The authors acknowledge all of the researchers in the UC Davis Foods for Health Institute and the Milk Bioactives Program for their enthusiasm, imagination, and collective contribution to this subject matter. Work by the Milk Bioactives Program has been supported by the UC Davis Research Investments in the Sciences and Engineering Program; the UC Discovery Grant Program; the California Dairy Research Foundation; the Dairy Research Institute; the Bill & Melinda Gates Foundation; and the National Institutes of Health awards R01HD059127, R01HD065122, R01HD061923, R21AT006180, and R01AT007079. We also acknowledge support from the Peter J. Shields Endowed Chair in Dairy Food Science.


[1] Tunick MH. Whey Protein Production and Utilization: A Brief History. Whey Processing, Functionality and Health Benefits. John Wiley & Sons; 2009.

[2] Jelen P. Industrial whey processing technology: An overview. J Agric Food Chem. 1979;27(4):658-61.

[3] Smithers GW. Whey and whey proteins—From “gutter-to-gold.”Int Dairy J. 2008 Jul;18(7):695-704.

[4] Bos C, Gaudichon C, Tome D. Nutritional and physiological criteria in the assessment of milk protein quality for humans. J Am Coll Nutr. 2000 Apr;19(2 Suppl):191S-205S.

[5] Ramchandran L, Vasiljevic T. Whey processing. Membr Process. 2013;193-207.

[6] Schmidt RH, Packard VS, Morris HA. Effect of Processing on Whey Protein Functionality. J Dairy Sci. 1984 Nov;67(11):2723-33.

[7] Wingerd WH. Lactalbumin as a Food Ingredient. J Dairy Sci. 1971 Aug;54(8):1234-6.

[8] Marcelo PA, Rizvi SSH. Physicochemical properties of liquid virgin whey protein isolate. Int Dairy J. 2008 Mar;18(3):236-46.

[9] Reference Manual for U.S. Whey and Lactose Products. U.S. Dairy Export Council; 2004 Jun.

[10] Palidwor GA, Andrade-Navarro MA. MLTrends: Graphing MEDLINE term usage over time. J Biomed Discov Collab. 2010 Jan 25;5:1-6.

[11] Barile D, Tao N, Lebrilla CB, Coisson J-D, Arlorio M, German JB. Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int Dairy J. 2009 Sep;19(9):524-30.

[12] Dallas DC, Weinborn V, de Moura Bell JMLN, Wang M, Parker EA, Guerrero A, et al. Comprehensive peptidomic and glycomic evaluation reveals that sweet whey permeate from colostrum is a source of milk protein-derived peptides and oligosaccharides. Food Res Int. 2014 Sep;63, Part B:203-9.

[13] Berry RA. The production, composition and utilisation of whey. J Agric Sci. 1923;13(02):192-239.

[14] Dixon EM. Whey Permeate, Delactosed Permeate, and Delactosed Whey as Ingredients to Lower Sodium Content of Cream Based Soups [Internet]. North Carolina State University; 2009 [cited 2014 Oct 16]. Available from: http://repository.lib.

[15] Peterson AE, Walker WG, Watson KS. Effect of whey applications on chemical properties of soils and crops. J Agric Food Chem. 1979;27(4):654-8.

[16] Watson KS, Peterson AE, Powell RD. Benefits of spreading whey on agricultural land.

J Water Pollut Control Fed. 1977;24-34.

[17] Ghaly AE, Mahmoud NS, Rushton DG, Arab F. Potential environmental and health impacts of high land application of cheese whey. Am J Agric Biol Sci. 2007;2(2):106.

[18] Westendorf ML. Food Waste as Animal Feed: An Introduction. Food Waste as Animal Feed. John Wiley & Sons; 2000. p. 3-16.

[19] Kim BG, Lee JW, Stein HH. Energy concentration and phosphorus digestibility in whey powder, whey permeate, and low-ash whey permeate fed to weanling pigs. J Anim Sci. 2012 Jan 1;90(1):289-95.

