design and Development, vol. 12, no. 3, p. 236, 1973.

[WIT 92] Witte G., “Inline Kristallgrossenanalyse”, Chemie Anlagen + Verfahren, vol. 25, p. 153, 1992.

[WUL 01] Wulf G., “Zur Frage der geschwindigkeit des Wachstums und der Auflosung der Kristallflaschen”, Zeitschrift fur Kristallographie, vol. 34, p. 499, 1901.

[YOR 83] York P., “Solid-state properties of powders in the formulation and processing of solid dosage forms”, International Journal of Pharmaceutics, vol. 14, p. 1, 1983.

 
Source
< Prev   CONTENTS   Source