[20] Naranjo VD, Bidner TD, Southern LL. Comparison of dried whey permeate and a carbohydrate product in diets for nursery pigs. JAnim Sci. 2010 May 1;88(5):1868-79.

[21] Cotanch KW, Darrah JW. The Effect of Feeding Lactose in the Form of Whey Permeate on the Productivity of Lactating Dairy Cattle. Chazy, NY: W. H. Miner Agricultural Research Institute; 2006.

[22] Akhtar P, Gray JI, Asghar A. Synthesis of lipids by certain yeast strains grown on whey permeate. J Food Lipids. 1998;5(4):283-97.

[23] Fernandez C, Carracedo B, Martinez EJ, Gomez X, Moran A. Application of a packed bed reactor for the production of hydrogen from cheese whey permeate: Effect of organic loading rate. J Environ Sci Health Part A. 2014 Jan 28;49(2):210-7.

[24] Hargrove RE, McDonough FE, Lacroix DE, Alford JA. Production and properties of deproteinized whey powders. J Dairy Sci. 1976;59(1):25-33.

[25] Affertsholt T. Market developments and industry challenges for lactose and lactose derivatives [Internet]. IDF Symposium: “Lactose and its Derivatives”; 2007 May 15; Moscow, Russia. Available from:

[26] Giec A, Skupin J. Single cell protein as food and feed. Nahr. 1988;32(3):219-29.

[27] Moon NJ, Hammond EG, Glatz BA. Conversion of cheese whey and whey permeate to oil and single-cell protein. J Dairy Sci. 1978;61(11): 1537—47.

[28] Schultz N, Lifung Chang, Hauck A, Reuss M, Syldatk C. Microbial production of single-cell protein from deproteinized whey concentrates. Appl Microbiol Biotechnol. 2006 Jan;69(5):515-20.

[29] Dornburg V, Hermann BG, Patel MK. Scenario Projections for Future Market Potentials of Biobased Bulk Chemicals. Environ Sci Technol. 2008;42(7):2261-7.

[30] Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev. 1986 Dec;50(4):484-524.

[31] Ni Y, Sun Z. Recent progress on industrial fermentative production of acetone- butanol-ethanol by < i>Clostridium acetobutylicum in China. Appl Microbiol Biotechnol. 2009 Jun 1;83(3):415-23.

[32] Ennis BM, Maddox IS. Use of Clostridium acetobutylicum P262 for production of solvents from whey permeate. Biotechnol Lett. 1985;7(8):601-6.

[33] Qureshi N, Maddox IS. Reduction in butanol inhibition by perstraction: utilization of concentrated lactose/whey permeate by Clostridium acetobutylicum to enhance butanol fermentation economics. FoodBioprodProcess. 2005;83(1):43-52.

[34] Dtirre P. Fermentative Butanol Production: Bulk Chemical and Biofuel. Ann N Y Acad Sci. 2008 Mar 1;1125(1):353—62.

[35] Danese PN, Pratt LA, Kolter R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol. 2000;182(12):3593—6.

[36] Hess SJ, Roberts RF, Ziegler GR. Rheological Properties of Nonfat Yogurt Stabilized Using< i> Lactobacillus delbrueckii ssp.< i> bulgaricus Producing Exopolysaccharide or Using Commercial Stabilizer Systems. J Dairy Sci. 1997;80(2):252—63.

[37] Roukas T. Pullulan production from deproteinized whey by Aureobasidium pullulans. J IndMicrobiol Biotechnol. 1999;22(6):617—21.

[38] Savvides AL, Katsifas EA, Hatzinikolaou DG, Karagouni AD. Xanthan production by Xanthomonas campestris using whey permeate medium. World J Microbiol Biotechnol. 2012 Aug 1;28(8):2759-64.

[39] Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS. Environmental Applications of Biosurfactants: Recent Advances. Int J Mol Sci. 2011 Jan 18;12(1):633—54.

[40] Bogaert INAV, Saerens K, Muynck CD, Develter D, Soetaert W, Vandamme EJ. Microbial production and application of sophorolipids. Appl Microbiol Biotechnol. 2007 Aug 1;76(1):23-34.

[41] Daverey A, Pakshirajan K. Sophorolipids from Candida bombicola using mixed hydrophilic substrates: Production, purification and characterization. Colloids Surf B Biointerfaces. 2010 Aug;79(1):246-53.

[42] Beucler J, Drake M, Foegeding EA. Design of a beverage from whey permeate. J Food Sci. 2005;70(4):S277-S285.

[43] Bradley RL, Rexroat TM. Acceptance and Stability of Chocolate and Strawberry Fountain Syrups Made with Concentrated, Decolorized, Deionized Hydrolyzed Whey Permeate 1. J Food Process Preserv. 1988 Jun 1;12(2): 163—70.

[44] Jaros D, Spieler C, Kleinschmidt T, Rohm H. Using whey permeate powders for partial sucrose substitution in flavored yogurt. Milchwissenschaft. 2008;63(2):174-8.

[45] Ganzle MG, Haase G, Jelen P. Lactose: Crystallization, hydrolysis and value-added derivatives. Int Dairy J. 2008 Jul;18(7):685-94.

[46] Paterson AHJ. Production and Uses of Lactose. In: McSweeney P, Fox PF, editors. Advanced Dairy Chemistry [Internet]. Springer New York; 2009 [cited 2014 Nov 21]. p. 105-20. Available from: 5_4

[47] Schaafsma G. Lactose and lactose derivatives as bioactive ingredients in human nutrition. Int Dairy J. 2008 May;18(5):458-65.

[48] Fox PF. Lactose: Chemistry and Properties. In: McSweeney P, Fox PF, editors. Advanced Dairy Chemistry [Internet]. New York, NY: Springer New York; 2009 [cited 2014 Aug 7]. Available from:

[49] McSweeney P, Fox PF, editors. Advanced Dairy Chemistry [Internet]. New York, NY: Springer New York; 2009 [cited 2014 Aug 7]. Available from: 10.1007/978-0-387-84865-5

[50] Patel SR, Murthy ZVP. Ultrasound assisted crystallization for the recovery of lactose in an anti-solvent acetone. CrystRes Technol. 2009 Aug;44(8):889-96.

[51] Patel SR, Murthy ZVP. Waste valorization: Recovery of lactose from partially deproteinated whey by using acetone as anti-solvent. Dairy Sci Technol [Internet]. 2010 Aug 2 [cited 2014 Aug 7]; Available from: 10.1051/dst/2010036

[52] Zisu B, Sciberras M, Jayasena V, Weeks M, Palmer M, Dincer TD. Sonocrystallisation of lactose in concentrated whey. Ultrason Sonochem. 2014;21(6):2117-21.

[53] Wong SY, Hartel RW. Crystallization in Lactose Refining-A Review: Review on crystallization in lactose refining. J Food Sci. 2014 Mar;79(3):R257-R272.

[54] Pisponen A, Pajumagi S, Mootse H, Sats A, Poikalainen V, Karus A. Effect of cooling rates and low crystallization temperatures on morphology of lactose crystals obtained from Ricotta cheese whey. Agron Res. 2014;12(3):787-92.

[55] Atra R, Vatai G, Bekassy-Molnar E, Balint A. Investigation of ultra-and nanofiltration for utilization of whey protein and lactose. J Food Eng. 2005;67(3):325-32.

[56] Patel SR, Murthy ZVP. Lactose Recovery Processes from Whey: A Comparative Study Based on Sonocrystallization. Sep Purif Rev. 2012 Oct;41(4):251-66.

[57] Burrington K. Permeate for sodium reduction. U.S. Dairy Export Council; 2011.

[58] Liang B, Bund RK, Hartel RW. Effect of composition on moisture sorption of delactosed permeate. Int Dairy J. 2009 Oct;19(10):630-6.

[59] Lifran EV, Hourigan JA, Sleigh RW. Lactose derivatives: Turning waste into functional foods. Aust J Dairy Technol. 2009;64(1):89-93.

[60] Panesar P, Kennedy J, Gandhi D, Bunko K. Bioutilisation of whey for lactic acid production. Food Chem. 2007;105(1):1-14.

[61] Paseephol T, Small DM, Sherkat F. Lactulose production from milk concentration permeate using calcium carbonate-based catalysts. Food Chem. 2008 Nov;111(2): 283-90.

[62] Castillo Martinez FA, Balciunas EM, Salgado JM, Dominguez Gonzalez JM, Converti A, Oliveira RP de S. Lactic acid properties, applications and production: A review. Trends FoodSci Technol. 2013 Mar;30(1):70-83.

[63] Oh D-K. Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol. 2007 Aug 1;76(1):1-8.

[64] Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. BiotechnolAdv. 2013 Nov;31(6):877-902.

[65] Ren J. Lactic Acid. Biodegradable Poly (Lactic Acid): Synthesis, Modification, Processing and Applications [Internet]. Springer; 2011 [cited 2014 Oct 27]. p. 4-14. Available from:

[66] Datta R, Henry M. Lactic acid: recent advances in products, processes and technologies — a review. J Chem Technol Biotechnol. 2006 Jul;81(7):1119-29.

[67] Gao C, Ma C, Xu P. Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv. 2011 Nov;29(6):930-9.

[68] Maki-Arvela P, Simakova IL, Salmi T, Murzin DY. Production of Lactic Acid/Lactates from Biomass and Their Catalytic Transformations to Commodities. Chem Rev. 2014 Feb 12;114(3): 1909-71.

[69] Fitzpatrick JJ, O’Keeffe U. Influence of whey protein hydrolysate addition to whey permeate batch fermentations for producing lactic acid. Process Biochem. 2001;37(2):183-6.

[70] Prasad S, Srikanth K, Limaye AM, Sivaprakasam S. Homo-fermentative production of d-lactic acid by Lactobacillus sp. employing casein whey permeate as a raw feed-stock. Biotechnol Lett. 2014 Jun;36(6):1303-7.

[71] Pauli T, Fitzpatrick JJ. Malt combing nuts as a nutrient supplement to whey permeate for producing lactic by fermentation with< i> Lactobacillus casei. Process Biochem. 2002;38(1):1-6.

[72] Wang K, Li W, Fan Y, Xing W. Integrated Membrane Process for the Purification of Lactic Acid from a Fermentation Broth Neutralized with Sodium Hydroxide. Ind Eng Chem Res. 2013 Feb 13;52(6):2412-7.

[73] Gonzalez MI, Alvarez S, Riera F, Alvarez R. Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey. J Food Eng. 2007 May;80(2):553-61.

[74] Foster KJ, Lin S. Current and emerging strategies for treating hepatic encephalopathy. Crit Care Nurs Clin North Am. 2010;22(3):341-50.

[75] Wang H, Yang R, Hua X, Zhao W, Zhang W. Enzymatic production of lactulose and 1 - lactulose: current state and perspectives. Appl Microbiol Biotechnol. 2013 Jul;97(14):6167-80.

[76] Aider M, Halleux D de. Isomerization of lactose and lactulose production: review. Trends FoodSci Technol. 2007 Jul;18(7):356-64.

[77] Villamiel M, Montilla A, Olano A, Corzo N. Production and Bioactivity of Oligosaccharides Derived from Lactose. In: Moreno FJ, Sanz ria L, editors. Food Oligosaccharides [Internet]. John Wiley & Sons, Ltd; 2014 [cited 2014 Nov 20]. p. 135-67. Available from: 7360.ch9/summary

[78] Playne MJ, Crittenden RG. Galacto-oligosaccharides and Other Products Derived from Lactose. In: McSweeney P, Fox PF, editors. Advanced Dairy Chemistry [Internet]. Springer New York; 2009 [cited 2015 Jan 15]. p. 121-201. Available from:

[79] Panesar PS, Kumari S. Lactulose: Production, purification and potential applications. BiotechnolAdv. 2011 Nov;29(6):940-8.

[80] Matella N j., Dolan K d., Lee Y s. Comparison of Galactooligosaccharide Production in Free-Enzyme Ultrafiltration and in Immobilized-Enzyme Systems. J Food Sci. 2006;71(7):C363-C368.

[81] Manzo RM, Simonetta AC, Rubiolo AC, Mammarella EJ. Screening and selection of wild strains for L-arabinose isomerase production. Braz J Chem Eng. 2013;30(4): 711-20.

[82] Wanarska M, Kur J, others. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting P-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c. Microb Cell Fact. 2012;11:113.

[83] Cho Y-J, Shin H-J, Bucke C. Purification and biochemical properties of a galactooligosaccharide producing P-galactosidase from Bullera singularis. Biotechnol Lett. 2003 Dec 1;25(24):2107-11.

[84] Zivkovic AM, Barile D. Bovine Milk as a Source of Functional Oligosaccharides for Improving Human Health. Adv Nutr Int Rev J. 2011 May 1;2(3):284-9.

[85] Dallas DC, Meyrand M, Barile D. Production and Bioactivity of Bovine Milk Oligosaccharides. In: Moreno FJ, Sanz ria L, editors. Food Oligosaccharides [Internet]. John Wiley & Sons, Ltd; 2014 [cited 2014 Nov 20]. p. 21-34. Available from:

[86] Pacheco AR, Barile D, Underwood MA, Mills DA. The Impact of the Milk Glycobiome on the Neonate Gut Microbiota. Annu Rev Anim Biosci. 2015 Mar 15;3(1): 141111105737004.

[87] Crisa A. Milk Carbohydrates and Oligosaccharides. In: Park YW, Haenlein GFW, editors. Milk and Dairy Products in Human Nutrition [Internet]. John Wiley & Sons; 2013 [cited 2015 Jan 12]. p. 129-47. Available from: http://onlinelibrary. ch7/summary

[88] Douglas B. Sarney CH. A novel approach to the recovery of biologically active oligosaccharides from milk using a combination of enzymatic treatment and nanofiltration. Biotechnol Bioeng. 2000;69(4):461-7.

[89] Luo H, Xu P, Roane TM, Jenkins PE, Ren Z. Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour Technol. 2012;105:60-6.

[90] Martinez-Ferez A, Rudloff S, Guadix A, Henkel CA, Pohlentz G, Boza JJ, et al. Goats’ milk as a natural source of lactose-derived oligosaccharides: Isolation by membrane technology. Int Dairy J. 2006 Feb;16(2):173-81.

[91] Oliveira DL, Wilbey RA, Grandison AS, Duarte LC, Roseiro LB. Separation of oligosaccharides from caprine milk whey, prior to prebiotic evaluation. Int Dairy J. 2012 Jun;24(2):102-6.

[92] Ottens M, Chilamkurthi S. Advances in process chromatography and applications in the

food, beverage and nutraceutical industries. In: Rizvi SSH, editor. Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries [Internet]. Woodhead Publishing; 2013 [cited 2015 Jan 23]. p. 109-47. Available from:


[93] 3'-Sialyllactose from bovine milk or colostrum, >97% (HPLC) | Sigma-Aldrich [Internet]. [cited 2014 Nov 14]. Available from: catalog/product/sigma/a8681? lang=en&region=U S

[94] Dallas DC, Guerrero A, Parker EA, Garay LA, Bhandari A, Lebrilla CB, et al. Peptidomic Profile of Milk of Holstein Cows at Peak Lactation. J Agric Food Chem. 2014 Jan 8;62(1):58-65.

[95] Butylina S, Luque S, Nystrom M. Fractionation of whey-derived peptides using a combination of ultrafiltration and nanofiltration. J Membr Sci. 2006 Sep 1;280(1- 2):418-26.

[96] Garsa AK, Kumariya R, Sood SK, Kumar A, Kapila S. Bacteriocin Production and Different Strategies for Their Recovery and Purification. Probiotics Antimicrob Proteins. 2014 Mar;6(1):47-58.

[97] Liu X, Chung Y-K, Yang S-T, Yousef AE. Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem. 2005 Jan;40(1):13-24.

[98] Enan G, Amri AAA. Novel plantaricin UG1 production by Lactobacillus plantarum UG1 in enriched whey permeate in batch fermentation processes. J Food Agric Environ. 2006;4(2):85.

[99] Nicolas G, Auger I, Beaudoin M, Halle F, Morency H, LaPointe G, et al. Improved methods for mutacin detection and production. J Microbiol Methods. 2004 Dec;59(3):351-61.

[100] Somkuti GA, Gilbreth SE. Influence of Organic Buffers on Bacteriocin Production by Streptococcus thermophilus ST110. CurrMicrobiol. 2007 Aug;55(2):173-7.

[101] Short JL, Doughty RK. Demineralization of deproteinated wheys by electrodialysis. N Z J Dairy Sci Technol. 1977;12:156-9.

[102] Perez A, Andres L j., Alvarez R, Coca J, Hill C g. Electrodialysis of Whey Permeates and Retentates Obtained By Ultrafiltration. J Food Process Eng. 1994;17(2):177-90.

[103] Higgins JJ, Short JL. Demineralization by electrodialysis of permeates derived from ultrafiltration of wheys and skim milk. NZ JDairy Sci Technol. 1980;15(3):277-88.

[104] Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, et al. A new method for water desalination using microbial desalination cells. Environ Sci Technol. 2009;43(18):7148-52.

[105] Mehanna M, Saito T, Yan J, Hickner M, Cao X, Huang X, et al. Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ Sci. 2010;3(8): 1114—20.

[106] Jacobson KS, Drew DM, He Z. Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ Sci Technol. 2011;45(10):4652-7.

[107] Moser BR. Biodiesel Production, Properties, and Feedstocks. In: Tomes D, Lakshmanan P, Songstad D, editors. Biofuels [Internet]. Springer New York; 2011 [cited 2014 Sep 9]. p. 285-347. Available from: 10.1007/978-1-4419-7145-6_15

[108] Westfall PJ, Gardner TS. Industrial fermentation of renewable diesel fuels. Curr Opin Biotechnol. 2011 Jun;22(3):344-50.

[109] Paulson ND, Ginder RG, others. The growth and direction of the biodiesel industry in the United States [Internet]. Center for Agricultural and Rural Development, Iowa State University; 2007 [cited 2014 Sep 9]. Available from: download/pdf/11348306.pdf

[110] Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci. 2006 Jul 25;103(30): 11206-10.

[111] Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol. 2008 Oct 1;80(5):749-56.

[112] Floetenmeyer MD, Glatz BA, Hammond EG. Continuous culture fermentation of whey permeate to produce microbial oil. J Dairy Sci. 1985;68(3):633-7.

[113] Ratledge C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie. 2004 Nov;86(11):807-15.

[114] Girard J-M, Roy M-L, Hafsa MB, Gagnon J, Faucheux N, Heitz M, et al. Mixotrophic cultivation of green microalgae< i> Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Res [Internet]. 2014 [cited 2014 Jun 17]; Available from:

[115] International Energy Statistics - EIA [Internet]. [cited 2014 Sep 9]. Available from: tid=79&pid=79&aid= 1

[116] Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y. Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol. 2012 Apr;110:198-205.

[117] Demir M, Turhan I, Kucukcetin A, Alpkent Z. Oil production by Mortierella isabellina from whey treated with lactase. Bioresour Technol. 2013 Jan;128:365-9.

[118] Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. Biodiesel production from oleaginous microorganisms. Renew Energy. 2009 Jan;34(1):1-5.

[119] Ykema A, Verbree EC, Kater MM, Smit H. Optimization of lipid production in the oleaginous yeastApiotrichum curvatum in wheypermeate. Appl Microbiol Biotechnol. 1988;29(2-3):211—8.

[120] Espinosa-Gonzalez I, Parashar A, Bressler DC. Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol. 2014 Mar;155:170-6.

[121] Xia C, Zhang J, Zhang W, Hu B. A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol Biofuels. 2011;4(1):15.

[122] Mitra D, Rasmussen ML, Chand P, Chintareddy VR, Yao L, Grewell D, et al. Value- added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides. Bioresour Technol. 2012 Mar;107:368-75.

[123] Mercer P, Armenta RE. Developments in oil extraction from microalgae. Eur J Lipid Sci Technol. 2011;113(5):539-47.

[124] Bell PJ. The Fungi-to-Fuel Presentation [Internet]. International Fuel Ethanol Workshop & Expo; 2014 Jun 11; Indianapolis, IN. Available from: http://www.

[125] Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today. 2009 Jan;139(4):244-60.

[126] Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008 Jan;151(2):362-7.

[127] Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol. 2006 Mar;38(5):569-82.

[128] Collet C. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int JHydrogEnergy. 2004 Nov;29(14):1479-85.

[129] Yang P, Zhang R, Mcgarvey J, Benemann J. Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrog Energy. 2007 Dec;32(18):4761-71.

[130] Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, et al. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environ Sci Technol. 2008 Dec;42(23):8630-40.

[131] Chynoweth DP, Owens JM, Legrand R. Renewable methane from anaerobic digestion of biomass. Renew Energy. 2001;22(1): 1—8.

[132] Yang S-T, Guo M. Kinetics of methanogenesis from whey permeate in packed bed immobilized cells bioreactor. Biotechnol Bioeng. 1990;36(4):427-36.

[133] Hagen LH, Vivekanand V, Linjordet R, Pope PB, Eijsink VGH, Horn SJ. Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresour Technol. 2014 Nov;171:350-9.

[134] Kisielewska M, Wysocka I, Rynkiewicz M r. Continuous biohydrogen and biomethane production from whey permeate in a two-stage fermentation process. Environ Prog Sustain Energy. 2014;33(4): 1411—8.

[135] Lee C, Kim J, Hwang K, O’Flaherty V, Hwang S. Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters. Water Res. 2009 Jan;43(1):157-65.

[136] Bade Shrestha SO, Narayanan G. Landfill gas with hydrogen addition - A fuel for SI engines. Fuel. 2008 Dec;87(17-18):3616-26.

[137] Kapdi SS, Vijay VK, Rajesh SK, Prasad R. Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy. 2005;30(8):1195-202.

[138] Solomon BD, Barnes JR, Halvorsen KE. Grain and cellulosic ethanol: History, economics, and energy policy. Biomass Bioenergy. 2007 Jun;31(6):416-25.

[139] Al-Hasan M. Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Convers Manag. 2003;44(9):1547-61.

[140] De Oliveira MED, Vaughan BE, Rykiel EJ. Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. BioScience. 2005;55(7):593-602.

[141] Guimaraes PMR, Teixeira JA, Domingues L. Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv. 2010 May;28(3):375-84.

[142] Browne HH. Ethyl alcohol from fermentation of lactose in whey. Ind Eng Chem News Ed. 1941;19:1272-6.

[143] Duclaux E. Fermentation alcoolique du sucre de lait. Ann Instit Pasteur. 1887;1:573.

[144] Dale MC, Eagger A, Okos MR. Osmotic inhibition of free and immobilized K. marxianus anaerobic growth and ethanol productivity in whey permeate concentrate. Process Biochem. 1994;29(7):535-44.

[145] Ferrari MD, Loperena L, Varela H. Ethanol production from concentrated whey permeate using a fed-batch culture ofKluyveromyces fragilis. Biotechnol Lett. 1994;16(2):205-10.

[146] Gawel J, Kosikowski FV. Improving alcohol fermentation in concentrated ultrafiltration permeates of cottage cheese whey. J Food Sci. 1978;43(6): 1717-9.

[147] Hahn-Hagerdal B. Comparison between immobilized Kluyveromyces fragilis and Saccharomyces cerevisiae coimmobilized with P-galactosidase, with respect to continuous ethanol production from concentrated whey permeate. Biotechnol Bioeng. 1985;27(6):914-6.

[148] Mahmoud MM, Kosikowski FV. Alcohol and single cell protein production by Kluyveromyces in concentrated whey permeates with reduced ash. J Dairy Sci. 1982;65(11):2082-7.

[149] Marwaha SS, Kennedy JF. Ethanol production from whey permeate by immobilized yeast cells. Enzyme Microb Technol. 1984;6(1):18-22.

[150] Marwaha SS, Kennedy JF, others. Alcohol production from whey permeate by immobilized and free cells of Kluyveromyces marxianus NCYC 179. Process Biochem. 1984;19(2):79-80.

[151] Mehaia DMA, Cheryan DM. Ethanol from hydrolyzed whey permeate using Saccharomyces cerevisiae in a membrane recycle bioreactor. Bioprocess Eng. 1990 Mar 1;5(2):57-61.

[152] Moulin G, Guillaume M, Galzy P. Alcohol production by yeast in whey ultrafiltrate. Biotechnol Bioeng. 1980;22(6):1277-81.

[153] O’leary VS, Sutton C, Bencivengo M, Sullivan B, Holsinger VH. Influence of lactose hydrolysis and solids concentration on alcohol production by yeast in acid whey ultrafiltrate. Biotechnol Bioeng. 1977;19(11):1689-702.

[154] Vienne P, Von Stockar U. An investigation of ethanol inhibition and other limitations occurring during the fermentation of concentrated whey permeate byKluyveromyces fragilis. Biotechnol Lett. 1985;7(7):521-6.

[155] Sreekrishna K, Dickson RC. Construction of strains of Saccharomyces cerevisiae that grow on lactose. Proc Natl Acad Sci. 1985;82(23):7909-13.

[156] Gabardo S, Rech R, Rosa CA, Ayub MAZ. Dynamics of ethanol production from whey and whey permeate by immobilized strains of Kluyveromyces marxianus in batch and continuous bioreactors. Renew Energy. 2014 Sep;69:89-96.

[157] Viljoen BC. The interaction between yeasts and bacteria in dairy environments. Int J Food Microbiol. 2001 Sep 19;69(1-2):37-44.

[158] Bockelmann W, Hoppe-Seyler T. The surface flora of bacterial smear-ripened cheeses from cow’s and goat’s milk. Int Dairy J. 2001;11(4):307-14.

[159] Roostita R, Fleet GH. The occurrence and growth of yeasts in Camembert and blue- veined cheeses. Int J Food Microbiol. 1996;28(3):393-404.

[160] Fonseca GG, Heinzle E, Wittmann C, Gombert AK. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol. 2008 Jun 1;79(3):339-54.

[161] Haast JD, Britz TJ, Novello JC, Verwey EW. Anaerobic digestion of deproteinated cheese whey. J Dairy Res. 1985;52(03):457-67.

[162] Woodward J. Methods of immobilization of microbial cells. J Microbiol Methods. 1988 Jun;8(1-2):91-102.

[163] Koushki M, Jafari M, Azizi M. Comparison of ethanol production from cheese whey permeate by two yeast strains. J Food Sci Technol. 2012;49(5):614-9.

[164] Silveira WB, Passos FJV, Mantovani HC, Passos FML. Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: A flux analysis of oxido- reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme Microb Technol. 2005 May;36(7):930-6.

[165] Diniz RHS, Rodrigues MQRB, Fietto LG, Passos FML, Silveira WB. Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Biocatal Agric Biotechnol. 2014 Apr;3(2):111-7.

[166] Domingues L, Lima N, Teixeira JA. Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells. Biotechnol Bioeng. 2001;72(72):507- 14.

[167] Mawson AJ. Bioconversions for whey utilization and waste abatement. Bioresour Technol. 1994;47(3): 195-203.

[168] Bund RK, Pandit AB. Rapid lactose recovery from paneer whey using sonocrystallization: A process optimization. Chem Eng Process Process Intensif. 2007 Sep;46(9):846-50.

In: Agricultural Wastes Editor: Camille N. Foster

ISBN: 978-1-63482-359-3 © 2015 Nova Science Publishers, Inc.

< Prev   CONTENTS   Source   Next >